Abstract

In many building blocks of microprocessors and digital signal processing chips, adders are frequently available in their critical paths. Adders can also be used for subtraction, multiplication and division. One of the important basic arithmetic operations is addition. There are several structures like Ripple Carry Adder (RCA), Carry Look Ahead Adder (CLA) to perform the addition. Parallel prefix adders speed up the addition operation when compared to the other structures. Generally these adders provide less power consumption, but these consume more power when these are used in reverse converters. To reduce this high power consumption, hybrid parallel prefix adders can be used. In this paper, two structures namely, Hybrid Regular Parallel Prefix XOR/OR (HRPX) Adder and Hybrid Modular Parallel Prefix Excess-one (HMPE) Adder are discussed which uses modulo addition. Further these two adders are implemented using the Quantum dot cellular automata (QCA) technology, which reduces the delay. This entire work is done in Xilinx 13.2 tool ISE simulator.
1. Y. Wang, X. Song, M. Aboulhamid, and H. Shen, “Adder based residue to binary numbers converters for 
5. K. Navi, A. S. Molahosseini, and M. Esmaeildoust, “How to teach residue number system 
6. B. Ramkumar and H. M. Kittur, “Low power and area efficient carry select adder,” IEEE 
7. L. Sousa and S. Antao, “MRC-based RNS reverse converters for the four-moduli sets 
{2n + 1, 2n − 1, 2n, 22n+1 − 1} and {2n+ 1, 2n − 1, 22n, 22n+1 − 1},” IEEE Trans. Circuits Syst. II, 
8. A. S. Molahosseini, S. Sorouri, and A. A. E. Zarandi, “Research challenges in 
next-generation residue number system architectures,” in Proc. IEEE Int. Conf. 
9. S. Antão and L. Sousa, “The CRNS framework and its application to programmable and 
scaling-based residue number system,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 

Index Terms

Computer Science Information Sciences

Keywords

Addition, Parallel prefix adders, Black cell, Gray cell, Quantum dot cellular automata, Power, 
Delay.