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ABSTRACT 
In this ongoing work, the location-aware ranking query (LRQ) 

are considered, an important category of location-aware query. 

Types of location-aware ranking query are the k-nearest 

neighbour (NN) query and location-aware keyword 

query(LKQ). NN LKQs and inquiries have vast applications in 

many domains. However, there are a great number of location-

aware datasets that demand better and flexible location aware 

rank queries. They are a lot more complex than spatio-textual 

objects. These things are termed as location-aware things. For 

location-aware things, simple NN LKQs and queries may well 

not be expressive enough to find the objects of interests. In this 

particular proposed work the generic location-aware rank query 

is formulated, which retrieves the objects satisfying a query 

predicate, ranks and returns the full total results predicated on 

spatial proximity, textual relevance's and measures extracted 

from attribute values. We create a construction called location 

aware indexing and query processing(LINQ), for useful 

indexing and querying of GLRQs. LINQ evolves the synopses 

tree to work with synopses of non-spatial features, and 

combines the synopses tree with other indexes to query and 

index the GLRQ. The global buckets can be used to provide 

efficiency and faster computation time by using Bin sort 

algorithm this proposed method is recognized as STQP. The 

increased proposed system will provide better results with 

respect to faster and output for spatial query results. 

Keywords 
Location Aware, Query, Synopsys Tree 

1. INTRODUCTION 
With all the proliferation and popular adoption of mobile 

telephony, it is increasingly more convenient for users to fully 

capture and submit geo-locations. As a result, increasingly 

more location-aware datasets have been made and created on 

the Web. For instance, Flickr, one of the primary photo-sharing 

website, has an incredible number of geo-tagged items every 

full month. The popularity and large scale of the location-

aware datasets make location-aware queries important. 

In the ongoing work, an important class of location-awarequery 

techniques is considered and explored which is termed as 

Location-aware Ranking Query (LRQ), an important course of 

location-aware query. Types of location-aware list query are 

the k-nearest neighbour (NN) query and location-aware 

keyword query. NN questions and LKQs have extensive 

applications in many domains. However, there are always a 

complete great deal of location-aware datasets that demand 

better and adaptable location aware ranking concerns. For 

instance on Yelp, the restaurant, Yelp gives its location "1429 

Mendel St, SAN FRANCISCO BAY AREA, CA 94124", 

categories "Soul Food, American Traditional, Music Venues", 

rating 4.5 celebrities as well as the true quantity of reviews 150. 

Another example is the photographs on Flickr, where as well as 

the geo-location and text, each image also has some numeric 

attributes, like the range of views, the real volume of favourites, 

the true variety of comments, etc. The restaurants on 

photographs and Yelp on Flickr are mixtures of location, text 

and other styles of information. They may be much more 

sophisticated than spatio-textual things. These items are termed 

as location-aware things. For location-aware items, simple NN 

LKQs and queries might not exactly be expressive enough to 

find the objects of interests. For instance, on the restaurant 

dataset, through LKQs, one will discover the most nearest and 

relevant restaurants. But you can desire to find the nearest and 

relevant restaurants gratifying certain conditions, such as no-

smoking, healthy, or top-ranked. Within the Flickr dataset, 

users might want to fetch the relevant and nearest photographs 

that are highly-rated. On these datasets, people may decide to 

search by not only location and keywords, but conditions on 

other attributes also 

In prior work Location-aware list query is recognized as an 

important school of query, and many subsets have been 

examined. Nearest neighbour query is the most well-known 

LRQ. It requires a spatial location as suggestions and outputs 

the closest items in the dataset. The prevailing algorithms use 

index buildings plus some pruning solutions to limit the search 

space. Several NN algorithms have been suggested, where in 

fact the best-first algorithm is one of the very most influential 

methods, which proves to attain the optimum I/O performance. 

Location-aware keyword query is another school of LRQ. The 

essential LKQ will not contain any predicates, and has a 

standing function incorporating spatial proximity and textual 

relevance. There are a few other variations of LKQs also. One 

variant specifies a spatial region, which restricts the locations 

of the full total results. Another variant interprets the keywords 

as Boolean conditions. That is, it retrieves the items including 

all the keywords, and ranks the results just in line with the 

spatial distances.  

In this suggested work the universal location-aware list query 

is formulated, which retrieves the things gratifying a query 

predicate, rates and earnings the full total results predicated on 

spatial proximity, textual relevance's and steps obtained from 

feature values. A platform called Location aware Indexing and 

Query processing(LINQ), for useful indexing and querying of 

Generic Location Aware Rank Queries(GLRQs). LINQ 

evolves the synopses tree to work with synopses of non-spatial 

characteristics, and combines the synopses tree with other 

indexes to query and index the GLRQ. The experiments on real 

datasets and the results demonstrate the effectiveness and 

efficiency of the method. The enhancement of this proposed 

system is to add temporal data as yet another attribute by which 

the ranking function can be increased and can provide reliable 

scores over time frame. The global buckets can even be used to 

provide efficiency and faster computation time by using Bin 

variety algorithm and this suggested method is recognized as 
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STQP. The increased proposed system shall provide better 

results with respect to faster output for spatial query results. 

2. PREVIOUS WORKS 
Driven in part by the emergence of the mobile Internet, the 

conventional Internet is acquiring a geo-spatial dimension. On 

the one hand, many (geo-referenced) points of interest e.g., 

stores, tourist attractions, hotels, entertainment services, public 

transport, and public services are being associated with 

descriptive text documents. On the other hand, web documents 

are increasingly being geo-tagged. This fusion of geo-location 

and documents enables queries that take into account both 

location proximity and text relevancy. One study has found that 

about one fifth of web search queries are geographical and 

have local intent, as determined by the presence of 

geographical terms such as place names and postal codes. 

Indeed commercial search engines have started to provide 

location based services, such as map services, local search, and 

local advertisements. For example, Google Maps supports 

location-aware text retrieval queries. Additional examples of 

location-based services include online yellow pages. 

The R-tree is arguably the dominant index for spatial queries, 

and the inverted file is the most efficient index for text 

information retrieval. These were developed separately and for 

different kinds of queries. We aim to develop an approach that 

is able to leverage both techniques for the efficient processing 

of LkT queries. To achieve this goal, a simple approach is to 

use the inverted file to generate a number of top candidate 

objects based on text relevancy and then compute the spatial 

distances (resp. text relevancy) of the candidate objects using 

the other index. However, this approach is not efficient since 

there is no sensible way to determine the number of candidate 

objects needed from the first step in order to ensure that k top-k 

objects are found in the end. Instead, we propose a hybrid 

indexing structure, the IRtree that utilizes both indexing 

structures in a combined fashion. The IR-tree is essentially an 

R-tree, each node of which is enriched with reference to an 

inverted file for the objects contained in the sub-tree rooted at 

the node. In the IR-tree, a leaf node N contains a number of 

entries of the form (O; rectangle(O:di), where O refers to an 

object in database D, rectangle is the bounding rectangle of 

object O, and O:di is the identifier of the document of object O. 

A leaf node also contains a pointer to an inverted file for the 

text documents of the objects being indexed. The inverted file 

is stored separately, for two reasons: First, it is more efficient 

to store each inverted file contiguously, rather than as a 

sequence of blocks or pages that are scattered across a disk. 

Second, the inverted file can be distributed across several 

machines while this is not easily possible for the R-tree. [2] 

Let D be a database. Each spatial web object O in D is defined 

as a pair (O.λ,O.ψ), where O.λ is a location descriptor in 

multidimensional space and O.ψ is a document (e.g., a dining 

menu) that describes the object (e.g., an Italian restaurant).A 

two-dimensional geographical space composed of latitude and 

longitude is assumed, but the paper’s proposals generalize to 

other multidimensional spaces of low dimensionality. 

Intuitively, a Location-aware top-k Text retrieval (LkT) query 

retrieves k objects in database D for a given query Q such that 

their locations are the closest to the location specified in Q and 

their textual descriptions are the most relevant to the keywords 

in Q. Formally, given a query Q, defined as a pair (Q.λ, Q.ψ), 

where Q.λ is a location descriptor and Q.ψ is a set of keywords, 

the objects returned are ranked according to a ranking function 

given by: f (Dε(Q.λ, O.λ), P(Q.ψ| O.ψ)), where Dε(Q.λ, O.λ) is 

the Euclidian distance between Q and O and P(Q.ψ|O.ψ) is the 

text relevancy of O.ψ with regard to Q.ψ. The text relevancy 

can be computed as the probability of generating query Q.ψ 

from the language models of the documents or other text 

models. We tackle the problem of efficiently answering LkT 

queries. Thus, given a query Q, we retrieve a ranked list of k 

objects according to their ranking scores as computed by the 

ranking function f (·, ·) introduced above. The paper’s 

proposals are applicable to a wide range of ranking functions, 

namely all functions that are monotone with respect to distance 

proximity and text relevancy. 

 

Figure 1: Objects and Bounding Rectangles 

Table 1: Document by Term Matrix 

 English Hindi Restaurant Food 

O1 0.5  0.5  

O2  0.5 0.5  

O3 0.7   0.1 

O4   0.7 0.1 

O5 0.4  0.4  

O6  0.4 0.3  

O7 0.1 0.1 0.4 0.1 

O8  0.3 0.3  

 

The IR-tree is essentially an R-tree, each node of which is 

enriched with a reference to an inverted file for the objects 

contained in the sub tree rooted at the node. In the IR-tree, a 

leaf node contains a number of entries of the form (O, O.r ), 

where O refers to an object in database D and O.r is the 

bounding rectangle of object O. A leaf node also contains a 

pointer to an inverted file for the text documents of the objects 

being indexed. The inverted file is stored separately from the 

R-tree, for two reasons: First, it is more efficient to store each 

inverted file contiguously, rather than as a sequence of blocks 

or pages that are scattered across a disk. Second, the inverted 

file can be distributed across several machines, while this is not 

easily possible for the R-tree. 

An inverted file consists of the following two main 

components. 

• A vocabulary of all distinct terms in a collection of 

documents. 

• A set of posting lists, each of which relates to a term t. 
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Each posting list is a sequence of pairs O,w_, where O refers to 

an object whose document O.ψ contains term t, and w is the 

weight of term t in document O.ψ. A non-leaf node N contains 

a number of entries of the form (e, e.r ) where e points to a 

child node of N and e.r is the Minimum Bounding Rectangle 

(MBR) of all rectangles in entries of the child node. A pseudo 

document is constructed for each non-leaf entry in the IR-tree. 

The pseudo document is an important concept in the IR-tree. It 

represents all documents in the entries of the child node, 

enabling us to estimate a bound on the text relevancy to a query 

of all documents contained in the sub tree rooted at e. The 

weight of a term t in the pseudo document referenced by e is 

the maximum weight of t in the documents contained in the sub 

tree rooted at node e. A non-leaf node N also contains a pointer 

to an inverted file for the pseudo documents of the entries 

stored in N. [3] 

3. PROPOSED SYSTEM 

3.1  Architecture  
The user query Q is a query predicate of the form P1, P2, ….. 

Pn, where Pi is a simple selection predicate specified on a 

single attribute. The other component Q:f is a ranking function. 

In module tree of synopses is built. The histograms are 

constructed in holistic way. A bucket in the global histograms 

stands for a hyper-rectangle within the domain of data. The 

synopses tree summarizes the distribution of numeric attributes. 

To answer the GLRQ, we need to combine synopses tree with 

other indexes on locations and texts. The state-of-the-art index 

structures supporting locations and texts are the IR-tree family. 

The basic structure of IR-tree index is an R-tree, where each 

entry is associated with an inverted file. The synopses tree can 

be easily combined with IR-tree index 

 

 

Figure 2: Architecture 

3.2  Data Initialization 

In this module initialization is done by denoting location-aware 

object O as a triple < λ, W, A>, where O: λ is a location 

descriptor, O: W is a set of keywords, and O: A  {O:A1; 

O:A2; …… } is a set of attributes. We use O:Ai to denote the 

value of O on attribute Ai. The attributes in O:A are numeric 

attributes. The locations of the objects are implied by their 

positions on the plane, and the attributes and keywords are 

Retrieved. Formally, in a GLRQ Query Q:P is a query 

predicate of the form P1, P2, ….. Pn, where Pi is a simple 

selection predicate specified on a single attribute. The other 

component Q:f is a ranking function. Each attribute, including 

location and text, has a scoring function, measuring the 

“goodness” of an object in terms of the attribute. The scoring 

function on location returns spatial proximity, whereas the 

function on text measures the textual relevance.  

3.3  Factorization and Buckets 
After In this module histograms are used for synopses, as more 

than one attributes are concerned, we build multi-dimensional 

histograms to summarize the datasets. Multi-dimensional (nD) 

histogram has been widely used to summarize multi-

dimensional data. Basically, an nD histogram is obtained by 

partitioning the multi-dimensional domain into a set of hyper-

rectangular buckets, and then storing summary information for 

each bucket. As a synopsis, nD histogram is able to provide 

accurate approximation, but it is very expensive to construct 

and maintain an nD histogram. To reduce the complexity of nD 

histogram, nD factor data distribution into two-dimensional 

(2D) distributions is used. The modeling of a dataset generates 

a model called junction tree. The junction tree is a tree 

structure where each node is a pair of attributes. Then, 

according to the junction tree, the joint distribution of multiple 

attributes can be factorized into a set of 2D distributions. 

In this module tree of synopses is built. If the nD-histograms in 

the synopses tree are constructed independently, the cost would 

be too high. It is proposed to construct the synopses with 

reduced cost. The datasets of different nodes may be similar or 

overlapping. The dataset of a node at a higher level is a 

superset of that of its descendants. Considering the 

characteristics, we construct the histograms in a holistic way. 

Specifically, we construct a set H { H1, H2, …….} of global 

histograms for the whole dataset D, where Hi is a global 

histogram, and Bij is a bucket the histogram Hi. The set of 

global histograms is used by all entries in the synopses tree. Let 

B be the set of buckets in all histograms. For any entry e, an 

array b elements is maintained, where each element in the array 

is the statistics about the D in a bucket. Thus the array records 

the summary statistics of e:D. By using global histogram 

buckets, the construction cost and storage overhead of 

histograms are decreased. This is because the global 

histograms are constructed and stored only once. For each 

entry in a non-leaf node, only some local statistics are kept. 

3.4  Compact Information and Synopsys 

Tree 

In A bucket in the global histograms stands for a hyper-

rectangle within the domain of data. To approximate the data 

points falling in the hyper-rectangle, some statistics about the 

distribution of data in the rectangle are needed. Only one bit 

kept for a bucket, indicating whether the bucket is empty or not. 

To improve the accuracy of estimation, more bucket 

information is needed. In this module, we use a compact bit-

based representation of the local information in each bucket. 

We split each bucket into M partitions, and then stores a M-bit 

string where each bit is 1 if the corresponding partition is not 

empty or 0 otherwise. We keep the splitting information, and 

the correspondence between the bits and the partitions. As all 

the buckets are split in the same way, this information can be 

stored only once as background information. 

The synopses tree summarizes the distribution of numeric 

attributes. It is able to address part of the GLRQ processing 

problem. To answer the GLRQ, we need to combine synopses 

tree with other indexes on locations and texts. The state-of-the-

art index structures supporting locations and texts are the IR-

tree family. The basic structure of IR-tree index is an R-tree, 

where each entry is associated with an inverted file. Our 

synopses tree can be easily combined with IR-tree index. Each 

entry in the R-tree is associated with two additional 
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components: the inverted file from the IR-tree, and the 

synopsis from the synopses tree. The inverted files and the 

synopses are stored separately from the R-tree. This structure is 

flexible in that the structure of the R-tree is not influenced by 

other parts, and the R-tree can be queried alone, with or 

without the inverted files and the synopses. 

Algorithm STQP 

Input: Dataset. 

Output: Top-k results. 

1. Extract attributes 

2.      Compute the ranking function 

           d ← w1.prox(O.Q)+  

w2(O.Q)+w3(O.rating)+w4(O.health) +w5(O.time) 

3.      Create and factorize multidimensional                            

histograms. 

4. Divide each histograms into buckets. 

5. Sort the buckets using Bin-sort algorithm. 

6. Create inverted indices. 

7. Create a synopses tree. 

8. Process the STQP query. 

9. Return the top-k result. 

3.5 Query Processing and STQP 
In this module Query processing algorithm is implemented 

which exploits the best-first strategy to search the combined 

index. In this priority queue is used to keep track of the nodes 

and objects to explore in decreasing order of their scores. A 

maximum matching score of entry e to query Q, which are used 

as the keys of entries in the queue. TopK keeps the current top-

k results. The R-tree is traversed in a top-down manner. At 

each node N, if N is an internal node instead of a leaf, for each 

entry e in node N, the algorithm estimates maxf. If maxf > 0 , it 

implies that there may be objects enclosed by e satisfying the 

query predicate, so e with maxf is added to the queue. If N is a 

leaf, it computes the score of each entry, and pushes the entries 

with non-zero scores to the queue. If N is an object, N is 

directly reported as a top-k result. The algorithm terminates if 

the top-k results have been found. Given a query Q and a node 

N in the R-tree, we compute a metric maxf, which offers an 

upper bound on the actual scores of the objects enclosed by N 

with respect to Q. Conceptually, the synopsis associated with a 

node N as a multi-dimensional space (called data space of N) 

consisting of hyper-rectangles. Similarly, a query Q can be 

considered as a set of hyper-rectangles (called query space of Q) 

encompassing the points satisfying the query predicate 

In this module Spatio Temporal Query processing method is 

implemented which exploits to include temporal data as an 

additional attribute through which the ranking function can be 

enhanced and will provide reliable scores over period of time. 

The global buckets can also be used to provide efficiency and 

faster computation time by using Bin sort algorithm this 

proposed method is known as STQP. Best-first strategy is used 

to search the combined index. This enhancement works the 

same way as previous module of query processing. 

4. RESULTS 
The concept of this paper is implemented using comments 

retrieved from Facebook API. Different results are shown 

below; The proposed paper is implemented in Java technology 

on Intel Core i3 Processor with minimum 20 GB hard-disk and 

1GB RAM. Extensive experiments with UK location database 

are conducted.   

The performance of the query methods is evaluated based on 

their efficiency in terms of computing time taken by each 

querying method. In this evaluation the LINQ and STQP 

graphs are mentioned.  

 

Figure 3: Location and Places from Dataset 

 

Figure 4: Graph for Factorization 

 

Figure 5: Graph for Execution Time 
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Figure 6: Graph for Memory Usage 

The analysis is performed by using the above parameters. The 

comparison between LINQ and STQP is performed for 

execution time and Memory usage. It is observed that Memory 

and Execution time on the datasets clearly shows that STQP 

has better performance than LINQ. 

5. CONCLUSION 
In this paper, An important course of query, general location-

aware get ranking query is formulated, and propose a 

construction called LINQ to process the query. In this 

particular platform, a novel index composition called synopses 

tree is made, which indexes synopses of things, and permits 

efficient pruning and estimation. This technique is increased by 

including temporal data as yet another attribute by which the 

ranking function can be increased and can provide reliable 

scores over time frame. The global buckets can even be used to 

provide efficiency and faster computation time by using Bin 

type algorithm this suggested method is recognized as STQP. 

The increased proposed system provided better results with 

respect to faster output for spatial query results. The synopses 

tree was created to reduce the price tag on construction while 

preserving accuracy. We show how to process GLRQs in the 

LINQ framework efficiently, leveraging synopses tree and 

other index set ups. Experimental results show that the 

proposed solution performs better than the existing solutions.  
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