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ABSTRACT

The Fibonacci polynomials and Lucas polynomials are
famous for possessing wonderful and amazing properties and
identities. Generalization of Fibonacci polynomial has been
done using various approaches. One usually found in the
literature that the generalization is done by varying the initial
conditions. In this paper, Generalized Fibonacci polynomials

are defined by W, (X) = XW,_, (X) + W, _,(X); n = 2 with
W, (X) =2bandw, (X) =a+b, where a and b are
integers. Further, some basic identities are generated and
derived by generating function.
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1. INTRODUCTION

The Fibonacci polynomials and Lucas polynomials are
famous for possessing wonderful and amazing properties and
identities. Fibonacci polynomials appear different frameworks
.These polynomials are of great importance in the study of
many subjects such as algebra, geometry, combinatorics,
approximation theory, statistics and number theory itself.
Moreover these polynomials have been applied in every
branch of mathematics. Fibonacci polynomials are special
cases of chebyshev polynomials and have been studies on
more advanced level by many mathematicians.

Basin [1] show that Q matrix generates a set of Fibonacci
Polynomials satisfying the recurrence relation

£,()=XFr 1 (X) +2(), N> 2 with £y ()=0 ,f,(x)=1 (1.1)
The first few polynomials of (1.1) are

f.(x)=1 f,(x)=x f,()=x>+1 f,(x)=x>+2x,

f. () =x*+3x*+1, f,(x)=x"+4x*+3x and so on.
The Lucas polynomials [10] are defined by

10()=Xn-1(X) +12(x), N> 2 with Iy ()=2, 13(X) (1.2)

Generating function of Fibonacci polynomials is

Do f (0t =t(L—xt—t*) (1.3)
n=0

Generating function of Lucas polynomials is

S, (01" = (2- X)L xt—t2) % (1.4)
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Explicit sum formula for (1.1) is given by

2 n—k—
f.)=> [n : 1} X2k, (15)
k=0

Where (nj is binomial coefficient and [X] is the greatest
k

integer less than or equal to X.

Explicit sum formula for (1.2) is given by

1] _
1,(x) = Zn—ik(n ) k]x””- (L6)

k=0

Where [nj is binomial coefficient and [X] is the greatest
k

integer less than or equal to X.

The Fibonacci and Lucas polynomials are many fascinating
properties which have been studied in [2] to [12].

In this paper, we present generalized Fibonacci polynomials
by varying the initial conditions. Further, some basic identities
and derived by generating function.

2. GENERALIZED FIBONACCI
POLYNOMIALS

Generalized Fibonacci polynomials have been intensively
studied for many years and have become an interesting topic
in Applied Mathematics. Generalization of Fibonacci
polynomial has been done using various approaches. One
usually found in the literature that the generalization is done
by varying the initial conditions.

Generalized Fibonacci polynomials W, (X) are defined by
recurrence relation

W, (X) = xw,_, (X)+W,_,(X);n=2. with w,(X) =2b,

W, (X) = a+b, where aand b are integers. (2.1)

The first few terms of generalized Fibonacci polynomials are
as follows:

w, (X) = 2b,

w,(x) =a+Db,

w, (x) = X(a+b)+2b,

W, (X) = (@a+b)x* + 2bx +(a+b) and so on.

If x=1, then w, (1) is Generalized Fibonacci sequence.

Generating function of Generalized Fibonacci polynomials is



2b(1—xt) + (a+b)t
Zw )t" = s 2.2)

Hypergeometric representation
D w, ()" =[2b(L—xt) + (a+b)t](1—xt —t*)
n=0

= [2b(L— xt) + (a+b)t][(L— (x + )] ™

—[2b(1-xt) + (a+b)TY (x+1)"t"

n
J Xn—ktk
k

—[2b(— xt)+ (a+ b)t]ii le_x” gnk

—[2b(—xt)+ (a+ b)t]Zi lE -2k

~[2b(1-xt) + @+ B> Y

n=0 k=0

VR

8

—[2b(1— xt) + (a+b)t]e" i ”,%I (tlk)

=[2b<1—Xt>+(a+b>t]e“i%(tlz_k)k

=[2b(1- xt) + (a+b)t]e*,F (n+1L1t%)

Hence hypergeometric representation of generating function is

C er (X)tn
2 [n 2.3)

n=0

= [2b(L—xt) + (a +b)t]e",F.(n+1,L1;t°).

3. SOME IDENTITIES OF
GENERALIZED FIBONACCI
POLYNOMIAL

In this section, some basic identities of Generalized Fibonacci
polynomials have been obtained by method of generating
function.

Theorem 3.1. Prove that
W,.p (X) =W, (X) = xw, (X),n >1. (3.1

Proof. By generating function of Generalized Fibonacci
polynomial,

3w, ()t = [260L - xt) + (@ -+ DAL xt ~t2)"*

Differentiating both side with respect to t,
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inwn(x)t“’l =[2b(L-xt)+ (a+b)t](x+ 21— xt—t*)? + (a+b—2bx)(L-xt -t?)*

(L-xt-t* i
=[20(L-xt) + (a+b)t](x+ 2t)(L-xt —t*) " + (a+b-2bx)

= (x+2t)2wn(x)t“ +(a+b-2bx).

i nw, ()t —i xnw,, (x)t" — i nw,, ()t

i xw, (x)t" +22W OOt"™* +(a+b —2bx).

n=0 n=0

Now, equating the coefficient of t" on both side,

(n+w, (X) —nxw, (x) = (N =Dw, , (X) = xw, (x) + 2w, , (x),

(n+w,, () = (n+Dw ; (x) = (N +1)xw, (x),

W, (X) =W,y (X) = X, ().
Theorem 3.2. Prove that
W, (X) = xw_, (X) +W,_,(X)+W,_,(X),n>2. (3.2)

Proof. By generating function of Generalized Fibonacci
polynomial,

3w, (XU = [260L - xt) + (@ -+ D)L Xt —t2)"*
pry

Differentiating both sides with respect to x,

Zw " =[2b(L- xt) + (a+b)tJt(1— xt —t*) 7 + (=2bt)(L - xt —t*) 7,
1-xt-t’ Zw " =[2b(1- xt) + (a + b)t]t(L—xt —t*) ™ + (=2bt),
(1-xt —tZ)Zw‘n(x)t

= w, (X)t" - 2bt,
n=0 n=0

ZW z (Ot - an OOt =) w, ()" - 20t

Now, equating the coefficient of t" on both sides.

W, (X) = XW,_; (X) +W,_, (X) + W, (X).
Theorem 3.3. Prove that
W, () = XW, (X) + W, (X) +W,_,(x),n>1. 33)

Proof. By (3.1),

W, (X) =W, (X) = xw, (x),n >1.

By differentiating with respect to x,
W, ,; (X) — W, (X) = xw, (X)+W (x),
W1 (X) = XW, (X) + W, (X) + W,_, (X).

Theorem 3.4. Prove that
nw, (X) = xw, (X) +2w,,_, (x),n >1and
n+1(x) (n +1) +1(X) 2W (X) n>1.

Proof. By generating function of Generalized Fibonacci
polynomials,



3w, (Xt = [260L - xt) + (@ -+ D)L Xt — 1)

Differentiating both sides with respect to t,
i nw, (x)t"* (3.4)
=[2b(L— xt) + (2 + b)t](x + 2t)(1— xt —t2) 2 + (a+b — 2bx)(1— xt —t?) .
Differentiating both sides with respect to X,

>, (9t°

n=0

=[2b(1— xt) + (a+b)tJt(1— xt —t?) + (=2bt)(L— xt —t*) "
2w, ()t

n=0

=[2b(1—xt) + (a+b)t](1— xt —t*) 2 —2b(1— xt —t?) ™.
> w, ()t +2b(1—xt —t?)

n=0

=[2b(1— xt) + (a+b)t](1— xt —t*) 2.

(3.5)

Using (3.5) in (3.4),

> nw, ()t

n=0

=(x+ 2t){iw‘n ()" + 2b(1- xt —tz)’l} +(a+b-2bx)(1-xt-t3)™

n=0

W, (Ot (X + 2t)20(1- xt —t2) ™ + (a+b - 2bx)(1-xt —t2) ™,

n

DM

=(x+2t)

E
I
o

ian oo™t

"

= xi w, ()t +2i W, ()" +(x +2t)2b(nl—xt —t*) ™
+an+ b— 2bx)(1—_(;<t —t*)™

Equating the coefficient of t"* on both sides,

nw, (X) = XW, (X) + 2w, _, (X).

(3.6)
Again equating the coefficient of t" on both sides,
XW,. (X) = (+ 1w, (X) — 2w, (X). 3.7

Theorem 3.5. Prove that
(N+DW, (X) = W,,, () +W, ; (x),n>1.

Proof. By (3.1),
Wn+1(X) - Wn—l(X) = X\Nn (X)

By differentiating with respect to x,

W3 (X) = Wy (X) = XW, (X) + W, (X). 3.8)
Using equation (3.6) in equation (3.8),
(n+Dw, (x) =w_, (X) +w, _, (x). (3.9)

Theorem 3.6. Prove that
Xw, (X) = 2w, (X) — (n+2)w, (x),n > 0.

Using equation (3.6) in equation (3.9),
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1 .
Wt (04D, (0 = W3 () = [ W, () =, ()|

2(n+)wW, (X) = X) +nw, (X) — xw (),
XW, (X) = 2w, (X) = (N +2)w, (X).

Theorem 3.7. Prove that
(n+Dxw, =nw, ,(X) —(n+2)w, ,(x),n >1.

Proof. Using equation (3.3) in equation (3.9),

(+ D) {W, 00 =XW, () =W, 5 (X)} = W, () + W, ; (),

W, (X) = (N +2)w, 4 (X) (3.11)
= (n +1)xw, ().

Theorem 3.8. (Explicit sum formula): For Generalized
Fibonacci Polynomials,

H n—k

w, (x)=2b>" X"
o\ K

Proof. By generating function,

3w, ()t = [2b(1—xt) + (a-+ )] A xt —t2) ",

n=0

~ [2b(1- xt) + (a+ D) (x+1)"t",

—[2b(1— xt)+ (a+b)t]itnz":(mxn_ktk,

—[2b(1—xt) + (a + b)t]ii N
—[2b(L—xt) + (a+ b)t]ii Xt

Equating coefficient of t" on both sides,

W (X) = 2bg[n kj . (3.12)

Theorem 3.9. For positive integer N > 0, prove that

-n —n+1 —4
w. (X) =2bx" F | (—,——,-n,— |.
(9 = 20¢", 1((2 > ij

Proof. By (3.12),



H n-k
w, (X) = 2bx k:olkﬂ—ZkX
_ e (@) (=) x>
= (), (D™ O, |_

. co[-NY) (—n+1) x7*
o= ()57
par (-n), (-D*

oy B (—znjk (—n2+1jk (;ff]k _
k=0 (=n) [k
n+1 —4).

_n —
w, (X) =2bx" F | (—,——,-n,—
(9 21[(2 P

Theorem 3.10. For positive integer n > 0, prove that

0

(¢), W, (9

n=

In
2
ooty F | & S g Nt 02 U
22 22 (1-xt)
- . t"
Proof. Multiplying both sides of (3.12) by (c), E and
summing between the limit n=0and N=o0,

n

H
_ S “1__JS n—2k t
—2an:; > T 2I((c)x m,

n+2k
X't

< |n+k
=2b
S O
I_k

(C +2K), (€), (xt)"t%,

=2b{ic 2K), }ZLI%_z (©),t%,

— 2b(1—xt)" (”Zk)ZLl';LZ (©),t

_ IS T x[C) [Cc+] t
=2b(1-xt) ;W(Z) [Ejk (Tjk Ll_ X'[)z

(3.13)

|
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=2b(1-xt)" ZO ((: :11)); " (%)k (%11 {(lj;)z}k ’

=201~ Xt)c:z‘)(Z)”(”(;:fE”;Zl(Z)Zk (%)k (%ll Ll_t;)z} ,

=zb(1—><t)°Z[;jk (C%ljk o { € }k,
(1-xt)

o (N+1) (n+2 1-xt)
2 H\ 2 )

o0 tn
C) W (X)—
X0, w0
1 1n+2 G149
= 2b(1-xt)",F, C,Cl,n+1,”i,—,—2
2" 2 22 "(1-xt)

4. CONCLUSION

In this paper, Generalized Fibonacci polynomials are
introduced by varying the initial conditions. Further, some
basic identities established and derived by standard methods.
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