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ABSTRACT 

The most important problems in satellites are their energy 

supply and decreasing weight. One of the solutions is using 

flexible appendages. Flexibility can supply both energy and 

weight loss in satellites. Also other appendages like antennas 

and mechanical arms can be flexible. But flexibility can 

produce some vibrations. These vibrations cause complexity 

attitude control systems due to flexible appendages. 

In this paper, the attitude control of flexible satellite by using 

four reaction wheels in presence of gravity gradient and orbit 

frequency has been considered. The dynamic of flexible 

appendages have been derived from energy equations and 

Lagrange method. Also, momentum management and 

minimization of the momentum have been employed to avoid 

of reaction wheels saturation. Then, the control command law 

using the quaternion error vector for attitude control of rigid 

body and sliding mode control (SMC) for active suppuration 

of flexible appendages have been used. Finally the 

performance of control system between presence and absence 

of reaction wheels has been compared. 
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1. INTRODUCTION 
A typical satellite consists of two principal parts. The first one 

is rigid body of the satellite and the second are some flexible 

appendages. Therefore, in order to control a flexible satellite, 

vibrations due to the flexible appendages have been 

considered. In [1], a spinning maneuver and vibrations of a 

flexible satellite in orbit has been controlled using an active 

controller. The maneuver has been assumed only around one 

axis. In [2], a notch filter has been used to reduce vibration of 

appendages. In this reference, designing notch filter method 

based on adaptive control in orbit technology considering 

frequency potential of vibrations has been proposed. Also, a 

controller just in one channel has been employed for an 

example.  

An attitude control of satellite with considering fast 

maneuvers and saturation constraint has been presented in [3], 

but reaction wheels and their effects on control performance 

have not been considered in this reference. In [4], attitude 

control of a satellite with imagery mission by three-axis 

stabilization zero momentum method has been discussed. 

They have supplied PID controller. 

In [5], modeling uncertainty in elastic structure has been 

expressed. In this work the expression of uncertainty in 

natural frequency and damping vibrational mode has been 

intended. Also, satellite normalization equation of motion for 

design controller and attitude control of elastic satellite has 

been expressed by the second theorem of Lyapunov. In [6], 

attitude of a satellite with solar panels by adaptive fuzzy 

controller has been studied. The performance of the system 

has been improved and the control torque has been reduced, 

but resulting equations are complex. In [7], adaptive fault 

tolerant control of flexible satellite based on SDU factoring 

without error detection has been designed. The advantage of 

this method is ensuring stability and asymptotic tracking. 

One of the problems in control design is uncertainty. The 

model uncertainty may be occurred due to the plan 

uncertainty or choosing simplified view of the dynamic 

system. From the perspective of control, it can divide the 

model uncertainty to two main types of structure uncertainties 

(or parametric) and non-structure uncertainties (or unmodeled 

dynamics) classification. Also, the other important issue is 

control robustness against external disturbance. So, using 

robust control in vibrations control is very important. 

A simple method for robust control is sliding mode controller. 

Sliding mode is a regulated method for stabilization problem 

and consistence performance in face of modeling inaccuracies 

[8] and also external disturbances.  

In this paper, a control law includes two loops for a flexible 

satellite in a circular orbit around the earth and under effect of 

gravity gradient has been designed. The first loop is a control 

command law based on quaternion error vector for three-axis 

attitude control of flexible satellite rigid part. In this case, 

control torques have been tried to be minimum during an 

acceptable maneuver and given the large size of the satellite, 

by selecting appropriate control gain coefficients. Also, four 

reaction wheels have been considered as actuators. Because, 

the efficiency and reliability of system has been increased by 

using four wheels when one of the wheels get damaged. To 

avoid of reaction wheels saturation, momentum management 

and minimization of the momentum have been employed.  

Also in second loop a sliding mode control (SMC) for 

damping vibrations of flexible part has been designed. 

Simulations show the sliding mode control is working 

properly in the presence of uncertainty and external 

disturbances effects of reaction wheels on the flexible 

appendages. Finally the performance of control system has 

been compared between the presence and the absence of 

reaction wheels. 

This paper is organized as follows. Section 2 presents the 

mathematical model of flexible satellite. Section 3 describes 

the control command law using the quaternion error vector 

and their equations. Section 4 presents the sliding mode 
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control for damping vibrations of flexible appendages. Section 

5 presents the simulation and curves. In section 6, the 

conclusions of study have been represented.  

2. MATHEMATICAL MODEL OF 

FLEXIBLE SATELLITE 
A flexible satellite is composed of a rigid main body and 

some flexible appendages. The kinematics of the satellite 

determines the attitude of the main body and are described by 

the four unitary quaternion [9]: 

 
(1) 

sin , cos
2 2

    
    

   
q e 

where 
3e R  and  denote the Euler axis and Euler angle, 

respectively. The  quaternion vector is considered

0[   ] T Tq q q
with

3q R . Then the kinematic equations are 

described in terms of the attitude quaternion and are given by 

following equation: 

(2) 
0 3 3

1

2




 
 

     


Tq

q
q q I

 

Where 
3R denote the angular velocity vector and 3 3I

 is 

the 3 3 identity matrix. The skew-symmetric matrix [ ]q is: 

(3) 
3 2

3 1

2 1

0

0

0

 
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and the elements of  q  are restricted by 
1q

. Note that a 

quaternion consists of the scalar 0q
 and the three dimensional 

vector
q

, so it has four components. The scalar term is used 

for avoidance of singular points in the attitude representation. 

The quaternion kinematics  equation is required to be solved 

for all four components. However, to indicate the orientation 

of the satellite or a rotational motion, it is sufficient to use 

only the vector 
q

 because this  vector completely shows 

rotation axis and angle. Furthermore, the scalar 0q
 can be 

calculated easily using the vector q  and the condition
1q

. 

More details of quaternion and other  attitude representations 

can be found in [9,10]. 

The equation governing a flexible satellite is expressed as 

[11]:  

(4)        

   
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where  TJ J  is the total inertia matrix of the satellite, 


  is 

the modal displacement, and δ is the coupling matrix between 

the central rigid body and the flexible attachments. 
3u R  

denotes the control input, 
3d R  represents the external 

disturbance torque, and K  and C  denote the stiffness and 

damping matrices, respectively, which are defined as 

(5) 

2( , 1,2,..., )

(2 , 1,2,..., )



 

 

 

ni

i ni

K diag i N

C diag i N
 

 

 
Fig 1: Four reaction wheels 

In this section, one possible geometrical configuration of a 

control system based on four reaction wheels has been 

analyzed; see Figure (1) the rotational axes of the four wheels 

are inclined to the B BX Y  plane by an angle  . Because of 

this inclination, each wheel can apply torques and momentum 

in [12] the BZ  direction also. The torques produced along the 

three body axes are ˆ
cxT , ˆ

cyT , ˆ
czT . Thus it has the following 

relations: 

(6) 
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4
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Where 1 2 3 4   
T

T T T T T  is the control torque form 

four reaction wheel, T can be minimized. So Hamiltonian  

H  is [12]: 

(8) 

4
2

1

 i

i

H T 

That finally will be minimize. 

Also, momentum minimization 
2w wih h  must be 

employ. 

 

 

Fig 2: If momentum management control of four wheels 

The attitude of satellite can be controlled by momentum 

angular commands instead of attitude control commands with 

control torques. Here momentum vector 
wi wi wih I

 should 

be minimized instead of control torque vector. Minimization 

of momentum vector satisfy following condition: 
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(9) 1 1 3 4 0     w w w w wh h h h h 

And finally: 

(10) 1 , 1,...,4      
i

ci wT K h i 

That causes become a momentum management feedback loop. 

You can see [12]. 

For employ the orbit frequency following matrix can be 

define [12]:  
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Where n  is orbital period. The gravity gradient vector  

   

T

x y zG G G G  is defined by [12]: 

(12) 5
0

3

2


       

M
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3. CONTROL COMMAND LAW USING 

THE QUATERNION ERROR 

VECTOR 
There exists an equivalent quaternion error vector that 

expresses the attitude error between (i) the satellite attitude 

direction in space and (ii) the target direction toward which 

the satellite is oriented at the end of the attitude maneuver 

[12]. for derive the quaternion error vector it can be written as 

follows: 

(13)       
1 1( ) ( ) ( ) ( ) ( )
   

 E T S T SA q A q A q A q A q 

In quaternion notation, above equation leads to: 

(14) 
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q q q q q
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where Sq , Tq , and Eq  are (respectively) the error, target, 

and satellite quaternions. So, this result the following control 

vector [9]: 

(15) 

1 4

2 4

3 4

2

2

2

 

 
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cx x E E xd

cy y E E yd

cz z E E zd

T K q q K p

T K q q K q
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the satellite quaternion vector is obtained by integrating 

equation (11). Only three elements need to be integrated-

namely, 1Sq , 2Sq , and 1Sq  since 4Sq  is known from the 

relation 1q . Performing the computation of Eq  in 

equation (14) requires fewer algebraic operations than 

computing the elements in  EA .  

4. SLIDING MODE CONTROL 
Here, sliding mode control for active vibration suppuration of 

flexible appendages of satellite has been design, and the end 

has been compared with PD controller. 

Flexible part of equation (4) in state space is: 

(16)  X AX u 

Where: 

2
1 1 1

1 1 2
2 2 2

2

0 1 0 0 0

2 0 0 0

0 0 0 1 0
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 
  
  
 
 
 
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

     

N N

N N N

X A

Where N  is the number of vibrational modes. 

In vibrations, the first multi-mode is dominant modes and 

have a greater effect on the dynamics of the system. In this 

paper damping the first three modes have been considered. 

Also the presented algebra for more and less modes has been 

extended. So it can be written as follows: 

(17) 

1 2

2 1 1 1

1

1 1 1

( )

( )


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
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x x
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Tracking error in value x  as   dx x x  has been assumed, 

and sliding surface define by [13]: 

(18) 
( 1)

( , ) 


 
  
 


n

d
s x t x

dt
 

Where n  is order of system. Then: 

(19) ( , )   s x t x x 

equ  is obtained by  equating s  with zero, and with 

considering i  modes can be written as following: 

(20) 2( )  eqi i i i iu x g b 

Finally, to Resistant against disturbances and avoiding of 

chattering and also guarantee the stability of system a 

discontinues part to controller can be added as following: 

(21) ( ) eqiu u Ksign s 

Where K  is positive. 

5. SIMULATION 
An example for a flexible satellite in the orbit 800h  and 

0 0.00104   has been considered to verifying. The amount 

of parameters of dynamic and control have been specified in 

following tables. 

Table 1. The parameter of dynamic of flexible satellite 

Param

eter 

Param

eter 

name 

Amount 

Rigid body 

J  
Moment of 

inertia 
2

350 3 4

3 270 10 .

4 10 190

 
 
 
  

kg m  

  
Coupling 

matrix 
1 2 2

6.45637 1.27814 2.15629

-1.25619 0.91756 -1.67264
.

1.11678 2.48901 -0.83674

1.23637 -2.6581 -1.12503

 
 
 
 
 
  

kg m s

 

wI  
Moment of 

inertia of 

wheels 

20.1 .kg m  

wk  

Coefficient 

of 

momentum 

inertia 

0.2  

- 

Maximum 

wheel 

torque 

0.5 Nm  
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Flexible appendages 

1  
First 

natural 

frequency 

0.7481 rad s  

2  
Second 

natural 

frequency 

1.1038 rad s  

3  
Third 

natural 

frequency 

1.8733 rad s  

1  
First 

damping 

coefficient 

0.0056  

2  
Second 

damping 

coefficient 

0.0086  

3  
Third 

damping 

coefficient 

0.0086  

At the first, assume that all initial angular velocity and Euler 

angles are equal to zero. During the maneuver, the satellite 

wants to take the position 5 2 1 (deg)           .  

Simulations show that the performance of control system in 

presence of external disturbance and uncertainty and also 

reaction wheels disturbance is satisfying. As shown in figure 

3, the modal displacements have been damped to zero 

appropriately. Also, damping displacements in absence of 

actuator are smoothly in compared with presence of actuator. 

Also the settling time in absence of actuator is slightly less. 

This roughness and time delays are occurring due to reaction 

wheels disturbance in the flexible satellite. The effect of 

actuator in this figure is clearly. Also, sliding mode has 

appropriate performance despite of the disturbance and 

uncertainty effects on the vibrations of flexible appendages.  

Table 2. The coefficient gain of control 

Parameter Amount Parameter Amount 

Coefficients of the control command low using the 
quaternion error vector 

xK  30 
dxK  50 

yK  20 
dyK  30 

zK  18 
dzK  34 

Coefficients of  PD for flexible appendages 

pK  16 
dK  10 

Coefficients of sliding mode 

K  16 
2  5 

1  5 
3  5 

 

As shown in figure 4, Euler angles have been shown. Presence 

of actuator has been caused increasing domain and also 

decreasing settling time in the pitch and yaw angles. But the 

roll has been decreased in presence of actuator. Also, attitude 

actuator has been caused time delay in the maneuvers. Exist 

of physical constraints and saturation levels (maximum torque 

of wheels) limit the ability to generate torque. They are agents 

of the time delay.   

Figure 5 shows angular velocities. The time delay also is 

clear. Specially, domain of 3  curve has been increased 

because presence of the attitude actuator (reaction wheels). 

Also, 2  has not been achieved to zero (exist of steady state 

error) because orbital frequency.   

As shown in figure 6 and figure 7, the time delays and domain 

changes have been represented clearly. In figure 6, the settling 

time of control torque has been increased because the 

presence of attitude actuator. Also, domain of 3cT  has been 

increased. In figure 7, vibrations of flexible appendage curve 

is not smoothly due to effects of reaction wheels.  

Figure 8 shows the control torque of attitude actuator. Figure 

9 shows the angular velocities of four reaction wheels with 

momentum management feedback. The angular velocities 

have not been achieved to zero due to presence of disturbance 

an also orbital frequency. This figure also shows the angular 

momentum contribution of each wheel. In figure 10, 

1 1 3 4 0     w w w w wh h h h h  condition with momentum 

feedback loop that cause minimizations 

4
2

1

 i

i

H T  and 

2w wih h
 
has been shown. 
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Fig 3: Modal displacement in presence of disturbance 

 

Fig 4: Euler angle in presence of disturbance   

 

Fig 5: Angular velocities of rigid body 

 

Fig 6: Required control torque of rigid body  
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Fig 7: Control commands of flexible part 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 8: Control torques of reaction wheels with momentum management 
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Fig 9: angular velocities of four wheels with momentum management 

 

Fig 10: time response of angular momentum of four wheels with momentum managemen

6. CONCLUSIONS 
In this paper a flexible satellite includes flexible appendages 

contacted to a rigid central body in a circular orbit has been 

considered. The control command law using the quaternion 

error vector for three axis control of rigid main body has been 

considered.  The control gain coefficients have been chosen so 

that the satellite doesn’t need to higher torque actuators (such 

as gyro). In this case the attitude control actuators are four 

reaction wheels. Therefore, the efficiency and reliability due 

to the use of four wheels, in the event of damage to one of the 

wheels. To avoid of reaction wheels saturation, momentum 

management and minimization of the momentum have been 

employed. Also the sliding mode control for damping 

vibrations of flexible body has been designed. The simulation 

results show that appropriate performance of controllers in 

presence of uncertainly and external disturbance.  Finally the 

performance of control system between presence and absence 

of reaction wheels has been compared. As can be seen, 

vibration damping of flexible appendages is one of the most 

important challenges of attitude control of flexible satellite. 
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Notch filter adaptive control can be added to control system. 

Also, it can use piezoelectric as active vibration suppuration 

actuator on the appendages.   
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