
International Journal of Computer Applications (0975 – 8887)

Volume 151 – No.10, October 2016

18

Inadequacies of CAP Theorem

Omkar Patinge
VESIT, University of Mumbai

Vineet Karkhanis
VESIT, University of Mumbai

Amey Barapatre
VESIT, University of Mumbai

ABSTRACT
In today's technical world, we are witnessing a strong and

increasing desire to scale systems to successfully complete

workloads in a reasonable time frame. As a result of this

scaling, an additional penalty of complexity is incurred in the

system. In this paper, we have explained the tradeoffs that

have to be taken into consideration while designing databases
using CAP theorem and the consequences of this tradeoff.

Problems of the CAP theorem itself and its limitations are

discussed. CAP theorem which was able to meet the demands,

back when it was proposed, can't catch up to the current

requirements. The problem lies in the open-ended definitions

of CAP which are subject to interpretations. PACELC is an

alternative to CAP and is able to overcome some of its current

problems. PACELC builds on the CAP theorem and it goes

one step ahead of CAP by stating that a trade-off also exists,

this time between latency and consistency, provides a more

complete portrayal of the potential consistency tradeoffs for

distributed systems.

General Terms
CAP, PACELC.

Keywords
Consistency, Availability, Partition tolerance, Latency,

Tradeoff.

1. INTRODUCTION
Since the inception of CAP theorem 16 years ago it has

played a fundamental role in designing and modeling modern

distributed database systems. In today's fast-paced world

where applications have to scale globally in order to reach

masses, briskly and effectively the designing of distributed

database is an intricate task. While designing these complex

database systems CAP theorem states that there will be

tradeoffs between consistency, availability, and partition-

tolerance.[1] Since the CAP theorem was first formulated

nearly two decades ago, the networked world has changed

significantly creating new tradeoffs to explore and new

challenges to explore.

Brewer’s CAP theorem states that it’s not possible to provide

all three - consistency, availability and partition-tolerance by

distributed computer system. The terminologies associated

with CAP theorem are as follows:

1.1 Consistency
The consistency property describes a consistent view of data

on all nodes of the distributed system. A consistent system

ensures all operations are atomic in nature and the alterations

made in any node are reflected in all nodes ensuring a

consistent data is maintained. In a replicated distributed

database, consistency can be maintained in three ways: the

data updates requests are sent to all replicas at the same time,

the updates request are sent to a single master node which

resolves the request, or to a single arbitrary node first.[2]

1.2 Availability
Availability ensures that every request is answered, even in

the case of failures. This must be true for both read and write

operations. This property is often zeroed down to bounded

responses in reasonable time. Availability gives the notion of

100% uptime; there are limitations to its availability. If there

is only a single piece of data on four nodes and if all four

nodes die, that data is gone and any request which required it

in order to be processed cannot be handled.

1.3 Partition Tolerance

Fig 1: CAP Theorem

Partition tolerance must be possessed by a system to deal with

messages losses in a distributed computing system. A

partition is a split within the systems in a distributed system

which leads to complete loss of communications between

affected nodes.[3] Algorithms to deal with maintaining

consistency must also deal with effects of partitioning and for

a system to be available it must ensure that every node in the

partitions should respond to a request.

2. TRADEOFFS
You cannot build a distributed database system that is

continually available, sequentially consistent and tolerant to

partition pattern. You can build one that has any two of these

three properties.

2.1 Consistency-Availability Tradeoff
In modern applications that require distributed database, the

primary non-functional requirement is response time. To

achieve low response time a sufficient number of replicated

databases is needed. This creates an inevitable trade-off

between consistency and availability.[4] Since the number of

International Journal of Computer Applications (0975 – 8887)

Volume 151 – No.10, October 2016

19

replicas increases so does the difficulty of maintaining

consistency.

If we want to maintain consistency the data is controlled by a

single node. If this node fails availability is compromised.

Hence this trade-off also occurs when there are no network

partitions. In contrary to the trade-off caused by replication,

this trade-off is just caused by the possibility of a failure.

2.2 Availability Partition Tolerance

Tradeoff
When consistency is fixed the number of queries is directly

proportional to the partitioning of a database. The partitioning

of database leads to an increase in the number of distributed

queries.[5] Hence the availability of data on each node

decreases. To overcome this problem the

compartmentalization of data should be limited leading to an

increase in availability of data on each node. This solution

causes a decrease in the need for multiple distributed queries.

2.3 Consistency Partition Tolerance

Tradeoff
Availability and partition tolerance is used when users require

applications to be responsive in all situations. The responses

may not be correct always. In this nodes remain online even if

one node can't communicate with another and will

resynchronize data once the partition is resolved, but it is

guaranteed that all nodes will have the same data. Availability

and consistency, data is consistent between all nodes - as long

as all nodes are online - and one can read/write from any node

and be sure that the data is the same, but if one ever develops

a partition between nodes, the data will be out of sync (that is

it won't re-sync once the partition is resolved).

3. PROBLEMS
CAP theorem doesn’t capture every fundamental tension in a

distributed system. CAP theorem has inconsistencies and

ambiguities in its definitions, and some problems in its

formalization are discussed below. These problems cast doubt

on the utility of CAP for its application in practical systems.

3.1 Binary Existence of Availability
Binary existence is convenient for proof purposes but does not

closely match our intuitive notion of availability. The

traditional CAP theorem’s definition doesn't take into account

a quantitative measure of network latency.[6] According to the

availability property, if the response hasn't arrived, there is

still hope that the response will arrive but it does not have an

upper bound on latency.

3.2 Inconsequential Trivial Solution
Availability by definition requires only non-failed nodes to

respond. In a networked partitioned area even if one node fails

at times the availability of a system is hampered. In order to

ensure complete availability, one of the solutions proposed is

to forcibly make all nodes unavailable.[6] But this trivial

solution is unacceptable since it is unnecessarily tampering

with rest active nodes.

3.3 Failures
CAP theorem fails to encompass problems like node failure,

loss or delay of messages and restart time lapse of nodes other

than partition. Fair link loss is possessed by a link if it has a

nonzero probability of packet loss. In such a link the lost

packets will be delivered by a limited number of repeated

attempts ensuring packets reach the destination. The fair link

loss is closely associated with mobile networks which are

integral to today's application. Problems like node failures,

restarts are no longer accidental as much as they are due to

attacks on a system. For instance, denial of service attack is

common and is one of most notorious attacks on a network

operation.

3.4 Probabilistic Consistency
It is also possible to define consistency as a quantitative

metric rather than a safety property. For example, Fox and

Brewer define harvest as “the fraction of the data reflected in

the response, i.e. the completeness of the answer to the

query,” and investigate the probability outcome being stale,

given various assumptions about the distribution of network

latencies. However, these stochastic definitions of consistency

are not the subject of CAP.

3.5 Partition Tolerance Cannot Be Skipped
In any distributed system partitioning is inevitable. If we

assume that one node has 99.9% chance of not failing in a

particular time period then five such nodes in a cluster will

have a probability of 99.5% chance of failure.[7] Thus one

cannot sacrifice partition tolerance. Therefore there is an

inevitable choice between availability and consistency.

4. PACELC
In 2010 Daniel J. Abadi proposed PACELC overcoming

shortcomings of CAP theorem. The CAP theorem fails to take

into account the latency consistency trade off which is always

prevalent.

Abadi states PACELC because "Ignoring the

consistency/latency tradeoff of replicated systems is a major

oversight (in CAP), as it is present at all times during system

operations, whereas CAP is only relevant in the arguably rare
case of a network partition."

Fig 2 : PACELC Model

If there is partition (P) in the system there is a tradeoff

between availability (A) and consistency (C) else (E) there

will be a tradeoff between latency (L) and consistency. This

gives four alternatives to any system- P+A with E+L/E+C and

P+C with E+L/E+C.

DDBS P+A P+C E+L E+C

Dynamo Y Y

Cassandra Y Y

Riak Y Y

Voldemort Y Y

Megastore Y Y

PNUTS Y Y

Fig 3 : DDBS in PACELC metrics

In PA/EL systems if partition takes place then we choose

availability over consistency and if network partition is absent

then we choose latency over consistency. The example of

International Journal of Computer Applications (0975 – 8887)

Volume 151 – No.10, October 2016

20

such system is dynamo, Cassandra and Riak etc. PA/EC

system chooses availability over consistency when a partition

occurs else it prefers to have consistency over latency.

MongoDB is an instance of such a system. PC/EL systems

prefer consistency over availability in presence of partition

and latency in its absence. PC/EC systems like Megastore,

Voldemort in absence of network partition selects consistency

over latency and consistency over availability in presence of

partitions.

5. CONCLUSION
The CAP theorem provided a base for designing and

modeling of databases but it fails to meet the current needs.

The problems are self-imposing, majorly because definitions

of CAP theorem are open to interpretation. Taking into

consideration present day database needs, PACLEC is

introduced. PACELC builds on the CAP theorem. PACELC,

however, goes further and states that a tradeoff exists between

latency and consistency, even when partitions aren’t present,

thus providing an array of the potential of the potential

consistency tradeoffs for distributed systems.

6. REFERENCES
[1] Simon S.Y. Shim,2012, The CAP Theorem’s Growing

Impact.

[2] Daniel J. Abadi, Yale University,2012, Consistency

Tradeoffs in Modern Distributed Database System

Design.

[3] Seth Gilbert, Nancy A. Lynch,2012 Perspectives on the

CAP Theorem.

[4] Eric Brewer,2012, CAP Twelve Years Later: How the

“Rules” Have Changed.

[5] Chao Kong, Ming Gao, Weining Qian, Rong Zhang* ,

Minqi Zhou, Xueqing Gong and Aoying Zhou,2015,

ACID Encountering the CAP Theorem.

[6] A Critique of the CAP Theorem, University of

Cambridge, A Critique of the CAP Theorem.

[7] Balla Wade Diack,Samba Ndiaye and Yahya Slimani,

2013, CAP Theorem between Claims and

Misunderstandings: What is to be sacrificed?

IJCATM : www.ijcaonline.org

http://theorem/

