Abstract

Reversible computing is a version of computing in which the computational system to a degree is reversible. An essential circumstance for reversibility of a computational version is that the relation of the mapping states of transition features to their successors have to always be one-to-one. Reversible logic has emerged as an change design technique to the conventional logic, ensuing in decrease energy consumption and lesser circuit area. In this paper, a review of an efficient architecture of the reversible FIR filter structure is presented. For reaching low electricity, reversible good judgment mode of operation is implemented inside the design. Vicinity overhead is the tradeoff inside the proposed layout. From the synthesis consequences, the proposed low electricity FIR filter architecture offers power saving when as compared to the conventional layout. The vicinity overhead is for the proposed structure.

References

Index Terms

Computer Science
Circuits and Systems

Keywords

FIR Filter, Reversible Gate, Peres Gate, Toffili Gate