
International Journal of Computer Applications (0975 – 8887)

Volume 151 – No.9, October 2016

14

Improvised Architecture for Distributed Web Crawling

Tilak Patidar
Computer Science & Engineering,

SRM University, Chennai

Aditya Ambasth
Computer Science & Engineering,

SRM University, Chennai

ABSTRACT
Web crawlers are program, designed to fetch web pages for

information retrieval system. Crawlers facilitate this process

by following hyperlinks in web pages to automatically

download new or update existing web pages in the repository.

A web crawler interacts with millions of hosts, fetches

millions of page per second and updates these pages into a

database, creating a need for maintaining I/O performance,

network resources within OS limit, which are essential in

order to achieve high performance at a reasonable cost. This

paper aims to showcase efficient techniques to develop a

scalable web crawling system, addressing challenges which

deals with issues related to the structure of the web,

distributed computing, job scheduling, spider traps,

canonicalizing URLs and inconsistent data formats on the

web. A brief discussion on new web crawler architecture is

done in this paper.

Keywords
Web Crawler, Distributed Computing, Bloom Filter, Batch

Crawling, Selection Policy, Politeness Policy.

1. INTRODUCTION
Web crawlers are programs that exploit the graph structure of

the web moving from page to page. More commonly, related

to web imagery they are also known as wanderers, robots,

spiders, fish and worms. The key reason behind developing

crawlers is to create a knowledge repository from these pages

enabling user to fetch information from a search engine.

In its simplest form a crawler starts from a seed page and then

uses the links within it to advance to other pages acquiring

more links associated with it, until a sufficient number of

pages are identified or no further links exists. Although, the

problem stated seems quite easy but behind its simple

description lies a host of issues related to network

connections, I/O and OS limits, spider traps, obtaining fresh

content, canonicalizing URLs, inconsistent data schemas,

dynamic pages and the ethics of dealing with remote web

servers. As Shkapenyuk and Suel [1] shrewdly noted that:

“While it is fairly easy to build a slow crawler that downloads

a few pages per second for a short period of time, building a

high-performance system that can download hundreds of

millions of pages over several weeks presents a number of

challenges in system design, I/O and network efficiency, and

robustness and manageability.”

Today, web crawlers are not just a program maintaining a

queue of pages to be crawled but they have evolved and

combined with various agile services to form integrated high

scale distributed software.

One of the common misconceptions observed is that once a

particular domain is crawled, further re-crawl is not required.

However, the web is dynamic and many new pages are added

every second. To get new published pages in crawl cycle one

can use various available resources like sitemaps, RSS feeds

etc. which shall be discussed below.

A good crawler must be good at two things [1]. First, it should

demonstrate a good strategy for deciding which pages to

download next. Secondly it must fetch large amount of pages

in short span of time while expressing robustness against

crashes, while being manageable and considerate of resources

and web servers.

There are various studies on strategies for crawling important

pages first [2][3], crawling pages based on topic, or re-

crawling pages in order to provide freshness of index. So put

together the behaviour of a web crawler is the outcome of

combination of the following policies [4]. A selection policy

that states which pages to download, a re-visit policy that

states when to check for changes to the pages, a politeness

policy that states how to avoid overloading websites, and a

parallelization policy that states how to coordinate distributed

web crawlers.

2. LITERATURE SURVEY
Web crawler had been realized in the year 1993. Matthew

Gray implemented the World Wide Web Wanderer [4]. The

Wanderer was written in Perl and ran on a single machine.

Three more crawler-based Internet Search engines came in

existence: Jump-Station, the WWW Worm and the RBSE

spider.

Though, most of these Web Crawlers used a central crawl

manager which manages parallel downloading of web pages.

Their design did not focus on scalability, and several of them

were not designed to be used with distributed database

management systems to which are required for storing high

volume of links and unstructured data from web pages.

Internet Archive crawler was the first paper that addressed the

challenges of scaling a Web Crawler. It was designed to crawl

on the order of 100 million URLs. Hence it became

impossible to maintain all the required data in main memory.

The solution proposed was to crawl on a site-by-site basis,

and to partition the data structures accordingly. The IA design

made it very easy to throttle requests to a given host, thereby

addressing politeness concerns, and DNS and robot exclusion

lookups for a given web to be crawled in a single round.

However, it is not clear whether the batch process of

integrating off-site links into the per-site queues would scale

to substantially larger web crawls.

Another famous crawler is Apache Nutch which runs on

Hadoop ecosystem. It is written in Java and is used alongside

with Elasticsearch or Apache Solr for indexing crawled data.

Nutch runs completely as a small number of Hadoop

MapReduce jobs that delegate most of the core work of

fetching pages, filtering and normalizing URLs and parsing

responses to plug-ins. It supports distributed operation and

therefore be suitable for very large crawls. However there are

some drawbacks to Nutch. The URLs that Nutch fetches is

determined ahead of time. This means that while you’re

fetching documents, it won’t discover new URLs and

immediately fetch them within the same job. Instead after the

fetch job is complete, you run a parse job, extract the URLs,

International Journal of Computer Applications (0975 – 8887)

Volume 151 – No.9, October 2016

15

add them to the crawl database and then generate a new batch

of URLs to crawl. The re-crawl time interval is same for all

the domains in the seed file irrespective of domain demand

(for e.g. News websites requires daily crawl). With all these

shortcomings scaling beyond 100 million pages is still not

achievable [5].

Fig 1: Component diagram for proposed crawler

3. PROPOSED WORK

3.1 Components of proposed web crawler
Fig.1 suggests the block diagram for the overall component in

the proposed crawler. The three main components here viz.

child manager, bot manager and cluster manager present in

the proposed hierarchical structure. The cluster manager is

responsible for bot-to-bot communication, cluster statistics

and also provides a web application for managing bots within

the cluster. The bot manager stands as the backbone layer to

the web crawler. It includes the essential services for crawling

web pages. The child manager component manages and

coordinates the activities between various spawned fetcher

processes set by the bot manager.

3.1.1 Child manager
The child manager fetches new batches from the central queue

which is present in the MongoDB stack. Each job file

allocated comprises of set of links to be fetched. It also

contains necessary information such as associated domain

group i.e. to which group those domains belong and the next

timestamp for the re-crawl. The same is explained with the

help of fig.2

If certain web pages are failed while crawling, they are

reported to the child manager which then adds these failed

web pages to a ‘fail queue’. Each failed page is retried at least

thrice before marking it as failed page. Here after the regex

filtered links and the parsed HTML content obtained are

hashed using MD5 and then these are checked for de-

duplication in bloom filter [6][7]. The De-Duplication test is

carried out in the bloom filter. The same is explained with the

help of fig. 3

International Journal of Computer Applications (0975 – 8887)

Volume 151 – No.9, October 2016

16

Fig 2: Job allocation to fetcher processes in Child Manager

Fig 3: Content duplication test using bloom filter

The following is the configuration of bloom filter used:

● n = 10,000,000 no of unique URLs expecting => 1

million

● m = 287,551,752 (34.28MB) size of bloom filter in

bits

● k = (n/m) ln(2) number of hash function to use ~=

20

Probability of false positives for this bloom filter is 1.0E-6

(1 in 1,000,000)

There are two major disadvantages of completely relying on

bloom filters [7]:-

● False positives - can be improved by optimizing

values of n, m and k

● Aging of bloom - This happens when bloom filter is

filled, results in increase of false positives. To deal

with this issue clear bloom filter can be cleared once

it reaches a decided size.

So, the proposed crawler does not completely rely on bloom

filters for detecting URL duplicates and content duplicates.

Bloom filter acts as the first test and database insertion

technique as a second test to eliminate duplicate content.

After the De-Duplication test, the filtered links are added into

the discovered links cache from where the links are batch

inserted into the database. The URLs which are not assigned

to a job file are fetched and are inserted into job file URL

cache from where they are selected for job creation process.

Likewise the job file creator fetches links from this cache

based on given domain, sorted by the absolute depth of the

URL path. Thus this kind of sorted fetch gives priority to the

URL belonging to the top breadth. The job files are assigned a

cumulative score in inverse order of URL directory length.

DNS cache is used to avoid thrashing of local DNS server and

reduce the response time because DNS lookups generate

significant network traffic [1]. The fetched HTML files are

stored for future usage in MongoDB’s grid file system which

provides distributed storage and helps in managing billions of

text files available on the storage media.

3.1.2 Bot manager
The backbone of crawler i.e. bot manager holds small but
essential services. With engrossed services to monitor, certain
events such as configuration change, new added domains,
RSS feed changes and sitemap changes along with bot-status
update, on event trigger. Hence these are used to update the
status of the bot.

The Bot manager is also responsible for providing document
parsing services. So HTML/XML parser and Apache Tika
Doc parser are incorporated to supported varied document
formats.

3.1.3 Cluster manager
The cluster manager is responsible for coordination between
multiple bots deployed within the cluster. A communication
channel is established between the bot, utilized by the web
application for providing the real time monitoring and
configuration management.

3.1.3.1 Incremental batch analyser
For efficient re-crawling, the proposed crawler analyses the
amount of change in the web-pages at every re-crawl. Using
parameters such as content update from RSS feeds, tracking
changes in sitemap index and content change over a fixed

International Journal of Computer Applications (0975 – 8887)

Volume 151 – No.9, October 2016

17

period, give us the average refresh interval for the web page.
To optimize batches with respect to refresh interval a
component is introduced stated as incremental batch analyser.
This aligns with the idea of incremental crawling [8] where it
calculates and uses average refresh interval and hence,
regroup URLs for better re-crawls.

3.2 Selection policy
3.2.1 Breadth-First as a selection policy
For selecting important pages many known techniques like

breadth first, page rank, backlink count etc. are suggested.

However, page rank gives most optimum selection, but its

computation takes space as well as time [3]. When crawl

queue is big, calculating page rank will slow down other

operations [3]. Also, the difference between optimum crawls

using page rank and breadth first is not very significant [2].

Breadth first selection scheme is used in the proposed web

crawler architecture.

Performing breadth first implies to be easy on a single node
crawler using a queue. This queue can be implemented using
a SQL table or ordered NoSQL collection. However,
implementing a breadth first in a distributed environment is
difficult.

3.2.2 Single URL selection vs. Batch selection
In web crawling main focus is to provide more fetching cycles

and managing I/O resources efficiently. In this case selecting

one URL at a time for crawling cycle seems inefficient. Many

URL selection policies have been discussed for optimum

crawling [2]. But they fail to realize that a high scale

distributed crawler cannot wait to acquire a single URL from

a queue (database). Thereby waiting for every database call

which would result in millions of hung threads in a large scale

distributed environment. To eliminate this issue the proposed

crawler is not selecting URLs, but batches of URLs [4]. Many

high scale crawlers like Apache Nutch etc. realize the I/O

problems in fetching single URL for every crawl. However,

they follow sequential methodology for generating batch(s) of

URLs which require entire URL table scan. The batch

generation system in the proposed crawler eliminates the

requirement for table scans and uses in-memory cache to

achieve fast and parallel batch(s) creation.

Fig 4: Selection of job file based on request time-stamp

The batch of URL is referred as a job file. A job file holds two

essential properties i.e. timestamp and score. Timestamp is the

time for job file to be re-crawled. Score is calculated on the

basis URL quality and uniform distribution of URLs. So Fig.4

depicts that when a fetcher process requests for next batch of

URLs, so the job file is selected having lesser timestamp than

the request timestamp. In case of multiple jobs satisfies the

criteria, is to sort by score.

3.2.3 Updating new content
Much research has been done on re-crawling or refreshing the

search index [8] [9]. To do so without fetching the entire

website, one has to monitor external changes like search

trends, traffic logs, etc. Re-crawling based on topic [8] will

first require doing topic modelling on crawled data [10].

Sitemaps and RSS feeds [11] in the website contain this

updated information. However sitemaps are updated once a

day, RSS feeds are almost updated every minute.

So in the proposed crawler, sitemaps and RSS feed parsing

runs all time in background to check for new content. The

RSS links found when parsing the HTML content are inserted

into RSS links collection. Additionally, the crawler utilizes

RSS feeds based on tags of discussion which are provided by

various online retail websites, blogs and forums. For e.g.

reddit provides RSS feeds for each discussion tag. Also,

tracking social media pages belonging to a webpage, yields

latest content.

3.3 Politeness policy
Politeness policy refers to not overwhelming a particular web

domain with concurrent requests. It demands separating URLs

by web domain with sufficient time interval to avoid

banishment of the crawler. There has been a lot of discussion

on this topic. Sometimes crawlers deliberately reduce the

number of requests or add sleep time when large number of

requests has been made [1]. So, to define standards there are

two approaches for making crawler polite while crawling.

First, is to reduce the number of requests or introduce sleep

time in threads. Second, is to distribute the crawling load on

various websites. Thus, still crawling millions of pages per

second but not being blocked because of distributed number

of requests on various web sites.

The second method is chosen, so that millions of http requests

are made without getting blocked. Thus, many fetcher jobs

complete in one cycle. Contrary to introducing sleep time in

threads as suggested in the first method.

Fig 5: Creation of domain queues for politeness

The URLs submitted to the fetcher are grouped by domain.

Thus, creating multiple domain queues as shown in Fig.5. The

robots.txt parser in the bot manager provides the number of

requests that a crawler can make to a specific domain. Based

on this URLs are de-queued from each domain queue and

HTTP connections are open in new threads. As, soon as URLs

from one website is finished it is replaced by another URL

from the queue until, all the queues exhaust. To give optimum

performance the queues must contain nearly same number of

URLs. Thus, terminates the fetcher threads within same

duration. Also the uniform distribution of URLs in job file

results in similar length domain queues which increases

fetcher performance.

International Journal of Computer Applications (0975 – 8887)

Volume 151 – No.9, October 2016

18

3.3.1 Seed file partitioning
Web crawlers suffer performance issues when the seed file is

big (about 100 thousands of domains). Here withholding these

big seed files in the memory gets difficult.

To, handle this issue seed file partitioning, is chosen as first

layer of distribution. In this partitioning scheme the domains

having same fetch interval are grouped together. Each domain

group is assigned to a bot. It can have multiple domain

groups. The advantages observed are mentioned below:-

● A bot does not need to know what other bots are

crawling. (Isolation)
● It ensures that a particular domain group is crawled

by only one bot at a time. (Politeness)
● Grouping domains based on fetch interval helps in

scheduling based on time interval.
● Domain groups allow uniform batch creation, in

which uniform number of URLs from each domain

is present. This creates uniform fetcher queues

which do not result in hung fetcher threads.

3.4 Resource limits
3.4.1 OS limits
Linux platform, imposes standards to be followed for running

any software program which can be verified by running

‘ulimit –a’ in the Linux console. The maximum number of

processes in a Linux environment is about 30,000. It also

depends on the higher number of cores available for any the

system. If fewer cores are available large number of spawned

processes has to wait for CPU time.

The proposed crawler is implemented on node js which has

1GB space size limit on a 64-bit system. However, these

limits can be increased but is advisable to scale the crawler

more horizontally than vertically. Nodejs supports non-

blocking I/O. But in case of unregulated I/O operations, the

usage of event emitters shoots above the existing limit,

resulting in memory leaks. In crawler the entire work load is

dependent on child and parent process communication i.e.

child manager and the fetcher processes. But, in Linux 8kb

limit is present at a single pipe communication. Subsequently

buffering is done to overcome this limit but if very large job

files are used then it would take lot of time to send job files to

fetcher process.

3.4.1 Database limits
The requirement for running a distributed crawler expects a

distributed database setup with appropriate shards and replica

configuration. So to achieve the same in the proposed crawler,

MongoDB is used in distributed environment.

However, the issues dealt with database limits are mentioned

through the following:-

● If number of connection in a pool are increased

more than 10,000 or so. The amount of CPU

activity increases very much due to huge number of

spawned connections to the database [12].

● File limits on OS creates problem with read/write

speed, if database size is huge [12].

● Storing file size exceeding 16MB is not possible in

MongoDB. Hence MongoDB’s GridFS is used to

store large files by dividing them into chunks. To

get good performance it is advisable to use GridFS

on a sharded environment [13].

● Inserting individual URLs in MongoDB collection

results in huge number of open connections. To

avoid this, bulk insert was used. So while inserting

1000 records without the bulk API, 30 operations

per second was achieved. Whereas with the Bulk

API an estimated 4000 operations per second is

observed [14].

● Key size in MongoDB document adds to the size of

the document. Hence using short key name is

advisable. By creating a mapping between the real

key and the key in the crawler reduces the size of

database by 30%.

3.4.1 Network limits
Distributed crawling in Linux requires a better network layer

for effective politeness in crawling. It is also observed that

many crawler services are banned due to not following the

rules in robot.txt. A technique used to resolve this is user

agent spoofing. However it is not a permanent solution. So, to

provide a discrete solution, a rotating proxy server is used.

These comprise of a pool of IPs which are used to distribute

the requests from the local network. It is found that in case of

the sockets created, a total of 470 sockets can be utilized per

second. To increase the number of sockets per second,

adjustment can be made in the given default value:-

net.ipv4.ip_local_port_range = 32768 - 61000

net.ipv4.tcp_fin_timeout = 60

Thus, (61000 - 32768) / 60 = 470 sockets per second

4. EXPERIMENTAL OBSERVATIONS

In order to draw a comparison between Apache Nutch and the

proposed crawler, few experiments were performed. This

demanded for a web server which would generate random

webpages with links. Simulating the following parameters:

varied status codes, RSS links in meta, author links, timeouts

in requests, alternate language links, various content types

such as PDF, etc.

Hence following test condition was set on Apache Nutch and

the proposed web crawler:-

● Fetcher threads: 10

● Politeness interval: 5 seconds.

● Size of seed file: 10,000 URLs

● Batch Size: 5000

● Concurrent Connections on each domain: 100

● Test Duration 5h

The URLs in the seed file given to crawler were added to

/etc/hosts file and pointed to the established web server.

Table 1. Web crawling performance statistics of Apache

Nutch 2.1 with HBase Backend, over 5h of web crawling

Parameter Value
TOTAL URLs: 835581

Unfetched URLs 778035
Fetched URLs 57546

Duplicate URLs 1692
URL batches used 10

URL batches generated 10

International Journal of Computer Applications (0975 – 8887)

Volume 151 – No.9, October 2016

19

Table 2. Apache Nutch crawling cycle performance over

10 iterations of web crawling which took ~5h

Step Average

Time

Taken

Average

Memory

Consumpti

on

Average

Virtual

Memory

Consump

tion

Avera

ge

CPU

usage

Inject 27 min 126 MB 1.6 GB 6%
Generate 32 min 495 MB 2.4 GB 13%

Fetch 38 min 1218 MB 4 GB 42 %
Parse 13 min 700 MB 2.2 GB 11%

CrawlDB

-update
18 min 1523 MB 2.6 GB 16 %

Average

per

iteration

128 min 812 MB 2.52 GB 17%

Average Fetch interval recorded: 12 seconds.

Time difference of 12 - 5 = 7 seconds. This is resulted due to

the time taken by nutch’s sequential steps to execute the

crawling process.

Nutch crawl cycle fig 6. is sequential and each is dependent

for previous steps.

Fig 6: Nutch sequential crawl cycle

Thus, for a major fraction of time when fetcher is not used,

the web domains receive no requests.

Table 2. Performance statistics of the proposed crawler

over 5h of web crawling

Memory 1528 MB
Virtual Memory 1.3 GB

CPU 48%
TOTAL URLs: 1449456

Unfetched URLs 1296632
Fetched URLs 152824

Duplicate URLs 2260
URL batches used 32

URL batches generated 62

Average Fetch interval recorded: 7 seconds.

Hence the average fetch interval for the proposed crawler is

close to the value set in configuration i.e. 5 seconds.

The above experimental results showcase the following:

● In the proposed web crawler the number of

discovered links and the crawled pages are more

than the Apache Nutch crawler running with the

same configuration.

● The average fetch interval in the proposed crawler

is close to the value set in the configuration which

suggests that the fetch time is maximized.

● Using domain groups in the proposed crawler

reduced the amount of information needed to hold

in the main memory. This can be inferred with less

virtual memory and memory usage in the proposed

crawler.

● As, Apache Nutch progresses the time taken to

create next URLs batch increases. But, in the

proposed crawler the usage of in-memory Job File

URL cache and the parallel Job File creator, was

successful in creating more batches while running

in the background.

● Apache Nutch generates batches and consumes

them subsequently however; in addition to that the

proposed web crawler generates batches for future

jobs too. Which can be ran by adding more bots to

the cluster.

5. INCONSISTENCY OF WEB

CONTENT
The data arrangement on the web domains vaguely varied. It

is generally far from the expected ideal. Hence requires

regular human interference to avoid duplicity and monitor

consistency of links. Few inconsistencies are listed below:-

● Not removing old links and leaving 404 as a

response. This results in resource wastage.

● Not providing robots.txt and if they do, all the bots

are banned.

● Sitemap files have old URLs which are redirected to

new URLs.

● Mime type mismatch [15] is also prominent. It

refers to having different content from the extension

mentioned.

● Difference between the crawled content and the

visible content, on a web browser due to dynamic

content delivered by AJAX [15].

● In some discovered URLs only the order of the

parameters are changed. For e.g.

http:///www.exam.com?a=10&c=5

http:///www.exam.com?c=5&a=10
both are same.

● Some parameters are useless and results in new

URLs but points to the same content. Not using

redirects for the same content is also observed.

● Wrong HTTP content headers provide incorrect

information regarding content-length, content type,

date modified etc.[15]

● Malformed HTML markup.[15]

6. RESULTS
This paper addresses issues related to implementation of a

distributed web crawler. It consists of component based

architecture for a web crawler, along with selection policies

and politeness techniques. Many open source crawlers still

face problem while crawling larger data links (in millions).

Also various issues in deployment of the crawler, managing

crawled data, re-crawling links for update purposes, etc. has

also been noticed. So in-order to address these problems a

holistic component model is discussed which includes child

manager, bot manager and the cluster manager. These include

various sub parts which comprises of parsers, loggers, and

processes which helps in generating a distributed breadth first

crawler to counter the shortcoming in existing crawlers.

Resource utilization still happens to be one of the challenges

faced in web crawling. While working on web crawler certain

issues related to network, OS and database were realized. To

Inject

Generate

Fetch

Parse

CrawlDB-update

http://www.exam.com/?a=10&c=5
http://www.exam.com/?c=5&a=10

International Journal of Computer Applications (0975 – 8887)

Volume 151 – No.9, October 2016

20

overcome this few techniques as mentioned alongside each

resource limit are implemented.

Thereby, describing a robust architecture and implementation

details for a distributed web crawler with some preliminary

experiments and results.

7. FUTURE WORK AND CONCLUSION
Addition to the work accomplished here, following are the

areas that can be explored for future prospects. In recent time

there has been a lot of discussion on Deep Web Crawling and

AJAX crawling. These hold active interest and opens scope

for more detailed and accurate web crawling. This inclines

towards the field of Artificial Intelligence, empowering the

spiders with human like selection intelligence.

Another major open issue is a detailed study of the scalability
of the system and the behaviour of its components. This could
probably be best done by setting up a simulation testbed. The
main interest in using the web crawler is to look for prominent
challenges in web search technology.

8. REFERENCES
[1] Shkapenyuk, V. and Suel, T. (2002). Design and

implementation of a high performance distributed web

crawler. In Proceedings of the 18th International

Conference on Data Engineering (ICDE), pages 357-368,

San Jose, California. IEEE CS Press.

[2] J. Cho, H. Garcia-Molina, and L. Page. Efficient

crawling through url ordering. In 7th Int.World Wide

Web Conference, May 1998.

[3] M. Najork and J. Wiener. Breadth-first search crawling

yields high-quality pages. In 10th Int. World Wide Web

Conference, 2001

[4] Web Crawling, By Christopher Olston and Marc Najork

Foundations and Trends R in Information Retrieval Vol.

4, No. 3 (2010) 175–246 c 2010 C. Olston and M. Najork

DOI: 10.1561/1500000017.

[5] Common Crawl, “Common Crawl’s Move to Nutch,”

http://commoncrawl.org/2014/02/common-crawl-move-

to-nutch/

[6] Burton H. Bloom, Space/Time Trade-offs in Hash

Coding with Allowable Errors.

[7] J. Cho and H. Garcia-Molina. Synchronizing a database

to improve freshness. In Proc. of the ACM SIGMOD Int.

Conf. on Management of Data, pages 117–128, May

2000.

[8] .J. Cho and H. Garcia-Molina. The evolution of the web

and implications for an incremental crawler. In Proc. of

26th Int. Conf. on Very Large Data Bases, pages 117–

128, September 2000

[9] George Adam, Christos Bouras, Professor Vassilis

Poulopoulos, Utilizing RSS feeds for crawling the Web

Conference: Fourth International Conference on Internet

and Web Applications and Services, ICIW 2009, 24-28

May 2009, Venice/Mestre, Italy.

[10] Chakrabarti, Soumen, Martin Van den Berg, and Byron

Dom. "Focused crawling: a new approach to topic-

specific Web resource discovery."Computer

Networks 31.11 (1999): 1623-1640.

[11] Broder, A. and Mitzenmacher, M., 2004. Network

applications of bloom filters: A survey. Internet

mathematics, 1(4), pp.485-509.

[12] High Scalability, “10 Things You Should Know About

Running MongoDB At Scale”

http://highscalability.com/blog/2014/3/5/10-things-you-

should-know-about-running-mongodb-at-scale.html

[13] MongoDB,“GridFS - MongoDB Manual 3.2”

https://docs.mongodb.com/manual/core/gridfs/

[14] Compose, “Better Bulking for MongoDB 2.6 & Beyond

–Compose an IBM company”.

https://www.compose.com/articles/better-bulking-for-

mongodb-2-6-and-beyond/

[15] Castillo, Carlos, and Ricardo Baeza-Yates. Practical

Issues of Crawling Large Web Collections. Technical

report, 2005.

IJCATM : www.ijcaonline.org

http://commoncrawl.org/2014/02/common-crawl-move-to-nutch/
http://commoncrawl.org/2014/02/common-crawl-move-to-nutch/
http://highscalability.com/blog/2014/3/5/10-things-you-should-know-about-running-mongodb-at-scale.html
http://highscalability.com/blog/2014/3/5/10-things-you-should-know-about-running-mongodb-at-scale.html
https://docs.mongodb.com/manual/core/gridfs/
https://docs.mongodb.com/manual/core/gridfs/
https://www.compose.com/articles/better-bulking-for-mongodb-2-6-and-beyond/
https://www.compose.com/articles/better-bulking-for-mongodb-2-6-and-beyond/
https://www.compose.com/articles/better-bulking-for-mongodb-2-6-and-beyond/

