Abstract

People suffer from so many diseases in today’s era. It has become imperative to find either solutions to these diseases or detect them during early stages so that they can be prevented or cured. Glaucoma is one of the eye disorders and is one of the leading causes of blindness. It is a disease that gradually degenerates the eye vessels causing vision loss in the patient. This paper discusses the data mining techniques like Decision Tree, Linear Regression and Support Vector Machine that have been used for diagnosis of glaucoma in the retinal image. Parameters obtained from Perimetry and Stratus Optic Coherence Test (OCT) have been fed to each technique to find out their performance in terms of accuracy, sensitivity and specificity. The researcher have compared results obtained from the Decision Tree, Linear Regression and Support Vector Machine (SVM) and found that Decision Tree and Linear Regression Model performs much better than SVM for diagnosis of Glaucoma giving accuracy of 99.17%, 92.56% and 70.25% respectively. The specificity of Linear Regression and SVM is 97.56% and 96.34% respectively.
References

12. Zhuo Zhanget.al ,Convex Hull Based Neuro- Retinal Optic Cup Ellipse Optimization in Glaucoma Diagnosis 31st Annual International Conference of the IEEE EMBS Minneapolis, Minnesota, USA, September 2-6, 2009.

22. Muthu Rama Krishnan Mookiah a et.al ,Data mining technique for automated diagnosis of glaucoma using higher order spectra and wavelet energy features Knowledge-Based Systems 33 73–82, 2012.
29. Data preprocessing. CCSU.

31. DNA India, Health issues:

32. High Eye Pressure and Glaucoma
http://www.glaucoma.org/gleams/high-eye-pressure-and-glaucoma.php

34. DIAGNOSING GLAUCOMA
https://www.glaucomafoundation.org/diagnosing_and_treating_glaucoma.htm

Index Terms
Computer Science Artificial Intelligence

Keywords
Glaucoma, Cup to Disc Ratio(CDR), Data Mining, Decision Tree , SVM and Linear Regression.