Abstract

Web sites are exposed to high rates of incoming requests. During temporary traffic peaks, web servers may become overloaded and their services deteriorate drastically. In this paper, we propose a method for admission control to prevent and control overloads in web servers by utilizing neural network (NN). The control decision is based on the desired web server
An Admission Control Mechanism for Web Servers using Neural Network

performance criteria: average response time, blocking probability and throughput of web server.
We have designed and developed a NN model able to predict web server performance metrics
based on the parameters of the Apache server, the core of the Linux system and arrival traffic.
The model predictor captures the complex relationship between web server performance and its
configuration. This avoids an ad-hoc web server configuration, which poses significant
challenges to the server performance and quality of service (QoS).

Reference

 Control Theory to Achieve Service Level Objectives In Performance Management. Real-Time
 Syst., 23(1-2), 127–141.
 control to enforce policies for interrelated metrics with application to the Apache Web server. In
- Cao J. and Nyberg C. 2002. On overload control through queue length for web servers, in
 Proceedings of the 16th Nordic Teletraffic Seminar NTS16, Helsinki University of Technology,
 Espoo, Finland.
 server systems - design and experimental evaluation. In Proceedings of the 43rd IEEE
 Admission Control and Request Scheduling in E-CommerceWeb Sites. In 13th international
 Systems. In 17th International Conference on Very Large Data Bases, San Francisco, CA, USA.

- Linux manual page, http://linux.die.net/man/2/listen
- Du K. -L. and Swamy M. N. S. 2006. Neural Networks in a Softcomputing Framework,
 Springer-Verlag London Limited.
 Academic Press, California.
 by error propagation. In: Rumelhart DE, McClelland JL (eds) Parallel distributed processing:
 Explorations in the microstructure of cognition, 1:Foundation, 318–362. MIT Press, Cambridge,
 USA.
 Performance. HP Research Labs. (December. 1998), volume 26 issue 3, ACM Sigmetrics
 Performance Evaluation Review.
 Mining, Inference, and Prediction. Springer-Verlag, New York.
Index Terms

Computer Science

Computer Networks

Key words

Web server

Admission control

QoS

Neural networks