Abstract

Wireless networking is becoming one of the most important technologies nowadays, allowing users to get services and access information regardless of their location and allows users to communicate with each other wirelessly without depending on any fixed infrastructure. However, MANET works under an assumption that all nodes in the network are collaborating to forward packets which in fact isn't true as there are selfish nodes which refuse to forward the packets to reserve its energy and other resources, also there are misbehaving nodes (attack nodes) which drop packet to harm the network. So, with the presence of the selfish nodes and dropping attack nodes the sureness of the data packet delivery to the destination is absent, therefore, the importance of an intrusion detection system arises to prevent those kinds of nodes from harming the network and make sure that data packet arrives at the destination node. As the importance of the MANET increases, it became a point of interest to the researchers to secure it, so many schemes like Watchdog and Pathrater; Ex-Watchdog; TWOACK; AACK and A3ACK were introduced to achieve this goal. The reference to all techniques is the watchdog technique but it has six weaknesses which are it fails to detect
malicious misbehaviors with the presence of the following: (i) partial dropping; (ii) collusion; (iii)
false misbehavior report; (iv) limited transmission power; (v) receiver collisions, and (vi)
ambiguous collisions. The ACK based techniques were proven to detect malicious misbehaviors
with the presence of collaborative attacks, receiver collisions, and limited transmission power.
This paper introduces a study of the ability of the ACK based techniques to overcome a major
disability in watchdog technique (using omnet++ simulator) which is used to detect malicious
misbehaviors with the presence of partial dropping 50%. The importance of choosing partial
dropping comes from simulating a real attack scenario, also it is more difficult for the intrusion
detection system to detect attackers with partial dropping so, in some way using a partial
dropping attack is an evaluation of the strength of the intrusion detection system technique.
From this research, it is proven that the ACK based techniques can actually overcome this
disability but only with low speed as with low speed the performance is acceptable but with high
speed and the presence of collaborative attacks the ACK based techniques have low
performance.

References

1. Y. Kim, R.G. Evans, and W.M. Iversen, “Remote sensing and control of an irrigation
system using a distributed wireless sensor network,” IEEE Transactions on Instrumentation and
networks,” Proceedings of the 6th annual international conference on Mobile computing and
5. N. Nasser and Y. Chen, “Enhanced intrusion detection system for discovering malicious
simulator,” Computer, Communications, and Control Technology (I4CT) International
mobile ad hoc networks,” Wireless communications and networking conference, Vol.4, pp:
2137-2142, 2005.
24th IEEE International Conference on Advanced Information Networking and Applications,
2010.
detection system under various mobility speeds,” Procedia Computer Science, Vol.32, pp: 571-578

Index Terms

Computer Science Networks

Keywords

Mobile Ad hoc Network (MANETS), Ack-based Intrusion Detection System, Dropping attack, Partial dropping, OMNET++