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ABSTRACT 

Gravity dams are structures commonly used in electricity 

generation, water supply, flood control and other purposes. 

Concerns about the safety of these structures when subjected 

to dynamic loads are an important issue for new projects and 

in maintenance programs for already built dams. Isogeometric 

Analysis (IGA) is a numerical approach that allows the 

discretization and analysis of continuous medium using the 

approximation functions generated in the construction of 

digital models or Computer Aided Design (CAD) models. In 

the present study, first IGA is applied in the study of free 

vibration behavior of a two dimensional dam model. Then the 

dynamic response of the structure subjected to time varying 

loads is obtained using the Central Difference Method 

(CDM). Numerical tests are performed to show the 

applicability and future applications are discussed. 
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1. INTRODUCTION 
Gravity dams are structures commonly used in electricity 

generation, water supply, flood control and other purposes. A 

gravity dam is essentially a solid concrete structure that resists 

imposed forces principally by its own weight and they are the 

most common of the concrete types and the simplest type to 

design and build [1]. The dynamic analysis of a dam is an 

essential phase for both in assessing the safety of existing 

dams and to evaluate proposed projects for new dams. This 

dynamic analysis mostly consists in obtain the dynamic 

response of the structure subjected to external time dependent 

excitations. 

Structural Health Monitoring (SHM) [2] considers the 

analysis of vibrations in dams as a fundamental problem for 

the design and construction of dams. Excessive vibrations 

may generate damage, defined as changes in the material, 

geometric shapes, including changes in boundary conditions 

or support, which can adversely affect the performance of the 

structure [3]. 

In the case of gravity dams, the dynamic behavior of these 

structures has been studied with some success due to the fact 

that this type of dam is suitable to be modeled using 2D 

analysis. The reliability of this procedure has been verified by 

demonstrating that the expected results are generally 

consistent with field observations. With the introduction of 

the Finite Element Method (FEM) and the advances in 

computational techniques to obtain the dynamic response, the 

procedures of dam design started to change. In technical 

literature is possible to find as early as the 70s, publications 

presenting dynamic analysis work based on FEM. Those 

works overcame some shortcomings of the static approach 

and still there are significant problems to solve [4]. 

Nowadays, among the numerical methods used in modeling 

and analysis of structures, the Finite Element Method (FEM) 

[5]–[7] is still one of the most widely used among engineers 

and designers. 

In the classical formulation of FEM, polynomial interpolation 

functions are used both in the evaluation of the unknowns as 

in the geometry approximation. The functions normally 

employed (Ex. Lagrange Polynomials) are different from 

those used by CAD software. Cottrell et al. [8] indicates that 

the generation of local and global finite element matrices can 

consume up to 60% of the time used for modeling and 

analysis. Interpolations made by the finite element basis 

functions are not integrated with those used in the generation 

of the solid model. It follows, therefore, that the interpolation 

process is duplicated, since it occurs in two different ways for 

the same problem: First, the generation of the CAD model, 

and second in the matrix generation of the FEM [9]. 

Isogeometric Analysis (IGA) is a recent approach where the 

approximation functions are those traditionally used in 

computer graphics, commonly known as NURBS (Non 

Uniform Rational B-Splines). 

An advantage of this approach is the direct communication 

between CAD environments and analysis environment, 

enabling time optimization in pre-processing and analysis 

phases. Still, IGA allows to work in the "exact" geometry 

making possible to eliminate imperfections and modeling 

errors by providing more accurate solutions for certain 

problems [9]. 

Cottrell et al. [10] found that IGA shows better dynamic 

response than conventional finite element formulation in the 

frequency spectrum. Discontinuities in accuracy appear only 

in the region of higher frequencies of vibration problems. This 

feature can be decisive in wave propagation studies. 

Considering these properties, the application of IGA on dam 

vibration problems is an interesting and promising application 

since the use of CAD environments is an established practice 

in design of new dams and in the documentation of dams built 

in pre-digital era. 

The use of digital geometric information generated in CAD 

systems of a dam already built or in design stage, would be a 

significant contribution avoiding additional modeling steps 

and will contribute to improving the safety of these structures. 

Fig. 1 shows tridimensional CAD models of the Itaipu dam in 

Brazil retrieved from analogical documentation. 
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Fig. 1: CAD model of an Itaipu dam section (Brazil) [11] 

2. ISOGEOMETRIC ANALYSIS 
Since the introduction of the basic concepts of IGA by 

Hughes et al. [9], several studies have been conducted to 

extend its application to different fields of computational 

mechanics. In those studies, IGA has shown similar or 

superior performance compared to conventional FEM, and 

there was found a precision gain in the treatment of certain 

problems such as turbulence, nonlinear analysis of shell type 

structures, shape optimization and aerodynamics [12]–[15]. 

Finite elements with low order formulations are also found to 

suffer locking phenomenon in flexural dominated problems. 

The FEM solution with high order functions would be 

expensive from the computational point of view. 

Mathematical characteristics of NURBS functions are 

expected to give IGA a more efficient performance [8]. 

2.1 Fundamentals of IGA 
A mesh of finite elements is a discretization of the domain of 

analysis, which is divided by several subdomains that are the 

elements. In the FEM context, because of mapping an element 

has two representations, one in the parametric domain and the 

other in the physical domain. The elements are usually 

defined by their coordinates and nodal degrees of freedom 

that are usually the values of the basis functions at the nodes. 

Shape functions is another name for these basis functions 

[16]. 

There are two mesh definitions in IGA: the control mesh and 

the physical mesh. Control points define the control mesh, and 

the control mesh interpolates the control points. The 

appearance of the control mesh is similar to a finite element 

mesh, but there is no direct relationship between them. The 

unknowns of the problem are the degrees of freedom located 

at the control points [8]. 

The relationships between the geometric and parametric 

domains in an IGA based code are illustrated in Fig. 2. In this 

figure there are shown: the physical domain, the parametric 

domain and the domain corresponding to an isogeometric 

element. The description of the basis functions and the 

numerical formulation of the problem will be shown below. 

NURBS functions are constructed from a set of points in 

parameter space called knots, normally grouped in vectors. 

These knot vectors define the geometry of the physical 

network and they are not necessarily associated to degrees of 

freedom. In linear space, an element within the IGA is defined 

as the domain between two separate control points. Similarly, 

it is possible to generalize this concept to two-dimensional 

and three-dimensional spaces [16] 

 

Fig. 2: Different domains and relationships in IGA 

2.2 Basis functions 
The knot vector is a non-decreasing set of coordinates in 

parameter space given by  1, 2 1,..., n p       where 
i  is 

the i-th knot, p is the polynomial degree and n is the number 

of basis functions used to generate the curve. 

Knot vectors can be equally spaced (uniform) or not (non-

uniform). A single coordinate of a knot may be repeated 

taking the same value, this feature is called multiplicity. 

Basis functions are directly influenced by knot vectors. An 

open vector is one in which the control points at the beginning 

and the end are repeated p + 1 times. Open vectors are the 

standard in CAD environments [9]. 

The basis functions of a B-spline parametric curve are defined 

recursively. For p = 0: 

 
1

,0

1 if 

0 else

i I

iN
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 


  (1) 

And for p = 1, 2, 3...: 
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 (2) 

The derivatives of the B-spline functions that are necessary 

for IGA matrices are also defined recursively [17]. 

2.3 NURBS 
NURBS curves can be obtained by the projective 

transformation of a B-spline curve [8]. B-Spline curves are 

constructed from the linear combination of the basis functions 

B-Spline and control points. For n basis functions with n 

control points iP , the polynomial equation of a B-spline curve 

is given by: 

    ,

1

n

i p i

i

N 


C P   (3) 

Given a control mesh  , , 1,2,..., ;i j i nP  1,2,...,j m  with 

polynomial orders p and q and knots vectors 

 1, 2,...... 1n p       and  1, 2,...... 1n p      . Using tensor 

product a B-Spline surface is obtained. 

      
,, ,

1 1

,
i j

n m

i p j q

i j

N M   
 

S P   (4) 

Fig. 3 shows a quadratic B-spline surface obtained by tensor 

product. 

 

Physical Domain 

Parametric domain 

Element 

(1,1) 

(-1,-1) 
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Fig. 3: Quadratic surface with two isogeometric elements 

and 12 control points. 

A NURBS curve can be defined as a parametric rational B-

Spline curve with a non-uniform knot vector. Equation (5) 

represents a NURBS curve of p degree, control points
iP , with 

knot vector Ξ  and weights w. 

  
 

 

,

0

,

0

n

i p i i

i

n

j p j

j

N w

N w
















P

C   (5) 

These rational curves enable efficient computational 

processing and compact storage of data [17]. The use of open 

knot vectors allows the insertion of degrees of freedom at 

domain ends. As rational functions, NURBS curves allow the 

modeling of conic and quadric surfaces. Fig. 4 shows a 

quadratic NURBS curve obtained this with 

[0,0,0,1,2,2,3,3,3]   and [1,1,1,1,1,1]w  , the multiplicity 

in knot 2 indicates C0 continuity in the corresponding 

geometric point. 

 

Fig. 4: Quadratic NURBS curve 

3. DYNAMIC RESPONSE OF LINEAR 

SYSTEMS USING AIG 

3.1 Linear elasticity 
Linear elasticity problems can be formulated through the 

differential equation of equilibrium, this equation in indicial 

notation became: 

 
, 0 inij j if      (6) 

Subjected to the following boundary conditions: 

 
in

in

ij j i

i u

n h

u u

  

 
  (7) 

Equation (7) represents the natural boundary conditions or 

Neumann conditions and the essential boundary conditions or 

Dirichlet conditions. The set of Equations (6) and (7), 

represent the static equilibrium of the body under study. 

Boundary conditions represent the support conditions and 

surface tensions. Generalized Hooke's Law for a linear elastic 

solid is given by: 

 
ij ijkl ijC    (8) 

The 
ijklC  tensor contains the elastic coefficients or the 

constitutive relationship and 
ij  is the infinitesimal 

deformations tensor. According to [7], the weak form of the 

linear elasticity problem has the form: 

 ,
ˆ

ij i j i i i iw d f w d h w d



  

        (9) 

Where ˆ
ij is an approximate solution of the stress field, w is 

the weight function that minimizes the residual. 

Approximating the displacement field with a function like: 

 
1

ˆ
m

k k

k

N


u u   (10) 

In this equation 
kN  are the NURBS basis functions and ku  

represents the control point displacements. Applying the 

Galerkin method Equation (11) is obtained: 

  
1

ˆ
m

T

k

k

d d d



  



      B CB u Nf Nh   (11) 

B stands for the NURBS basis functions derivatives matrix, C 

is the constitutive matrix, N is the NURBS basis functions 

matrix, f represents the body forces and h the surface tensions. 

If N is the number of Degrees of Freedom (DOF), Equation 

(11) represents the N dimension algebric system to be solved 

and the system stiffness matrix is: 

  
1

ˆ
m

T

k

k

d




  k B CB u   (12) 

3.2 Natural vibration frequencies and 

modes using IGA 
The generalized eigenvalue problem, whose solution gives the 

natural frequencies and modes of a system, can be represented 

in matrix form (characteristic equation): 

  2 k Ω m Φ 0   (13) 

Where  represent the eigenvector matrix that represents the 

plane vibration shape modes, 2 is the square of the angular 

frequency ( n ). k is the stiffness matrix described in 

Equation (12) and M is the consistent mass matrix calculated 

by: 

 
T

j k d


 m Ν N   (14) 

 Matrices Nj and Nk are the NURBS basis functions matrices 

and  stands for the material density. The N roots, 
2

n  of 

Equation (13) determine the N natural frequencies of 

vibration, arranged in sequence from smallest to largest. 

When a natural frequency ωn is known, the characteristic 

equation can be solved for the corresponding vector n within 

a multiplicative constant. The eigenvalue problem gives the 

shape of the vector given by the relative values of the N 

displacements jn (j =1,2,...,N). Corresponding to the N natural 

vibration frequencies of an N-DOF system, there are N 
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independent vectors  n, which are known as natural modes of 

vibration [18]. 

This eigenvalue problem was successfully solved for plane 

stress and plane strain states using IGA in [19]. In this work 

the research continues with the dynamic response for free and 

forced vibrations for undamped and damped systems. 

In order to test the IGA formulation, a Matlab® script was 

implemented following some of the guidelines described in 

[20]. 

3.3 Free vibration analysis for undamped 

systems 
The equations of motion for a free linear Multi Degree of 

Freedom (MDF) system without damping are: 

 mu +ku = 0   (15) 

Equation (15) represents N homogeneous differential 

equations that are coupled. The solution satisfies the initial 

conditions: 

 
 

 

u = u 0

u = u 0 
  (16) 

The natural frequencies and vibration modes are obtained 

from the eigenvalue problem described in Equation(13). The 

N eigenvalues and N natural modes can be assembled 

compactly into matrices. 
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21 22 1
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N
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N N NN

  
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

  
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 
      
 
 
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


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

  (17) 

 

2

1

2
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2
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0 0 N







 
 
 
 
 
  

Ω




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

  (18) 

The  matrix is called modal matrix and 2 the spectral 

matrix for the eigenvalue problem. The natural modes are 

proven to be orthogonal with respect to m and k matrices, see 

e.g. [21], so the following matrices are diagonal: 

 
TK Φ kΦ   (19) 

 
TM Φ mΦ   (20) 

Each term in the diagonal of K and M is denoted by Kn and 

Mn respectively. Natural modes vectors can be used as a basis 

to represent any displacement vector u: 

 
1

N

r r

r

q


 u Φq   (21) 

Where qr are scalar multipliers called modal coordinates and q 

can be calculated by: 

 

T

n

n

n

q
M




mu
  (22) 

The solution for Equation (15) in modal coordinates is given 

by [18]: 

  
 

1

0
( ) 0 cos sin

N
n
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q
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Or 

  
1

( )
N

n n

n

u t q t


   (24) 

Where 

    
 0

0 cos sin
n

n n n n

n

q
q t q t t 


 


  (25) 

Equation (23) represents the displacement u as a function of 

time and the initial displacement and velocity conditions. By 

solving the eigenvalue problem, the natural frequencies ωn 

and modes n are already known so the displacement response 

can be determined. The response in velocity and acceleration 

can be obtained analytically or numerically from these 

expressions. 

3.3.1 Undamped free vibrations: Concrete gravity 

dam section 
The results obtained for a plane strain state problem are 

showed. This solution aims to determine the dynamic 

response in displacements, velocity and acceleration for a dam 

section. Plane strain state is defined when the strain state at a 

material point is such that the only non-zero strain 

components act in one plane only. This hypothesis can be 

adopted for the analysis of a cross section of a dam, where the 

cross-section analyzed is contained within the dam mass [22]. 

The problem consists to study a generic section of a gravity 

concrete dam whose dimensions are shown in Fig. 5(a). 

Considering the base as fixed and the physical properties of 

the material are defined by elasticity modulus E = 21GPa,  = 

0.2 and  = 25 kN/m3.The initial conditions are (0) 1miu   

and (0) 0u , where iu  stands for the DOF’s on top of the 

dam. In this problem 16 quadratic isogeometric elements were 

used, as illustrated in Fig. 5(b). 

  

(a)   (b) 

Fig. 5: Cross section of a concrete gravity dam, 

discretization and initial conditions. 

The numerical response using the procedures described above, 

are represented in Fig. 6, where the displacements ( )tu , 

velocity ( )tu  and acceleration ( )tu are showed. 

 

10m 

55m 

30m 
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Fig. 6: Free undamped dynamic response for the dam cross section ( )tu  , ( )tu  and ( )tu .

 

3.4 Free vibration analysis for systems 

with classical damping 
In this case the differential equation that governs the problem 

is: 

 mu +cu ku = 0    (26) 

Where c is the damping matrix, if classical damping is 

considered, the following identity is satisfied by c [21]: 

 
1 1 cm k km c   (27) 

Classical damping implies that the damped system have 

classical natural modes and applying modal transformation in 

c, gives a diagonal matrix: 

 
T

C =Φ cΦ   (28) 

Thus there are N uncoupled differential equations in Equation 

(26) for each natural mode: 

 n n n n n nM q +C q +K q = 0    (29) 

The damping ratio can be defined for each mode of vibration: 

 
2

n

n

n n

C

M



   (30) 

Dividing Equation (29) by Mn: 

 
2 22 0n n n n n nq q q        (31) 

The solution of Equation (31) is known [18], [21]: 
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nD

q q
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 (32) 

Where: 

 
21nD n n      (33) 

And therefore: 
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1
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u


 (34) 

The latter gives the solution for the free vibration problem 

with classic damping. The displacements are function of time 

and the initial conditions. Velocity and acceleration can be 

calculated analytically or by numerical differentiation. 

3.4.1 Concrete gravity dam section: free 

vibrations with damping 
Using the same of data of the last example and a damping 

ratio  = 5%, recommended value in [23], the dynamic 

response obtained is illustrated in Fig. 7. 

Damping ratio in this analysis correctly shows the decay of 

movement, the system oscillates with amplitude decreasing 

with every cycle of vibration. This kind of motion is typical of 

underdamped systems. 
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Fig. 7: Dynamic response ( )tu , ( )tu  and ( )tu  for free damped vibrations. 

3.5 Forced vibrations analysis with AIG 
Forced vibrations can be modelled as: 

 ( )tmu +cu ku = p    (35) 

Where p(t) represents an excitation in the system that is time 

depending. After using the modal transformation in Equations 

(19), (20), (21) and (28) an equivalent problem is stated: 

 ( )tMq +Cq + Kq = P   with ( ) ( )Tt tP Φ p  (36) 

For the solution of this kind of problem is possible to adopt a 

time-step method such as the Central Difference Method 

(CDM). Knowing the natural frequencies and vibration modes 

is possible to apply any of those methods. In this work CDM 

is used to obtain the dynamic response. For damped systems 

the Rayleigh damping [21] was constructed specifying the 

damping ratio n for the first and sixth natural modes. The 

algorithm used is depicted in Table 1. 

Table 1: Central difference method algorithm [18] 

 

3.5.1.1 Concrete gravity dam section: forced 

vibrations with damping 
In this numerical example an harmonic excitation 

   0 sin ep t p t is applied on top of the dam as showed 

in Fig. 8. 

 

Fig. 8 : Harmonic excitation on dam section 

For p0 = 80kN and e  equal to 0.5 1 , 1.0 1  and 2.0 1 , 
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vibration at the beginning of the graphics which depends of 

initial conditions then it shows the characteristic of the forced 

vibration or steady-state vibration. This behavior is expected 

when the frequency of external excitation is not closer to a 

natural frequency of vibration. 

Fig. 9 (b) shows the excitation approaching the resonant 

frequency, the displacement amplitude increasing with every 

cycle of vibration. The growth of the amplitude is limited 

because of damping. 
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(a) 

 

(b) 

Fig. 9: Dynamic response for forced vibrations (a) e  equal to 0.5 1  (b) e  equal to 1  

4. CONCLUSIONS 
Previous studies of eigenvalue problems showed satisfactory 

performance of NURBS as approximation functions [19]. The 

results in this study are indicatives that IGA can be 

successfully applied in transient analysis for dam models. 

The dynamic responses obtained showed agreement with 

theory, the resonance effect and the steady state components 

of movement were effectively identified. These capabilities 

together with IGA open many possibilities for vibration 

studies in dams. 

Future works may include more complex excitations as 

seismic analysis together with other time-step methods such 

the Newmark methods. 
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