
International Journal of Computer Applications (0975 – 8887)

Volume 150 – No.1, September 2016

32

Deep Web Crawler: Exploring and Re-ranking of Web

Forms

Rashmi K. B.
PG Scholar, Dept. of CS&E

Bangalore Institute of
Technology

Bangalore, Karnataka, India

Vijaya Kumar T.
Associate Professor, Dept. of

CS&E
Bangalore Institute of

Technology
Bangalore, Karnataka, India

H. S. Guruprasad, PhD
Professor and Head, Dept. of

CS&E
BMS college of Engineering
Bangalore, Karnataka, India

ABSTRACT

A huge portion of the web known as deep web is accessible

via search interfaces to myriads of databases on the web.

Deep web crawl is concerned with the problem of surfacing

hidden content behind search interfaces on the web. Given the

dynamic nature of the web, where data sources are constantly

changing, it is crucial to discover these resources. The paper

proposes a two level application namely deep web crawler for

gathering relevant searchable forms. In the first level deep

web crawler explores the forms based on reverse searching for

a given seed site, ranking the sites to prioritize highly relevant

sites and by extracting the links to find the forms. In the next

level, it searches the forms based on preference and the result

is enhanced by re ranking, given the user feedback.

Keywords

Deep web, adaptive learning, ranking

1. INTRODUCTION
The internet has vast amount of information, there is a need of

an efficient mechanism for finding relevant information. Web

crawlers offer that provision to the search engine. Web

crawlers are the programs used for indexing the content by

scanning over the internet. This is applied only for surface

web which is used and indexed by conventional search

engines. The hidden web also called as deep web. It is part of

the internet content which is non indexed by conventional

search engines and it is the response to a submitted query or

forms. Therefore, they are non searchable by these engines.

Internet is the quickest developing mean for information. In

the year 2000 it was found that the public web information

was 20 to 50 terabytes. In the year 2003 it was 167 terabytes,

which was three times more than in the year 2000. The deep

web was approximately 91,850 terabytes. This calculation is

based on the studies made at University of California,

Berkeley [1]. Based on the report on growth of data by

International Data Corporation (IDC), the total quantity of

digital data produced in the year 2007 was 281 billion

gigabytes [2]. In 2014 alone, approximately 6 trillion

terabytes of digitized information was created, replicated and

consumed [3].

According to Bergman, substantial portion of this large

amount of digital data considered as deep web, which are the

pages that do not exist on conventional search engines. They

are created dynamically in response to the search queries.

Hidden web is a portion of World Wide Web which cannot be

approached via link-crawling search engines like Google. This

part of internet can be accessed by filling query forms. Hidden

web is approximately 400-500 times more than the surface

web. This information resides in the databases and 95% of it

is not publicly accessible [4].

Deep web databases are not indexed by any search engines,

not densely dispersed and they keep changing as it is dynamic

data. Hence it is challenging to locate these database contents.

Existing approaches to address this problem are of two types,

generic crawlers and focused crawlers. Generic crawlers are

domain independent which retrieves all possible searchable

forms irrespective of the topic. Focused crawlers are domain

specific, results in searchable forms focusing on specific

topic. This includes Form-Focused Crawlers called as FFC

and Adaptive Crawler for Hidden-Web Entry Points called as

ACHE. FFC has three classifiers namely link, page and form

classifiers for crawling the deep web content for particular

domain. ACHE is extended with Adaptive link learning

approach. Link classifiers in above crawlers predict the

distance to the links which later leads to pages with searchable

forms i.e., delayed benefit links. This may affect the

efficiency of crawlers by leading to links without any forms.

This paper work proposes a focused crawler for deep web

harvesting to gather searchable forms which are the entry

points to the databases. It is been observed that only few

searchable forms are found in deep websites and most of them

within the depth of three [5]. Hence used the stopping criteria

which prevent unproductive crawling. The rest of the paper is

organized as follows. Section 2 discusses the related work.

Section 3 describes the system overview. Section 4 concludes

the paper.

2. RELATED WORK
According to Bergman, exploring the content over the Internet

is like carting the net over the surface of the ocean. Deep

inside valuable information resides which is left out because

most of the content is dynamically generated and not

searchable by standard search engines. These engines use

crawling functionality for indexing. They index only static

pages and cannot find deep web which are returned in

response to a submitted query. Deep web contains domain

specific relevant information. Bergman makes an effort to

figure out the size of deep web by several methods which

includes Analysis procedure, Overlap analysis and Page views

[4].

There are two classes of approaches to identify search

interfaces to online databases: pre-query and post-query

approaches. Pre-query approaches identify searchable forms

on web sites by analyzing the features of web forms. Post-

query techniques identify searchable forms by submitting the

probing queries to forms and analyzing the result pages.

Bergholz and Chidlovskii [6] gave an example of the post-

query approach for the automated discovery of search

International Journal of Computer Applications (0975 – 8887)

Volume 150 – No.1, September 2016

33

interfaces. They implemented a domain specific crawler that

starts on indexable pages and detects forms relevant to a given

domain. Next, the Query Prober submits some domain-

specific phrases (called “positive” queries) and some

nonsense words (“negative” queries) to detected forms and

then assesses whether a form is searchable or not by

comparing the resulting pages for the positive and negative

queries. Cope et al. [7] proposed a pre-query approach that

uses automatically generated features to describe candidate

forms and uses the decision tree learning algorithm to classify

them based on the generated set of features.

In [8], Kevin et al., describes the metaquerier system which is

a generic crawler for finding and querying databases. It is

explained that most forms resides close to the home page of

the website, defined as depth. It is the least possible count of

moves from home page of the main site to the web page

consists of searchable forms.

In [9], Luciano Barbosa et al., describes a “Form Crawler

Architecture” which is a focused crawler called as Form

Focused Crawler (FFC). This is used to find forms by

searching for the specific topic which prevents unproductive

crawling. FFC uses three classifiers namely page, link and

form classifier. A page classifier is used to grade the relevant

pages for a specific topic. A link classifier identifies the links

with forms and also the links which eventually leads to forms.

It ranks the links based on their significance with the topic. A

form classifier is used to separate out non searchable forms

and useless forms. It involves the choices of relevant features

and forms to train the link classifier by manual selection.

In [10], Luciano Barbosa et al., proposes ACHE (Adaptive

Crawler for Hidden-Web Entry Points) architecture. Most of

the deep web content remains in the databases and there is a

need to explore the searchable forms which are the entry

points to the deep web databases. They implemented adaptive

learning process where crawling is enhanced by using prior

knowledge. ACHE is a focused crawler with an adaptive

learning approach which enhances the harvest rates by

automatic feature selection compared to crawlers with manual

tuning. As the deep web is sparsely distributed, back crawling

method is required to improve the learning process by

increasing sample paths. The limitation of this approach is

having limited sample path.

In [11], Shestakov Denis., concentrate on three classes of

problems around the deep web: characterization of deep web,

finding and classifying deep web resources and querying web

databases. He proposes the system for discovering and

classifying search interfaces named as I-crawler [12]. I-

Crawler includes stages like Site/Page Analyzer to know

which site to be processed first, Interface Identification for

finding the forms, Interface Classification for page classifier

as searchable or non-searchable and Form Database for the

storage purpose. This is a generic crawler which gathers all

searchable forms without particular domain.

There is a survey about web crawling and its challenges and

solutions. According to Olston and Najork, a deep web

crawler makes an effort to find searchable html forms which

are not produced by hyperlinks of conventional crawlers. It

includes identifying sites which contain forms that in turn lead

to hidden content, selecting the relevant content and finally

extract the content which was selected [13]. Following their

statement, paper discusses the two steps closely related to the

proposed work as locating deep web content sources and

selecting relevant sources.

There is a survey about estimating the size of deep web by

considering one national web domain in particular Russian

web. Denis discusses about the limitation of neglecting virtual

hosting where IP address shared among many websites. Host-

IP clustering method is employed to overcome this drawback.

This includes grouping of hosts who shares the same IP

address [14].

The main aim of crawling over the deep web is to find the

content which is hidden behind the surface web. Conventional

literature is more about deep web sites in the form of textual

documents for example PubMed, but significant information

is concealed in structured entities for example online shopping

sites. In [15], Yeye He et al., briefs the prototype system

developed which specifies crawling the entity oriented

content. This system include components like query

generation, URL deduplication and empty page filtering. The
number of sites obtained is reduced because URL template

generation is only based on HTML “GET” forms but not

“POST” forms.

The proposed system is motivated by the model “Smart

Crawler” developed by Feng Zhao et al. SmartCrawler is a

framework for locating the deep web interfaces. It includes

Site Locating for fetching enough sites for crawling, In-site

Exploring for finding web forms within a site [16]. The paper

contributes some enhancement by combining pre and post

query constraints which improves the accuracy of form

classification.

3. SYSTEM OVERVIEW

3.1 System Architecture

Fig. 1: System architecture

To efficiently and effectively discover deep web data sources,

Deep web crawler is designed with two levels, exploring

forms and retrieving forms, as shown in Figure 1.

The main aim of exploring forms is to collect the relevant

sites for a given seed site and keyword, to find the searchable

forms out of it. The main aim of retrieving forms is to fetch

the relevant searchable forms from the database and

reordering those forms based on user feedback.

Seed site must be preconfigured and added to site database.

Reverse searching will be done for known deep website that is

International Journal of Computer Applications (0975 – 8887)

Volume 150 – No.1, September 2016

34

seed site and the resultant sites will fed into naive bayes

classifier for finding the relevant sites based on given topic,

according to home page content. Site frontier fetches

homepage URL from the site database which is unvisited and

provides to the site ordering. Adaptive learning used to keep

track of deep sites. It provides deep site URL to the site

ordering. Site ordering prioritizes highly relevant sites and it

is improved by an adaptive site learner. Link ordering ranks

the links which are extracted from the ranked sites. Link

analyzer reads the webpage from the URL link, by fetching

page content and check for forms. Form analyzer explores

relevant searchable forms by leaving login forms. These

searchable forms are added to the form database. User will

provide keyword with preference to get relevant result. Search

function collects all sorted forms from the database. These

forms will be re-ranked based on user feedback rating.

3.2 Reverse Searching
Reverse searching module is implemented in order to increase

the number of sites to crawl. This is achieved by making use

of existing search engines feature such as Google’s “link”

facility. For instance, link: www.abebooks.com this provides

all web pages which have links pointing to the abebooks home

page.

3.3 Naive Bayes Classifier
Naive Bayes Classifier is a probabilistic classifier based on

Bayes theorem. This module is used to find relevant sites out

of all sites resulted from reverse searching. The seed site

home page content is downloaded to text file and important

terms are selected by filtering out stop words like adjectives,

articles, prepositions and excluding irrelevant tags. Naive

bayes class is trained with all the important terms. The

probability of match is found between given site and with the

training set. The higher probability sites are considered as

relevant.

The procedure followed in the algorithm is explained in form

of steps are as follows:

Input: Training terms of seed site, Test terms of new site

Output: Accuracy of the classifier’

 begin

 call train function of the classifier with training terms

 for each new site

 call match function of the classifier for test terms

 return accuracy

 end for

 end

3.4 Adaptive Learning
Adaptive learning is a strategy that updates and provides the

information gathered during crawling. This is used while

ranking sites and links. Feature Space for Sites (FSS) and

Feature Space for Links (FSL) are loaded and ranking process

is done by similarity metric with FSS and FSL respectively

for sites and links. If crawled site contains searchable forms

FSS is updated with this site. The links extracted from this site

which contains forms are updated in FSL, as shown in Figure

2. This plays a major role in finding relevant sites and links

while exploring searchable forms.

Fig. 2: Adaptive learning

3.5 Site Ordering
Site ordering is sorting the sites based on ranks. Ranking

mechanism involves two features Site similarity and Site

frequency. This is accomplished by online construction of

attributes for the site.

The attributes of a site specified as FSS= {U, A, T}

 Where U is the features of URL,

 A is the Anchor and

 T is the text around URL of a site.

Features of URL considered are protocol, authority, host,

path, query and reference. Anchor includes extracting the

links of a site. Term is the vector of important terms of a site

excluding stop words.

The site similarity is found between known deep site and new

site. It is based on URL score, Link score and Term score.

Consider the known deep site with attributes {U, A, T} and

new site s with attributes {Uns, Ans, Tns} whose rank is to be

find out. Site similarity of new site with the known deep site

is calculated as follows

SS(s) = Sim (U, Uns) + Sim (A, Ans) +Sim (T, Tns)

Where Sim (a1, a2) is the function to compute score based on

cosine similarity between the two vectors a1 and a2 as

Sim (a1, a2) = a1. a2/| a1|X| a2|

The site frequency calculates the number of times new site s

appears in known deep site.

The rank of a new site is calculated by the linear combination

of site similarity and site frequency.

Rank (new_site) = α x ST (new_site) + (1- α) x log (1+ SF

(new_site)),

Where 0 ≤ α ≤ 1

International Journal of Computer Applications (0975 – 8887)

Volume 150 – No.1, September 2016

35

3.6 Effectiveness Of Deep web crawler
Table 1 shows the results of searching for the book domain

after crawling, given the seed site.

Table 1. Experimental result of crawling over the book

domain

Total

Forms

Searchable

Forms

Pre query Constraints Filtered

Forms

143 118 No preference 118

143 118 Author 100

143 118 Author, publisher, price 72

143 118 Irrelevant preference 0

3.7 Preference Impact
Figure 3 shows the impact of preference. It fetches all

searchable forms when no preference is given and finds

relevant forms when preferences are given and finds no forms

when irrelevant preference given for the domain.

Fig. 3: Preference impact graph

4. CONCLUSION
The paper proposes an application that focuses on exploring

searchable forms. Deep web crawler is capable of executing

extensive search by focusing the search on a given domain.

Deep web crawler is a focused crawler comprises of two

levels namely exploring forms and searching forms. Deep

web crawlers explore forms by reverse searching, naive bayes

classifier and ranking mechanisms. Reverse searching collects

the sites and naïve bayes classifier gets the relevant sites.

Relevant sites are ranked based on site similarity and site

frequency. Relevant ranked sites are used to extract the links

to locate the searchable forms. Deep web crawler searches the

forms based on the preference mentioned, and the result is

enhanced with user feedback. Adaptive learning is applied

which enhances the harvesting rate by updating the feature

space of site and link used for crawling. Deep web crawler

improves the accuracy of crawling by combining pre and post

query approach by providing preference and user feedback.

User feedback is given as rating to each form by considering

the quality of form results.

5. REFERENCES
[1] Peter Lyman and Hal R. Varian. How much information?

2003. Technical report, UC Berkeley, 2003.

[2] Roger E. Bohn and James E. Short. How much

information? 2009 report on American consumers.

Technical report, University of California, San Diego,

2009.

[3] Idc worldwide predictions 2014: Battles for dominance

and survival on the 3rd platform. http://www.idc.com/

research/Predictions14/index.jsp, 2014.

[4] Michael K. Bergman. White paper: The deep web:

Surfacing hidden value. Journal of electronic publishing,

7(1), 2001.

[5] Jayant Madhavan, David Ko, Łucja Kot, Vignesh

Ganapathy, Alex Rasmussen, and Alon Halevy. Google’s

deep web crawl. Proceedings of the VLDB Endowment,

1(2):1241–1252, 2008.

[6] Bergholz A. and Childlovskii B. Crawling for Domain-

Specific Hidden Web Resources. In: Proc. of WISE

2003, pp. 125–133 (2003).

[7] Cope J., Craswell N. and Hawking D. Automated

Discovery of Search Interfaces on the Web. In: Proc. of

ADC 2003, pp. 181–189 (2003).

[8] Kevin Chen-Chuan Chang, Bin He, and Zhen Zhang.

Toward large scale integration: Building a metaquerier

over databases on the web. In CIDR, pages 44–55, 2005.

[9] Luciano Barbosa and Juliana Freire. Searching for

hidden-web databases. In WebDB, pages 1–6, 2005.

[10] Luciano Barbosa and Juliana Freire. An adaptive

crawler for locating hidden-web entry points. In

Proceedings of the 16th international conference on

World Wide Web, pages 441–450.ACM, 2007.

[11] Shestakov, D.: Characterization of National Deep Web.

TUCS Technical Report 892(2008).

[12] Shestakov Denis. On building a search interface

discovery system. In Proceedings of the 2nd international

conference on Resource discovery, pages 81–93, Lyon

France, 2010. Springer.

[13] Olston Christopher and Najork Marc. Web crawling.

Foundations and Trends in Information Retrieval,

4(3):175–246, 2010.

[14] Denis Shestakov. Databases on the web: national web

domain survey. In Proceedings of the 15th Symposium

on International Database Engineering & Applications,

pages 179–184. ACM, 2011.

[15] Yeye He, Dong Xin, Venkatesh Ganti, Sriram Rajaraman

and Nirav shah. Crawling deep web entity pages. In

proceedings of the sixth ACM international conference

on web search and data mining, pages 355-364. ACM,

2013.

[16] Feng Zhao, Jingyu Zhou, Chang Nie, Heqing Huang and

Hai Jin. SmartCrawler: A Two-stage Crawler for

Efficiently Harvesting Deep-Web Interfaces. IEEE

Transactions on Services Computing, 2015.

IJCATM : www.ijcaonline.org

