Abstract

This paper presents the FPGA implementation of a Decimal Floating Point (DFP) arithmetic unit. The design performs addition, subtraction and multiplication on 64-bit operands that use the IEEE 754-2008 DPD encoding of DFP numbers. The design uses an equal bypass adder, this adder reduces the power consumption and it also reduces the delay by reducing the gate count. The design also uses barrel shifter instead of sequential shifter to reduce delay. Also 64 bit parallel BCD multiplier is used to perform fixed point multiplication. The proposed DFP arithmetic unit supports operations on the decimal64 format and it is easily extendable for the decimal128 format.

References

2005.

18. George Economakos, Dimitris Bekiaris and Kiamal Pekmestzi, “a mixed style architecture for low power multipliers based on a bypass technique”, national technical University of Athens, school of electrical and computer engineering, heroon polytechniou 9, GR-15780 Athens, Greece, IEEE, pp.4-6, 2010.

22. Yanyu Ding, Deming Wang, Jianguo Hu and Hongzhou Tan, “A Low power Parallel Multiplier Based on Optimized-Equal-Bypassing-Technique”, Third International Conference on Information Science and Technology March, 2013 IEEE, China

Index Terms

Computer Science Circuits and Systems

Keywords

Floating point addition, Floating point multiplication, Floating point subtraction, FPGA, Delay, Area overhead, IEEE P754-2008