
International Journal of Computer Applications (0975 – 8887)

Volume 152 – No.9, October 2016

10

 Customized Search Application

Thingujam Joseph
Computer Science
Engineering & IT

Assam Don Bosco University
Guwahati, India

Bethsheba J. Rapthap
Computer Science
Engineering & IT

Assam Don Bosco University,
Guwahati, India

 Nupur Choudhury
Computer Science
Engineering & IT

Assam Don Bosco University
Guwahati, India

ABSTRACT

The main purpose of the search application is to help users

find appropriate in-formation that they are looking for. The

user needs to login first in order to per-form his search. The

Admin will upload the document and the search application

will store all the words contain in the document in the

database table with some details of the word like how many

times the word is present, which document it is present, etc.

The system will then search the results of a specific targeted

query entered by the user by calculating the tf-idf value and

based on the tf-idf value, the result will be displayed. This

result is nothing but lists of documents which is most

appropriate or relevant to the query that the user has entered.

This project also aims at implementing some of the features

like customizing by displaying previously viewed sites of

each user, recently uploaded documents, etc. It is

implemented in PHP, HTML and with MySQL as the

database.

Keywords

tf-idf, tokenization, parsing, indexing, parser etc.

1. INTRODUCTION
Search engines or search applications are programs that

searches the results of a particular targeted query entered by a

user and returns a list of documents or search results which is

most appropriate to the keyword. There are many popular

search engines like Google, Yahoo, Bing, etc.

The Search application includes:

A. An algorithm to upload a document and breakdown the

contents of document into words.

B. An algorithm to store all the words to each respective

database table i.e., based on the alphabets the words begin

with.

E.g. Dog will be stored in the table name „D‟.

C. An algorithm which receives user query, search the word

or words in the table, calculate the tf-idf value of the

documents (documents containing the words) and return with

the result to the user based on the tf-idf value.

2. FEATURES OF THE APPLICATION

2.1 System Architecture Body Text

Figure.2.1.2: Architecture of the Customized Search

2.2 Flowchart

Figure 2.2.1: Flowchart of Customized Search Application

(Parsing And Indexing)

As shown in Figure 2.2.1, the Admin will upload documents.

When Admin up-loads a document, document parsing will

take place. The application will then store the words in its

respective table depending on the letter each word begins with

and some details are calculated like how many times a

particular word is pre-sent in the document, how many words

are present in the document, etc. and this information is stored

with the words. This information is calculated and stored in

the table beforehand thus when a user enters a query,

calculating the tf-idf value for the document with these words

will be easier and faster.

Figure 2.2.2.: Flowchart of Customized Search

Application

International Journal of Computer Applications (0975 – 8887)

Volume 152 – No.9, October 2016

11

As shown in figure 2.2.2, the User will enter the query and the

application will search the query word by word. If the word is

contain in the table (depending on the letter it begins with), it

will calculate the tf-idf of the document for each word. If two

or more different words is contain in the same document, the

tf-idf value for those words will be added thereby increasing

in the tf-idf value of that document. After all the words in the

query is calculated, it will display the result to the user. The

result is nothing but a list of documents arranged in a

descending order respective of the tf-idf value calculated.

3. METHODOLOGY

3.1.Module 1 Requirement Analysis

3.1 Minimum Hardware Requirement

 Processor : Intel Core Duo 2.0 GHz or more

 RAM : 256 MB

 Disk space : 2 GB

3.2 Minimum Software Requirement

 Language : PHP, HTML

 Database : MySQL

 Operating System : Window (32 or 64 bit)

3.2.Module 2 Techniques
a. Document parsing

Document parsing breaks the words of a document for

insertion into the forward and inverted indices. The words

found are called tokens. Hence, parsing is more commonly

referred to as tokenization in the context of search engine

indexing and natural language processing.

b. Tokenization

Computers do not understand the structure of a document and

cannot automatically recognize words and sentences. Since

this system is concentrated only on text documents, hence

during tokenization, the parser in this system identifies

sequences of characters which represent words.

c. Indexing

The purpose of storing an index is to optimize speed and

performance in finding relevant documents for a search query.

After uploading and parsing the docu-ment the system stores

all the words to each respective database table i.e., based on

the alphabets the words begin with. E.g. Dog will be stored in

the table name „D‟. Hence when the user search for the word

dog, the system will search only in the table name „D‟.

Without an index, the search application would scan every

document in the database, which would require considerable

time and computing power.

3.3. Module 3 Algorithms
Term Frequency-Inverse document Frequency (tf-idf)

Tf-idf means term frequency-inverse document frequency. To

evaluate how im-portant a word is to a document in a

database, the tf-idf weight is used. The im-portance increases

to the number of times a word appears in the document. The

tf-idf weight is used by search engine in scoring and ranking a

document's rele-vance to the user query. The ranking

functions is computed by summing the tf-idf for each query

term.

How to Compute:

3.1. The tf-idf weight first computes the normalized Term

Frequency (TF), i.e., the number of times a word appears in a

document, divided by the total number of words in that

document.

3.2. The second is the Inverse Document Frequency (IDF),

which measures how important a term is. It is computed as the

number of the documents in the database divided by the

number of documents where the term appears.

TF: Term Frequency measures how frequently a term occurs

in a document. It is possible that a term would appear much

more times in long documents than shorter ones since every

document is different in length. Thus, the term frequency is

often divided by the document length (the total number of

terms in the document).

TF (t) = (Number of times term t appears in a document) /

(Total number of terms in the document).

A document receives a higher value if it contains a query term

more often. The sum is to be computed over the query terms,

of the match values between each query term and the

document.

IDF: Inverse Document Frequency reflects how important a

term is in a document. All terms are considered equally

important while computing the term frequency. However

certain terms such as „is‟, „of‟, and „the‟, may appear a lot of

times but these words have little importance. Thus we need to

put in less value down the terms which occur most frequently

by computing the following:

IDF (t) = log_e (Total number of documents / Number of

documents with term t in it).

Certain terms have little importance in determining relevance.

Thus we need to scale down the terms with high collection

frequency or the total number of occurrences of a term in the

database.

Example:

If we have a document containing 500 words in which the

word boy appear 10 times. Then the time frequency (i.e., tf)

for the word boy is then (10/500) = 0.02. Now, assume we

have 10,000,000 documents and the word boy appears in 1000

of these. Then the inverse document frequency (i.e., idf) is

calculated as log (10,000,000 / 1,000) = 4. Thus, the tf-idf

value is obtained from the product of tf and idf: 0.02*4=0.08.

4. RESULTS
Some of results that were obtained in the form of snapshots

are shown below

Figure 1: Word Table before file is uploaded

International Journal of Computer Applications (0975 – 8887)

Volume 152 – No.9, October 2016

12

As shown in Figure 1, Admin chose the document name

„zebra.txt‟ to upload.

Figure 2: Word Table before file is uploaded

Figure 2 shows the Word Table before the file „zebra.txt‟ is

uploaded. Word table contains the document Id (document Id

for each document is obtain from the document table), word

(the words in a document), word times (how many times the

word appears in that particular document), total document

words (in how many documents the word is present).

Figure 3: Document table before file is uploaded

Figure 3 shows the Document Table before the file „zebra.txt‟

is uploaded.

Figure 4: Contents of the Document Zebra

The contents of the document „zebra.txt‟ are shown in the

Figure 4.

Figure 5: Word table after uploading file

Figure 5 shows the Word Table after the file „zebra.txt‟ is

uploaded.

Figure 6: Document table after uploading file

Figure 6 shows the Document Table after the file „zebra.txt‟ is

uploaded.

Figure 7: Search results of the word ‘animal’ (displaying

result with tf-idf value)

In Figure 7, the user enters the query „animal‟ and the search

results of the word „animal‟ is shown with the tf-idf value.

Note: If the query entered by the user contains more than one

word, the system calculate the tf-idf value of documents for

each word. If the words are contained in the same document,

the tf-idf value is added.

International Journal of Computer Applications (0975 – 8887)

Volume 152 – No.9, October 2016

13

Figure 8: History of uploaded file

Figure 8 shows the history of the files which were uploaded

by the Admin.

5. CONCLUSION
Search engine or Search application offers users with

information that is more relevant to the query entered by the

user.

5.1.Limitation
Since it is a text based Search Application its primary input

and output are based on text rather than alphanumeric,

graphics or sound. This project is concentrated only on text

documents and not on documents or file which contain images

or videos.

5.2.Future Work
For the future work, we will try to implement stemmer. A

stemmer is computer program or an algorithm that helps us in

reducing words to their stem, base or root form. For example,

a stemming algorithm reduces the words washing, washed and

wash to the root word wash. Stemming is mostly used to

increase the efficiency of a search engine. We will also try to

implement crawler.

6. REFERENCES
[1] K. Sparck Jones. "A statistical interpretation of term

specificity and its application in retrieval". Journal of

Documentation, 28 (1). 1972.

[2] G. Salton and Edward Fox and Wu Harry Wu. "Extended

Boolean information retrieval". Communications of the

ACM, 26 (11). 1983.

[3] G. Salton and M. J. McGill. "Introduction to modern

information retrieval". 1983

[4] G. Salton and C. Buckley. "Term-weighting approaches

in automatic text retrieval". Information Processing &

Management, 24 (5). 1988.

[5] H. Wu and R. Luk and K. Wong and K. Kwok.

"Interpreting TF-IDF term weights as making relevance

decisions". ACM Transactions on Information Systems,

26 (3). 2008.

[6] Jeffrey 3A. Hoffer, Joey F. George, Joseph S. Valacich,

“Modern Systems Analysis and Design”, Dorling

Kindersley(India) Pvt. Ltd, 2009.

[7] http://rankwatch.com/blog/a-brief-introduction-to-

search-engines/

[8] http://www.brighthubpm.com/project-planning

[9] http://infolab.stanford.edu/pub/papers/google.pdf

[10] https://en.wikipedia.org/wiki/search_engine

IJCATM : www.ijcaonline.org

