Undecimated Balanced GHM Multiwavelet Transform based Contrast Enhancement Technique for Dark Images using Dynamic Stochastic Resonance

International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA

Volume 150
Number 11

Year of Publication: 2016

Authors:
S. Deivalakshmi, P. Palanisamy

10.5120/ijca2016911657

Abstract

The main aim of this paper is to propose a technique for enhancing contrast of the dark images using Undecimated Balanced GHM multi wavelet transform (UMWT) and Dynamic Stochastic Resonance (DSR). The DSR based approach utilizes the inherent noise of an image for enhancement. Darkness due to inadequate illumination is treated as noise, and is used to yield a noise induced adjustment of the image from a state of low to high contrast. The stochastic resonance is stimulated in the approximation and detail coefficients of undecimated multiwavelet transformed dark image in an iterative manner. This results intensification in contrast of the coefficient distribution. The desired response is validated by the performance metrics such as Relative Contrast Enhancement Factor (F), Perceptual Quality Measures (PQM) and Color Enhancement Factor (CEF). The results shows that the proposed technique offers good performance in terms of above mentioned metrics, perceptual quality as well as colourfulness.

References

Communications. 1-5.
and technology.
54.
IEEE Transactions on signal processing. 48.
Phys. 70, 223-270.
weak lines from noise images. Proc. IEEE Int. Conf. on Image Processing. Barcelona, Spain, 5,
1849-1852.
York.
assessment of jpeg compressed images. In Proc. IEEE Int. Conf. Image Processing, 1,
477-480.
32. Rajlaxmi Chouhan, Pradeep kumar, C., Rawnak Kumar and Rajib Kumar Jha. 2012.
Contrast Enhancement of Dark Images using stochastic Resonance in Wavelet Domain.
the gap between color images and the human observation of scenes. IEEE Trans. Image
Process. 6, 965-976.

Index Terms

Computer Science Information Sciences

Keywords

Dynamic stochastic resonance, Undecimated Multi Wavelet Transform (UMWT), Relative
Contrast Enhancement Factor (F), Perceptual Quality Measures (PQM), Color Enhancement
Factor (CEF)