
International Journal of Computer Applications (0975 - 8887)
Volume 152 - No.6, October 2016

Deep Q-Learning for Home Automation

Vignesh Gokul
Student

SSN College of Engineering

Parinitha Kannan
Student

SSN College of Engineering

Sharath Kumar
Student

SSN College of Engineering

Shomona Gracia Jacob, PhD
Associate Professor

SSN College of Engineering

ABSTRACT
In this paper, the first deep reinforcement learning model for home
automation systems is presented. Home automation has been one
of the most important applications in the field of Artificial Intel-
ligence. The system should learn the pattern and behaviour of the
user automatically from experience and take future actions accord-
ingly. The system proposed here makes use only of images to learn
the user’s needs using Deep Q-Learning, thus minimizing the use of
any sensors and other hardware. The model makes use of a Convo-
lutional Neural Network that takes as input, the image and outputs
the future reward for each action. The system was tested with im-
ages of a house and describes the methods and results in the paper.

General Terms
Artificial Intelligence, Pattern Recognition

Keywords
Home Automation, Smart Homes, Deep Q-Learning, Reinforce-
ment Learning.

1. INTRODUCTION
Smart homes are artificially intelligent systems that need to adapt
themselves based on user actions and surroundings. These systems
need to carefully analyze the user needs and the conditions of the
surroundings in order to predict future actions and also minimizes
user interaction. Researchers have been working on predicting the
user actions based on past actions[1]. Such systems demand a high
accuracy in their predictions, because a wrong prediction would
mean user inconvenience which foils the main purpose of such sys-
tems.

A single day in a person’s life consists of a set of actions. These
actions, over a period of time can be learned by an intelligent sys-
tem and prove useful to predict future actions. An example of such
a scenario would be, a person returning home from work at 8 o
clock and switching on water heater to take a bath. An intelligent
system could learn this pattern and switches on the water heater at
a particular time predicting the arrival of the user. Another example
of a scenario is: Consider a person who switches on the light after

the light intensity decreases below a particular threshold. A system
could learn to do this by analyzing the user’s patterns.

Existing systems use a reinforcement learning approach[2] or a pat-
tern mining technique[3] to determine what can be the next action.
Those systems contain an agent in an environment, and a feedback
from the environment is given. The inputs to these systems are pre-
vious actions that have taken place. But all these systems make use
of a considerable amount of hardware, for example, light sensors
to determine the light intensity, humidity and temperature sensors
to determine the temperature of the room at a particular instant[4].
The system proposed in this paper tries to minimize the use of any
hardware resources. The aim is to maximize the capture of infor-
mation at an instant to the maximum potential given the state of a
room at that instant.

In this paper, a deep reinforcement learning technique is proposed
to predict the rewards for each action taken. The input to this sys-
tem is a snapshot of the room at an instant. The system makes use
of a Convolutional Neural Network to represent the image and Q-
learning technique to predict the rewards for each action that can
take place. The algorithm and methodology proposed, along with
the results obtained are discussed in the paper.

2. RELATED WORK
Home Automation has been an important research area for a long
time. Research groups such as MIT,IBM,Xerox and Microsoft have
been working on this, trying out various AI and non AI tech-
niques to automate home systems[5]. In 1998, Michael C. Mozer
from University of Colorado, Boulder implemented a system called
Adaptive Control of Home Environments (ACHE)[6] that used
neural networks and reinforcement learning completely to learn the
patterns of the user and perform actions without the help of the user.
It monitors the environment, observes the actions taken by the user
and tries to learn the patterns. ACHE is equipped with sensors to
report the state of the environment. These sensors report informa-
tion like: status of lights, status of fans and status of temperature
and motion. These are only a few of the sensors used. It is evident
that the system makes use of extensive hardware to infer the user
actions.

In 2008, A.Assim et al presented their system that uses pattern
matching and reinforcement learning to predict the correct ac-

1



International Journal of Computer Applications (0975 - 8887)
Volume 152 - No.6, October 2016

32 8x8 filters

CONVOLUTION

IMAGE

MAX POOLING
2x2

FULLY CONNECTED
LAYER

Feature maps Feature maps Output classes

Fig. 1: A simple Convolutional Neural Network Architecture.

tions[7]. Q-learning along with pattern matching provided good
improvement in results. However, the hardware issue remained the
same. The states of each and every appliance and the user move-
ment should be known in order to learn the patterns.

In 2013, DeepMind technologies published the first deep reinforce-
ment model to make the system play Atari Games[8][9]. It used a
Q-Learning model combined with a Convolutional Neural Network
to predict the next action, given the image of a game at that instant.

In this paper, this approach is extended to home automation, using
Deep Q-Learning to make the system understand and learn the user
patterns and actions without the need for intervention of a user. This
system also minimizes the amount of hardware used, as it needs
only a camera to capture images.

3. REINFORCEMENT LEARNING
In the proposed system, the system decides what would be the
best action to perform given the input as follows, the image of
the room at that instant. Consider a single equipment such as light
(for example), the actions that are possible are: LIGHTS ON and
LIGHTS OFF. Normally, it would make sense to treat this prob-
lem as a typical classification problem with two output labels
LIGHTS ON and LIGHTS OFF. However, a huge amount of data
would be needed to train the system. Images would be required to
tell the system what to do at each snapshot of the room, which can
be enormous. Reinforcement learning solves this task. Reinforce-
ment learning lies between supervised and unsupervised learning. It
makes use of sparse and time-delayed labels - rewards. The system
at each stage tries to maximize the reward. In the proposed system,
deep Q- learning is used to capture as much information about the
environment in a snapshot and then predict the next action. The
problem can be formalized as follows:

X (the home automation system) is an agent situated in an environ-
ment (the room) which is in a certain state S (e.g. The lights may
be turned on with the position of the user in the middle). X can
perform certain actions A, with each action A yielding a particu-
lar reward R. Actions transform the environment and lead to a new
state. The rule to decide which action to perform is called policy.

The set of all states and actions along with the rules for moving
from one state to another contribute to a Markov Decision Process.
One episode of this process,which is the events happening in one
day in our case, gives rise to a finite sequence of states, actions and
rewards:

st0, ac0, re1, st1, ac1, re2, ..., stn−1, acn−1, ren, stn

Here sti represents the state, aci is the action performed and rei+1
stands for the reward obtained on carrying out the action. The ter-
minal state stn represents the end of the episode (the last event for
the day in our case). A Markov Decision is based on the Markov
assumption that the probability of the next state sti+1 relies only on
the current state sti and action aci but not on the previous states or
actions

3.1 Discount Factor
For long term performance, it is essential to take into account the
future rewards that will be obtained in addition to the immediate
rewards. Given a single run of the Markov Decision Process, the
total reward for one episode can be calculated as :

RE = re1 + re2 + re3 + ...+ ren

Given that, the total future reward from time point t can be ex-
pressed as:

REt = ret + ret+1 + ret+2 + ...ren

Given that the environment is stochastic, it is not possible to assure
that the same rewards will be obtained on performing the same ac-
tions. The rewards diverge as the system progresses towards the fu-
ture. For that reason, it is intended to use discounted future reward
instead :

REt = ret + γret+1 + γ2ret+2 + ...+ γn−tren

gamma is the discount factor between 0 and 1, the more into the
future the reward is, the less it is taken into consideration. The dis-
counted reward at time step t can be given in terms of the same
thing at time step t+1:

REt = ret + γ(ret+1 + γ(ret+2 + ...)) = ret + γREt+1

If the discount factor is set as zero, then this strategy will be short-
sighted and depend only on the immediate rewards. In order to pro-
vide a balance between immediate and future rewards, it is neces-
sary to set the discount factor to a non-zero value like 0.9. If the
environment is deterministic such that the same actions result in
producing the same rewards, then the discount factor can be set
to 1. A good strategy is to always choose an action that gives the
maximum (discounted) future reward.

3.2 Q-Function
To use Q-Learning, a function is defined as Q(stt,act) representing
the maximum discounted future reward when an action act is per-

2



International Journal of Computer Applications (0975 - 8887)
Volume 152 - No.6, October 2016

Table 1. : Architecture of Convolutional Neural Network used

Layer Input Size Filter Size Number of Filters Activation Output
conv1 80x80x3 8x8 32 RELU
Pool1 73x73x32 2x2 36x36x32
conv2 36x36x32 4x4 64 RELU 33x33x64
Pool2 33x33x64 2x2 16x16x64
conv3 16x16x64 3x3 64 RELU 14x14x64
Pool3 14x14x64 2x2 7x7x64
conv4 7x7x64 3x3 64 RELU 5x5x64
Pool4 5x5x64 2x2 2x2x64
FC1 256 RELU 256
FC2 256 RELU 256
FC3 256 Linear 2

formed in state stt :

Q(stt, act) = maxREt+1

Q(stt,act) represents the maximum reward that is obtained at the
end of the day if the action emphact is performed when in state
stt. Given a state stt, that the agent is currently in,the best action is
chosen as

π(st) = argmaxacQ(st, ac)

When a transition (st1,ac1,re1,st2) is considered, the Q-function is
given by:

Q(st1, ac1) = r + γmaxacQ(st2, ac)

3.3 Convolutional Neural Networks
The Q-Function is represented as a neural network. The inputs to
the neural network are images of the environment at that instant and
the output values are the rewards or the Q-values. Since to compute
the features of the image effectively, a Convolutional Neural Net-
work[10] is used. A CNN is similar to a normal neural network:
they are made up of neurons that have weights and biases which
can be learnt. But CNNs exploit the fact that its inputs are images
and make changes to the architecture of normal neural networks. A
CNN consists of 3 layers:

—Convolution Layer
—Pooling Layer
—Fully Connected Layer

Convolution Layer
The Convolution Layer can be visualized as a block or a cuboid.
In our system, for efficiency purposes, the image was resized to
80x80x3. The 3 corresponds to the 3 colours Red,Green and Blue.
This forms the base block of our convolution layer. Now a filter is
run over our base block. A filter is a similar block having a smaller
size but same depth. It starts at the top left corner and is swept
across till the bottom left corner. The weighted sum is calculated at
each position and a new value is obtained. The output size would
be given by:

Os = (N − F )/S + 1

where Os denotes the output size, N denotes the image dimension
(NxNxh),F denotes the filter dimension (FxFxd) and S denotes the
stride, which is the number of cells to move in each step.

Pooling Layer
Pooling layers are used to reduce the size of the image and also
provides translation invariance. Pooling is achieved again by using
filters and a pooling strategy such as max pooling, mean pooling
and min pooling.

Fully Connected Layer
This layer is the normal neural network layer. This comes after the
convolution and pooling layers. It takes as input the convolved and
pooled features and gives the desired output at the last layer.

4. DEEP Q-LEARNING
Deep Q-Learning refers to the fact that deep neural networks such
as CNNs are used to represent the neural network. In the proposed
system, the Q-network takes the image of the room as input and
outputs the reward for each action possible. While taking the lights
as example, LIGHTS ON and LIGHTS OFF are the two actions.
From the output of the neural network, the action that gives the
maximum reward is chosen. The architecture used in the system is
as shown in the table.

In the architecture used by[9], pooling layer is not used since the
translation invariance it provides is not needed. However, in the
proposed system, translation invariance is very important. This is
explained with the following example: Suppose the user is inside
the room and is at position (x,y) and the system learns that it has
to perform action LIGHTS ON. However,this would also be appli-
cable if the user is at some other position (x’,y’). Hence to achieve
translation invariance, pooling layers are used.

4.1 Cost Function
Input to the network is a 80x80x3 image and the outputs are the Q-
values or rewards for each action(2 in our case). Since the Q-values
are real, this can be treated as regression problem. Given transition
(st,ac,re,st’) the cost function J is given by:

J = 1/2 ∗ [re+max′acQ(st′, ac′)−Q(st, ac)]2

Using this cost function, the system is trained to predict the rewards
accurately.

4.2 Replay Memory
To avoid local minimums, instead of using the recent transition
to train the Q-network, random mini-batches are obtained from

3



International Journal of Computer Applications (0975 - 8887)
Volume 152 - No.6, October 2016

Table 2. : Rewards obtained by the system at the end of each session

States Rewards obtained for LIGHTS ON Rewards obtained for LIGHTS OFF
100-200 200-300 300-400 400-500 500-600 600-700 700-800 800-900 100-200 200-300 300-400 400-500 500-600 600-700 700-800 800-900

Day 88.34 200.45 300.47 250.09 210.45 120.56 98.43 42.095 20.38 100.89 295.68 350.43 599.765 700.86 950.25 991.319
Noon 150.63 30.45 100.25 120.45 98.99 72.67 50.85 42.4042 78.87 40.25 200.78 285.47 397.55 934.123 821.987 1000.0101
Night 20.37 85.281 211.7543 295.894 402.772 635.89 745.238 999.754 200.85 357.75 219.54 135.2518 95.867 52.576 48.797 43.589

the replay memory.Replay memory consists of all the transitions
(st,ac,re,st’) that has been encountered so far.

4.3 Exploration-Exploitation
Since a CNN is used to predict the Q-values for each (state,action)
pair, initially the Q-values will be random numbers as the weights
of the CNN are initialized randomly.In order to avoid taking wrong
actions in the beginning,as this can affect the system in the long
run, the system chooses random actions at the beginning. This step
is known as Exploration.

After the Q-function converges, the rewards are more accurate.
From now on, the system chooses the action that would give the
maximum reward for that state.

4.4 Algorithm

Algorithm 1: Deep Q-Learning
Initialize the replay memory M
Initialize the Q-Function randomly
Initialize the threshold λ
Initialize loop counter i = 0
while End of episode do

Observe the current state sti
if i ≤ λ then

Select action ai with probability ε
otherwise select action ai as ai = argmaxacQ(sti,ac)

else
Select action ai as ai = argmaxacQ(sti,ac)

end
Execute action ai and observe the reward rei
Capture the new image and store it as state sti+1
Store transition (sti,ai,rei,sti+1) in replay memory M
Sample random mini-batches (stj,acj,rej,stj+1) from M
if stj+1 is terminal state then

Set yj = rj
else

Set yj = rj+γ*maxac(stj+1,ac)
end
Train the Q-Network using target as [(yj−Q(stj,acj)]

2 as loss
end

5. RESULT
The architecture given in Table 1 were used to create a convolu-
tional neural network. While training the network, a Mobile phone
was used to capture the images of the environment and given as
input to the algorithm mentioned above. The corresponding action
predicted by the algorithm was executed and the new image was
captured and stored as the next state. When the trained network was
run on a given set of images, it was seen that the actions predicted
by the system were 98% accurate. The obtained results were plot-
ted as a graph of Reward vs Time. The rewards take random values

initially. As the usage of an action increases with time, the reward
obtained for that action also increases. It can be seen from the graph
that starting at a random value, the reward for LIGHTS ON action
slowly decreases during the day and then increases during the night.
Similar trend can be seen with reward for LIGHTS OFF action, it
increases during the day and decreases during the night.

Fig. 2: Variation of Reward with Time

6. CONCLUSION
In this paper, the first Deep Reinforcement Learning model for
Home Automation Systems is introduced. With the help of Deep
Q-learning and Convolutional Neural Network, the ability of the
system to predict the subsequent actions given images of the envi-
ronment without the need for any sensors or hardware is success-
fully demonstrated. This approach yielded accurate results in the
test set of images of a given environment, with no adjustment of
the architecture or hyperparameters. In this paper, the system was
tested based on its ability to predict actions for lights. More re-
search work has to be performed to generalize this system to all ap-
pliances. Apart from using this model for home appliances, it can
be extended to serve Industrial applications. Machines at a work
environment can be automated to follow a particular work pattern,
thus further reducing the required human labor. Automated door
locking systems with security cameras can facilitate more security.

7. REFERENCES

[1] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael
Bowling. The arcade learning environment: An evaluation
platform for general agents. Journal of Artificial Intelligence
Research, 2012.

[2] Natalie Kcomt Ché, Niels Pardons, Yves Vanrompay, Davy
Preuveneers, and Yolande Berbers. An intelligent domotics

4



International Journal of Computer Applications (0975 - 8887)
Volume 152 - No.6, October 2016

system to automate user actions. In Ambient Intelligence and
Future Trends-International Symposium on Ambient Intelli-
gence (ISAmI 2010), pages 201–204. Springer, 2010.

[3] Sajal K Das and Diane J Cook. Designing smart environ-
ments: A paradigm based on learning and prediction. In In-
ternational Conference on Pattern Recognition and Machine
Intelligence, pages 80–90. Springer, 2005.

[4] Peter Gorniak and David Poole. Predicting future user actions
by observing unmodified applications. In AAAI/IAAI, pages
217–222, 2000.

[5] Edwin O Heierman and Diane J Cook. Improving home au-
tomation by discovering regularly occurring device usage pat-
terns. In Data Mining, 2003. ICDM 2003. Third IEEE Inter-
national Conference on, pages 537–540. IEEE, 2003.

[6] Li Jiang, Da-You Liu, and Bo Yang. Smart home research.
In Machine Learning and Cybernetics, 2004. Proceedings of
2004 International Conference on, volume 2, pages 659–663.
IEEE, 2004.

[7] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Ima-
genet classification with deep convolutional neural networks.
In Advances in neural information processing systems, pages
1097–1105, 2012.

[8] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex
Graves, Ioannis Antonoglou, Daan Wierstra, and Martin
Riedmiller. Playing atari with deep reinforcement learning.
arXiv preprint arXiv:1312.5602, 2013.

[9] Michael C Mozer. The neural network house: An environment
hat adapts to its inhabitants. In Proc. AAAI Spring Symp. In-
telligent Environments, volume 58, 1998.

[10] Mamun Bin Ibne Reaz, Awss Assim, Muhammad I Ibrahimy,
Florence Choong, and Faisal Mohd-Yasin. Hardware simu-
lation of home automation using pattern matching and rein-
forcement learning for disabled people. In IC-AI, pages 213–
218, 2008.

5


	Introduction
	Related Work
	Reinforcement Learning
	Discount Factor
	Q-Function
	Convolutional Neural Networks

	Deep Q-Learning
	Cost Function
	Replay Memory
	Exploration-Exploitation
	Algorithm

	Result
	Conclusion
	References

