Abstract

Breast Cancer is the one of the leading causes of cancer mortality among women and second leading cause of cancer deaths worldwide after lung cancer. In the US, 1 in 8 women will be diagnosed with breast cancer in their lifetime. The proposed CAD system is implemented in MATLAB and the performance is analyzed in terms of classification accuracy. Experimental Results indicate that DTMBWT has emerged as a potentially dominant feature extraction technique for breast cancer diagnosis. The risk for breast cancer increases with age; most breast cancer are diagnosed after age 50 and about 95% of all breast cancers in the US occur in women 40 and older.

References

1. www.breastcancer.org
2. Brijesh Verma and Ping Zhang."A novel neural-genetic algorithm to find the most significant combination of features in digital mammograms", Applied Soft Computing, no.7,
Dual Tree M-Band Wavelet Transform Model based Classification of Mammogram Images

7. Caroline Chaux, Laurent Duva and Jean-Christophe Pesquet. "2D Dual-Tree M-Band Wavelet Decomposition”.

Index Terms

Computer Science 
Image Processing

Keywords

MIAS images, Dual Tree M-Band Wavelet Transform and Support Vector Machine.