
International Journal of Computer Applications (0975 – 8887)

Volume 153 – No 8, November 2016

6

An ASP.NET Web Applications Data Flow Testing

Approach

Moheb R. Girgis
Department of Computer Science,

 Faculty of Science,
 Minia University,
 El-Minia, Egypt

Alaa I. El-Nashar
 Department of Computer Science,

 Faculty of Science,
 Minia University,
 El-Minia, Egypt

Tarek A. Abd El-Rahman
 Department of Computer Science,

 Faculty of Science,
Minia University,
 El-Minia, Egypt

Marwa A. Mohammed
Department of Computer Science,

 Faculty of Science,
Minia University,
El-Minia, Egypt

ABSTRACT

This paper extends data flow testing techniques to Web

applications, and presents a proposed approach to data flow

testing of ASP.NET Web applications. It discusses the data

flow analysis of ASP.NET Web applications, which have

different structure than traditional programs. The proposed

approach involves the construction of a Web application data

flow model to support data flow analysis of ASP.NET Web

applications. In this approach, testing is performed in four

levels, Function, Interprocdural, Page, and Inter-Page levels.

In each level, the definition-use (def-use) chains of the

variables of interest are computed, then test data can be

generated to cover these def-use chains, in order to fulfill the

all-uses criterion. The application of the proposed approach is

illustrated through a case study.

General Terms

Software engineering, Software testing, Web applications.

Keywords

Web applications testing, ASP.NET Web applications testing,

Data flow testing, Data flow testing techniques, Web

applications data flow model.

1. INTRODUCTION
The number of Web applications continues to grow at a rapid

pace and the requirements on their performance grow as they

become more advanced and are exposed to higher loads of

users. This makes the subject of Web application testing

important and of current interest. Web application testing is

both challenging and critical. It is challenging because

traditional testing methods and tools are not sufficient for

Web applications. Testing Web applications is critical because

failure may be very costly.

The basic structure of Web applications consists of three tiers:

the client, the server and the data store. Due to the widespread

use of Microsoft’s .NET platform, this work focuses on

ASP.NET Web applications; nevertheless, the technique

presented can be adapted to Web applications developed in

various environments. In ASP.NET Web applications, data

can be stored in the state/session variables and the ASP.NET

server controls, in addition to traditional program variables.

So, traditional data flow testing techniques need to be

enhanced to manipulate the definition-use associations of such

variables.

This paper extends data flow testing techniques to Web

applications, and presents a proposed approach to data flow

testing of ASP.NET Web applications. It discusses the data

flow analysis of ASP.NET Web applications, which have

different structure than traditional programs. The proposed

approach involves the construction of a Web application data

flow model to support data flow analysis of ASP.NET Web

applications. In this approach, testing is performed in four

levels, Function, Interprocdural, Page, and Inter-Page

levels. In each level, the definition-use (def-use) chains of the

variables of interest are computed, then test data can be

generated to cover these def-use chains, in order to fulfill the

all-uses criterion.

The rest of the paper is organized as follows: Section 2

presents a review of the related work in data flow testing of

Web applications. Section 3 describes briefly the idea of data

flow analysis, and the data flow testing criterion used in this

work. Section 4 describes the proposed Web application data

flow model. Section 5 describes the proposed Web

applications data flow testing approach. Section 6 presents a

case study to illustrate the application of the proposed Web

applications data flow testing approach. Section 7 presents the

conclusion of the research work presented in this paper.

2. RELATED WORK
Research on Web applications testing has been fairly limited.

As this study focuses on the data flow testing of Web

applications, this section presents a review of the published

research work related to this field.

Liu et al. [1, 2] have proposed an approach for data-flow

testing of Web applications. The approach is applicable to

Web applications implemented in HTML and XML

languages, and including interpreted scripts as well as other

kinds of executable components (such as Java applets,

ActiveX controls, Java beans, etc.) both at the client and

server side of the application. The approach is based on a Web

application test model, WATM, which includes an Object

model and a Structure model. In the Object model,

components are modeled as objects that contain attributes and

operations, and the Structural model captures the data flow

information of functions within or across objects. Their data-

flow testing approach derives test cases from three different

perspectives: intra-object, inter-object, inter-client. Five

testing levels specifying different scopes of the tests to be run

http://www.minia.edu.eg/
http://www.minia.edu.eg/

International Journal of Computer Applications (0975 – 8887)

Volume 153 – No 8, November 2016

7

have been defined, namely: Function, Function Cluster,

Object, Object Cluster, and Application level.

Lee and Offutt [3] have proposed a mutation based approach

to test HTML-based Web applications. Their approach

focuses on the reliability of the data exchange among Web

component via HTML, more specifically, functional

correctness of the interactions. Nevertheless, the functionality

of individual Web applications is not considered in their work.

Ricca and Tonella [4, 5] have proposed an approach for white

box testing of static Web applications. This approach was

based on two test models: the Navigational model that focuses

on HTML pages and navigational links of the application, and

the Control flow model that represents the internal structure of

Web pages in terms of the execution flow followed. This

latter model has been used to carry out structural testing too.

A test case for a Web application is defined as a sequence of

pages to be visited, plus the input values to be provided to

pages containing forms. Various control flow and data flow

coverage criteria applicable on both models have been

proposed to design test cases.

Mansour and Houri [6] have presented white box techniques

for testing Web applications developed in the .NET

environment. These techniques emphasize the distinct features

of Web-based programs, including their multi-tier nature,

extensive use of events, and hyperlinked structure. First, they

extended previous work on modeling Web applications by

enhancing previous dependence graphs and proposing an

event-based dependence graph model. Second, they applied

data flow testing methods to the dependence graphs and

proposed an event flow testing technique. Third, they

presented a few coverage testing approaches. Fourth, they

proposed mutation testing operators for evaluating the

adequacy of Web application tests.

Qi et al. [7] have presented an agent-based approach to

perform data flow testing of Web applications. In this

approach, the data flow testing is performed by autonomous

test agents at the method level, object level, and object cluster

level. In the process of the recommended data flow testing, an

agent-based Web application testing system automatically

generates and coordinates test agents to decompose the task of

testing an entire Web application into a set of subtasks that

can be accomplished by test agents. The test agents cooperate

with each other to complete the testing of a Web application.

Liu [8] has adapted traditional data flow testing techniques

into the context of Java Server Pages (JSP). The author

pointed out that the JSP implicit objects and action tags can

introduce several unique data flow test artifacts which need to

be addressed. A test model was presented to capture the data

flow information of JSP pages with considerations of various

implicit objects and action tags. Based on the test model, Liu

described an approach to compute the intraprocedural,

interprocedural, and sessional data flow test paths for

uncovering the data anomalies of JSP pages.

3. DATA FLOW ANALYSIS
Data flow analysis focuses on the interactions between

variable definitions (defs) and references (uses) in a program,

i.e. the def-use chains. Data flow analysis techniques use a

control flow graph representation of a program to compute

def-use chains.

The control flow of a program can be represented by a

directed graph, with a set of nodes and a set of edges, called

the control flow graph (CFG). Each node represents a

statement. The edges of the graph are possible transfers of

control flow between the nodes. A path is a finite sequence of

nodes connected by edges. A complete path is a path whose

first node is the start node and whose last node is an exit node.

A path is def-clear with respect to a variable if it contains no

new definition of that variable.

To determine whether the testing process is finished, a test

data adequacy criterion is needed [9]. Several test data

adequacy criteria have been proposed, such as control flow-

based and data flow-based criteria. The proposed data flow

testing approach is based on one of the data flow testing

criteria proposed by Rapps and Weyuker [10], which is the

all-uses criterion. It requires a def-clear path from each def of

a variable to each use of that variable to be traversed. The def-

clear paths required to satisfy the all-uses criterion, called du-

paths, are constructed from the defs and uses of program

variables by using the technique described in [11].

4. THE PROPOSED WEB

APPLICATION DATA FLOW MODEL
The first step in the proposed Web applications data flow

testing approach is to capture data flow information about the

Web application to be tested, i.e. perform data flow analysis

of the Web application. The first task in data flow analysis is

to build a data flow model for the Web application to be

analyzed. The proposed Web application data flow model

consists of four types of flow graphs: control flow graph

(CFG), interprocedural control flow graph (ICFG), page

control flow graph (PCFG), and composite control flow graph

(CCFG). These flow graphs are described below.

4.1 Control Flow Graph
The control flow graph (CFG) is used to depict the data flow

information of an individual function. To describe data flow

information, a CFG is annotated with the defs/uses of the

variables so that the def-use chains for the variables of interest

can be obtained from it. For example, a def-use chain <(v, i),

j)> exists if there is a du-path from the def of variable v at

node i to its use at node j.

4.2 Interprocedural Control Flow Graph
The interprocedural control flow graph (ICFG) is used to

describe the data flow information that involves more than

one function. An ICFG integrates the CFGs of calling and

called functions into a single entry, single exit CFG. Thus, the

def-use chains for a variable that is defined in one function

and used in other functions can be obtained from the ICFG.

4.3 Page Control Flow Graph
An ASP.NET Web page consists mainly of a ‘presentation

file’ (.aspx file), that contains server controls and XHTML

tags, and the ‘code-behind’ class (.aspx.cs file) that contains

functions and data items required for the class to perform

specific actions. The page control flow graph (PCFG) is used

to describe the data flow information between the ASPX file

and the code-behind class of a page. A PCFG for a page

integrates the CFG of the ASPX file and ICFG of the related

code-behind class into a single entry, single exit CFG. Thus,

the def-use chains for a variable that is defined in one part of

the page and used in the other part can be obtained from the

PCFG.

4.4 Composite Control Flow Graph
One of the important characteristics of Web applications is

that the data in a Web page can be passed to another page

when users click a hyperlink or submit a form, or

programmatically through Response.Redirect() and

International Journal of Computer Applications (0975 – 8887)

Volume 153 – No 8, November 2016

8

Server.Transfer() methods. Thus, a variable can be defined in

one page and used in another page. However, unlike

traditional programs, there are no direct calling relations

between the embedded functions across the Web pages and,

hence, the ICFG cannot be used to capture this kind of data

interactions. Therefore, to describe the data flow information

between interacting Web pages, the composite control flow

graph (CCFG) is introduced so that the def-use chains across

Web pages can be obtained, [1].

The CCFG can be constructed by connecting the related

PCFGs of the interacting Web pages together. For each PCFG

of a page, there exists an edge from its exit node to the entry

node of another page’s PCFG. Thus, with the CCFG, the def-

use chains of interacting Web pages can be obtained.

5. THE PROPOSED WEB

APPLICATIONS DATA FLOW

TESTING APPROACH
This section describes the proposed Web applications data

flow testing approach. In this approach, data flow analysis of

the Web application to be tested is performed first, to collect

information about the defs and uses of its variables. Then,

using this information, with the constructed Web application

data flow model, and the data flow testing technique described

in [11], the def-use chains of the Web application variables

are computed. Because of the distinctive structure of Web

applications, in the proposed data flow testing approach,

testing is performed in four levels, Function, Interprocdural,

Page, and Inter-Page levels. In each level, the def-use chains

are computed, and test data are generated to cover all of them,

if possible.

The following sub-sections describe the data flow analysis of

ASP.NET pages, and the four testing levels.

5.1 Data Flow Analysis of ASP.NET Pages
Data flow analysis is mainly concerned with the proper usage

of data in a program. In traditional programs, data are stored

in the program variables. In Web applications, data can be

stored in the state/session variables and the ASP.NET server

controls, in addition to traditional program variables.

Therefore, data flow analysis techniques need to be extended

to address the distinguishing data elements of ASP.NET

pages, which are the basic building blocks of any Web

application. This subsection describes the issues that

characterize data flow analysis of ASP.NET pages.

To test ASP.NET pages, not only the variables of the

ASP.NET pages need to be considered, but also the implicit

objects introduced by the ASP.NET technology. So, in the

proposed data flow testing approach, the definitions and uses

of five types of data objects that can be found in Web

applications are considered:

1. Traditional program variables and arrays

2. Instance variables of the code-behind class

3. Simple and complex ASP.NET server controls and their

properties

4. Implicit session/state objects, such as Query-string

parameters, ViewState property, and Session property.

5. Objects of built-in classes, such as SQL server classes,

ADO.NET classes, and custom button controls.

The def and use actions for traditional program variables and

arrays are determined as described in [11]. The def and use

actions for the other four types of the ASP.NET pages data

objects are described below.

5.1.1 Defs and uses of instance variables of the

code-behind class
In object-oriented (OO) programming the instance variables

of a class can be accessed and modified by its methods. In

ASP.NET pages, the instance variables of the code-behind

class can not only be accessed and modified by its methods,

but also referenced in the related ASPX file.

The defs and uses of the instance variables of the code-behind

class are defined as in OO programs. But, to illustrate how the

instance variables of the code-behind class of a page can be

defined in one of its methods and used in the related ASPX

file, consider the following code fragments of a page, named

Welcome.aspx.

0 <%@ Page Language="C#" AutoEventWireup

="true" CodeFile="Welcome.aspx.cs" Inherits

="Welcome" %>

…

5 <title>

6 <%=title%>

7 </title>

…

50 public partial class Welcome : System.Web.UI.Page

51 {

52 protected string title;

53 public string str;

 …

60 protected void Page_Load (object sender,

EventArgs e)

61 {

 …

65 str = Request.Params["id"];

66 title = "Welcome" + str;

 …

80 }

In this example, the code-behind class, Welcome.aspx.cs, has

two instance variables, str and title. In the Page_Load method,

there are def and use actions for str at lines 65 and 66,

respectively. The variable title has a def at line 66 in the

Page_Load method, and a use at line 5 (an output statement)

in the ASPX file.

5.1.2 Defs and uses of server controls and their

properties
The ASP.NET server controls in the ASPX file are treated as

global variables, which can be accessed (defined/used) by the

code in the code-behind file. Thus, to apply data flow testing

to Web applications, it is necessary to determine first when

the def and use actions can happen to different server controls

in the ASP.NET pages (ASPX file and code-behind class),

then compute the def-use chains for them in order to derive

suitable test cases. Table 1 shows the def and use actions that

are defined for some ASP.NET server controls.

It should be noted that, a use action is set for the Data control

and its defined properties, when it is used, as shown in the last

row of Table 1. Following are some examples of the defs and

uses of the ASP.NET server controls defined in Table 1.

Example 1: Defs and uses of a LinkButton control

The following definition element contains a def for a

LinkButton control, named SaveButton:

International Journal of Computer Applications (0975 – 8887)

Volume 153 – No 8, November 2016

9

<asp:LinkButton ID="SaveButton"

onclick="SaveButton_Click" Text="SaveChanges"

runat="server"></asp:LinkButton>

and the following header of the Click event handler of

SaveButton control contains a use for that control:

public void SaveButton_Click(object

sender,System.EventArgs e)

Example 2: Defs and uses of a TextBox control and its Text

property

The following definition element contains a def for a TextBox

control, named MyTextbox:

Table 1. The def and use actions of some ASP.NET server controls

ASP.NET Data Item Examples Action Statement Location

Simple server control

TextBox, Button, Label,

HyperLink, RadioButton,

CheckBox

def

Definition element:

<asp:ControlType ID=

 ControlName >

ASPX file

use
header of an event

handler for the control

Code-

behind class

Simple server control

property
Text

def
L.H.D. of an

assignment statement
Code-

behind class
use

R.H.D of an assignment

or Conditional

statement

List control

ListBox, DropDownList,

CheckBoxList,

RadioButtonList,

BulletedList

def

Definition element:

<asp:ListType ID=

 ListName>

ASPX file

ListName.Items.Add();
Code-

behind class

use

header of an event

handler for the list

control

Code-

behind class

List control properties

SelectedValue,

SelectedItem,

SelectedIndex

def

Statement that assign a

value to the List

property Code-

behind class

use
Statement that reference

the List property

Data control DataGrid, GridView

def

Definition element:

<asp:datagrid ID=

 MyGrid >

ASPX file

use

Header of an event

handler for the data

control

Code-

behind class

Data control property

Columns

def

MyGrid.Columns.Add();

Code-

behind class

DataSource
L.H.D. of an

assignment statement

Data control and its

properties

DataGrid and its properties

Columns, DataSource
use MyGrid.DataBind();

<asp:textbox ID="MyTextbox" runat="server" … >

</asp:textbox>

The following assignment statement contains a def for the

property Text of MyTextbox control:

MyTextbox.Text = anyvalue;

and the following assignment statement contains a use for this

property:

string str = MyTextbox.Text.ToString();

Example 3: Defs and uses of a DropDownList control

The following definition element contains a def for a

DropDownList control, named FavoriteLanguage:

<asp:DropDownList ID="FavoriteLanguage”

runat=”server”>

International Journal of Computer Applications (0975 – 8887)

Volume 153 – No 8, November 2016

10

 <asp:ListItem Value=”C#”>C#</asp:ListItem>

 <asp:ListItem Value=”Visual Basic”>Visual

Basic</asp:ListItem>

 <asp:ListItem Value=”CSS”>CSS</asp:ListItem>

</asp:DropDownList>

The following Add() method of FavoriteLanguage control,

which adds an item to it, contains a def for that control:

FavoriteLanguage.Items.Add(item);

The following assignment statement, which refers to the

currently selected item of FavoriteLanguage control, contains

a use for the property SelectedValue of that control:

string language =

FavoriteLanguage.SelectedValue.ToString();

Example 4: Defs and uses of a DataGrid control and its

Columns and DataSource properties

The following definition element contains a def for a

DataGrid control, named MyDataGrid:

<asp:datagrid ID="MyDataGrid" runat="server"

OnItemCommand = "MyDataGrid_Command" ...>

and the following header of the Command event handler of

MyDataGrid control contains a use for that control:

protected void MyDataGrid_Command(object source,

DataGridCommandEventArgs e)

The following Add() method of the Columns property of

MyDataGrid control, which adds an item to it, contains a def

for that property:

MyDataGrid.Columns.Add(value);

Also, the following assignment statement contains a def for

the DataSource property of MyDataGrid control:

MyDataGrid.DataSource = ds;

where ds is a DataSet object. The following DataBind()

method of MyDataGrid control, which binds the control and

all its child controls to the specified data source, contains a

use for that control, and its Columns and DataSource

properties:

MyDataGrid.DataBind();

5.1.3 Defs and uses of implicit session/state

objects
The implicit session/state object, such as Query-String

parameters, ViewState property, and Session property of

ASP.NET pages, is like a container that can store name-value

pairs. Through the session/state object, the values of the

name-value pairs can be used or changed by different

ASP.NET pages. This enables data to be accessed across

ASP.NET pages within a user session and, hence, introduces

data interactions between ASP.NET pages.

5.1.3.1 QueryString parameters
There are few ways to create links between pages or redirect

the user to another page, including: using the HTML <a>

element, using the HyperLink Web server control, or

programmatically through code, using Response.Redirect()

and Server.Transfer() methods [12]. Quite often when the user

is to be sent to a different page, using one of these ways, some

additional information has to be sent along. This can be done

by passing it in the query string. The query string is the part of

the address that comes after the page name separated by a

question mark (?). It consists of name-value pairs, each

separated from another by an ampersand (&). Consider the

following URL:

Target.aspx?CategoryId=10&From=Home

The entire bold part (after the question mark) is considered the

query string. In this case, the query string consists of two

pairs: CategoryId with a value of 10 and From with a value of

the word Home. The page, Target.aspx in this example, is able

to read these values using Request.QueryString, as in the

following example:

Label1.Text = Request.QueryString.ToString();

Also, the page is able to get the value of any these values

using Request.Params with the name of the required value as

an index, as in the following example:

Label1.Text = Request.Params["CategoryId"].ToString();

where Params is of type NameValueCollection.

Request.Params can return name-value pairs from: Query-

string parameters, Form fields, Cookies, and Server variables,

in that order [13].

In the proposed data flow testing approach, the name part of

the name-value pair is treated as a global variable and the

value part as the value assigned to it. So, a def action is set for

this variable at the statement, which specifies the query string,

such as <a> element, the <asp:Hyperlink> control, and

Response.Redirect() and Server.Transfer() methods. This

global variable can be used by the methods in the code-behind

file of the target page. For example, at the following

statement, a def action is set for the name part, "Test", of the

query string Test=SomeValue:

Response.Redirect("Target.aspx?Test=SomeValue");

The value part of the query-string Test=SomeValue can be

retrieved in the target page Target.aspx as follows:

TestValue = Request.Params["Test"];

At this statement, a use action is set for the name part, "Test",

of the query string.

5.1.3.2 ViewState property
The ViewState collection is a property on the Page class. It is

a bag that enables storing data that can be retrieved again after

a postback. Values in ViewState can be identified using a

unique key. The values stored in this collection it gets sent to

the browser when the page loads and it is sent back to the

server when the page is posted back again. The ViewState is

stored within the page. The following example illustrates the

def and use actions that can be performed on the ViewState

property.

Example 5:

Assume that the following <a> element is defined in an ASPX

file:

Show All Items

In this element, there is query string: "query=0". So, the name

"query" is considered as a global variable, and a def action is

set for it.

Also, assume that the following code is defined in the related

code-behind class:

International Journal of Computer Applications (0975 – 8887)

Volume 153 – No 8, November 2016

11

1 int x;

2 if(!IsPostBack)

3 {

4 string queryStr = Request.Params["query"];

5 x = Int32.Parse(queryStr);

6 ViewState["query"] = x;

7 }

8 else

9 x = (int)ViewState["query"];

In this example, the global variable query, defined above in

the <a> element, is referenced at line 4. So, a use action is set

for it. Also, at line 6, the variable query is referenced and

ViewState is assigned a value. So, a use action is set for

query, and a def action is set for ViewState. At line 9, both the

variable query and ViewState are referenced. So, a use action

is set for each of them.

5.1.3.3 Session Property
Every ASP.NET page has a property Session, which provides

information about the current session. It stores session

variables (key/value pairs) that can be accessed by any page

during the same session. The value in a key/value pair is

retrieved from the Session property by indexing the Session

property with the key name [14]. So, the Session property is

considered as a global variable. The following example

illustrates the def and use actions that can be performed on the

Session property.

Example 6:

Assume that a RadioButtonList control, named languageList,

is defined in an ASPX file of a page as follows:

<asp:RadioButtonList ID="languageList" runat="server">

<asp:ListItem Value="0-13-605322-X">Visual C#

</asp:ListItem>

 . . .

<asp:ListItem Value="0-13-605306-8">Java

</asp:ListItem>

</asp:RadioButtonList>

At this element, there is a def for languageList control.

Also, assume that the following code is defined in the related

code-behind class:

1 if (languageList.SelectedItem != null)

2 // add name-value pair to Session

3 Session.Add(languageList.SelectedItem.Text,

languageList.SelectedItem.Value);

At lines 1 and 3, there are uses for the property SelectedItem

of languageList control, and at line 3 there is a def for the

Session property, as a key/value pair is added to it, and there

is a use for languageList control.

Table 2. The def and use actions of the objects of some SQL Server classes

SQL Server Class Description Action
Affected Class

Object
Example

SqlConnection
Represents a unique session

to a SQL Server database

def
object created using

the class constructor

SqlConnection con = new

 SqlConnection (conStr);

- def of con

use

object calls one of

the class methods,

such as Open, Close

or Dispose

con.Open();

- use of con

Object referenced in

any statement
See next example

SqlCommand

Represents a Transact-SQL

statement or stored procedure

to execute against a SQL

Server database

def
object created using

the class constructor

SqlCommand cmd = new

 SqlCommand (queryString,

con);

- def of cmd

- use of con

use

object calls one of

the class methods to

execute commands

at a SQL Server

database

cmd. ExecuteNonQuery();

- use of cmd

SqlDataAdapter

Represents a set of data

commands and a database

connection that are used to fill

a DataSet object and update a

SQL Server database

def
object created using

the class constructor

SqlDataAdapter adapter = new

 SqlDataAdapter();

- def of adapter

https://msdn.microsoft.com/en-us/library/system.data.dataset(v=vs.110).aspx

International Journal of Computer Applications (0975 – 8887)

Volume 153 – No 8, November 2016

12

SqlDataAdapter Class

properties

SqlDataAdapter Class has

properties, such as

SelectCommand,

DeleteCommand, and

InsertCommand

def

property assigned a

SqlCommand object

to set a Transact-

SQL statement to

manipulate records

in the data source

adapter.SelectCommand = new

 SqlCommand (queryString,

 con);

- def of

 adapter.SelectCommand

SqlDataAdapter Class

and its properties
 use

object and its

defined properties,

when the object

calls one of the class

methods to fill a

DataSet object or

update a database

adapter.Fill(dataset);

- use of adapter

- use of

 adapter.SelectCommand

Also, assume that a ListBox control, named booksListBox, is

defined in the ASPX file of another page in the same website

as follows:

<asp:ListBox ID="booksListBox" runat="server"

CssClass="listBoxStyle">

</asp:ListBox>

At this element, there is a def for booksListBox control.

Then, assume that the following code is defined in the related

code-behind class:

1 // determine whether Session contains any

 // information

2 if (Session.Count != 0)

3 {

4 // display Session's name-value pairs

5 foreach (string keyName in Session.Keys)

6 booksListBox.Items.Add(keyName +

 " ISBN#: " + Session[keyName]);

7 } // end if

At lines 2, 5 and 6, there are uses for Session property, as it is

referenced in Session.Count, Session.Keys and

Session[keyName], respectively. At line 6 there is a def for

booksListBox control, as an item is added to it.

5.1.4 Objects of Built-In Classes
In Web applications, objects of built-in classes, such as SQL

Server classes and custom button controls, can be created and

used in the code-behind class. The following subsections

explain how def and use actions are set for the objects of some

of these classes.

5.1.4.1 SQL Server classes and ADO.NET library

classes
Many Web applications allow users to provide/get certain

information through Web forms, which include ASP.NET

data controls (such as DataGrid or GridView), and

store/retrieve this information in/from a SQL Server database

located on the Web server. This requires setting up data

binding between the data control and the database and

allowing interactions between them. This can be done

programmatically by using objects of certain SQL Server

classes and ADO.NET library classes. Tables 2 and 3 show,

with examples, the def and use actions that are set for the

objects of the SQL Server classes: SqlConnection,

SqlCommand, and SqlDataAdapter, and ADO.NET classes:

DataSet, and DataTable, respectively. It should be noted that,

a use action is set for the SqlDataAdapter object and its

defined properties, when it calls one of the class methods to

fill a DataSet object or update a database, as shown in Table

2.

5.1.4.2 Custom button controls
The ButtonColumn class is used to display a command button

for each item in a column in a DataGrid control [15]. This

allows the creation of a column of custom button controls,

such as Add or Remove buttons.

A def action is set for a ButtonColumn object, when it is

created using its constructor, and also a def action is set for

any one of its properties, such as CommandName,

DataTextField, HeaderText, and Text, when a value is

assigned to that property. A use action is set for the

ButtonColumn object and its defined properties, when it is

added to a DataGrid control using the Add() method.

To illustrate the settings of def and use actions for

ButtonColumn class objects, consider the following example,

which uses the ButtonColumn class in a DataGrid control to

create an Add button.

1. private void Page_Init(Object sender, EventArgs e)

2. {

3. // Create dynamic column to add to Columns

 // collection.

4. ButtonColumn AddColumn =

 new ButtonColumn();

5. AddColumn.HeaderText="Add Item";

6. AddColumn.Text="Add";

7. AddColumn.CommandName="Add";

https://msdn.microsoft.com/en-us/library/system.data.sqlclient.sqldataadapter.selectcommand(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.buttoncolumn.commandname(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.buttoncolumn.datatextfield(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.datagridcolumn.headertext(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.buttoncolumn.text(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.datagrid(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.datagrid(v=vs.110).aspx

International Journal of Computer Applications (0975 – 8887)

Volume 153 – No 8, November 2016

13

Table 3. The def and use actions of the objects of some ADO.NET classes

ADO.NET Class Description Action Affected Class Object Example

DataColumn

Represents the schema of a

column in a DataTable

def
object created using

the class constructor

DataColumn idColumn

 = new DataColumn();

- def of idColumn

use

object added to a

DataTable, using the

Add() method

See next example

DataTable

Represents one table of in-

memory data, and used by

objects of the DataSet and

the DataView classes

def

object created using

the class constructor

DataTable table = new

 DataTable

 ("ParentTable");

- def of table

object that a column or

row is added to, using

the Add() method

table.Columns.Add

 (idColumn);

- def of table

- use of idColumn

use

object added to a

DataSet, using the

Add() method

dataSet.Tables.Add

 (table);

- use for table

object that one of its

properties is referenced

in any statement

If(tab1e.Rows.Count

 > 0)

- use of table

DataRow
Represents a row of data in a

DataTable

def

object created using

the NewRow() method

of DataTable

DataRow row =

 table.NewRow();

- def of row

object assigned a

reference to a row of a

DataTable object

DataRow row =

 tab1e.Rows[0];

- def of row

- use for table

use

object added to a

DataTable, using the

Add() method

table.Rows.Add (row);

- def of table

- use of row

object referenced in

any statement

IdTextbox.Text =

 row["id"].ToString();

- use of row

DataSet

Represents an in-memory cache

of data retrieved from a data

source and consists of a

collection of DataTable objects

def

object created using

the class constructor

DataSet dataSet = new

 DataSet();

- def of dataSet

object that a DataTable

object is added to,

using the Add()

method

dataSet.Tables.Add

 (table);

- def of dataSet

object filled with data

from a data source

using a DataAdapter

object

adapter.Fill(dataset);

- def of dataSet

use
object referenced in

any statement

MyDataGrid.

 DataSource = dataset;

- use of dataSet

8. AddColumn.ButtonType =

 ButtonColumnType.PushButton;

9. // Add column to Columns collection.

10. ItemsGrid.Columns.Add(AddColumn);

11. }

At line 4, there is a def for the ButtonColumn object,

AddColumn. At lines 5-8, there are defs for AddColumn

properties: HeaderText, Text, CommandName, and

ButtonType, respectively. At line 10, AddColumn is

referenced. So, a use action is set for it and for each one of its

defined properties. In addition, there is a def for the DataGrid

object, ItemsGrid, at line 10.

5.2 Data Flow Testing Levels of Web

Applications
Since a Web application consists of one or more Web pages

and each Web page consists of an ASPX file and a code-

behind class, in the proposed Web applications data flow

testing approach, four testing levels are considered, Function,

Interprocdural, Page, and Inter-Page levels. These testing

levels are described below.

5.2.1.1 Function Level Testing
Function level testing is used to test the variables that have

def-use chains limited to a single function. To test a function,

the def-use chains for this function are obtained from its CFG,

then test cases are generated to cover them.

https://msdn.microsoft.com/en-us/library/system.data.datatable(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.data.datatable(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.data.datatable(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.data.common.dataadapter(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.datagrid(v=vs.110).aspx

International Journal of Computer Applications (0975 – 8887)

Volume 153 – No 8, November 2016

14

5.2.1.2 Interprocdural Level Testing
Interprocdural level testing is used to test the variables whose

def-use chains involve more than one function that interact

through function calls within a page. The Interprocdural level

testing is required if a variable has a definition in one function

and uses of this definition in other functions within a page. To

test interacting functions through function calls within a page,

the def-use chains for them are computed from their ICFG,

then test cases are generated to cover them.

5.2.1.3 Page Level Testing
Page level testing is used to test the instance variables, global

variables, and session/state variables that have def-use chains

limited to a single page (ASPX file and code-behind class).

To test a page, the def-use chains for its variables are

computed from its PCFG, then test cases are generated to

cover them.

5.2.1.4 Inter-Page Level Testing
Inter-Page level testing is used to test the variables whose def-

use chains cross Web pages in the Web application either

through function calls or session/state variables. In the case of

passing data through function calls, def-use chains for the

inter-page level can be derived from the ICFG of involved

functions in the Web application pages. In the case of passing

data through session/state variables, such as data

transmissions between Web pages via Response.Redirect() or

Server.Transfer() methods, def-use chains can be computed

from the CCFG of related Web pages. Then test cases are

generated to cover the obtained def-use chains.

6. CASE STUDY
To illustrate the proposed Web applications data flow testing

approach, it is applied to an example ASP.NET Web page,

named EditItem.aspx, which is a part of a Web application,

named ‘To Do List’, for a simple personal agenda. This

application was adopted from [16]. The ASPX file and the

related C# code-behind class of the EditItem page are listed in

Fig. 1.

Fig 1: The ASPX file and the C# code-behind class of the

EditItem Page

// The ASPX file of the EditItem Page
0. <%@ Page Language="C#" AutoEventWireup="true"

CodeFile="EditItem.aspx.cs" Inherits="EditItem" %>

1. <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0

Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-

transitional.dtd">

2. <html xmlns="http://www.w3.org/1999/xhtml">

3. <head runat="server">

4. <title>

5. <%=_title2%>

6. </title>

7. <style type="text/css">

 …

11. </style>

12. </head>

13. <body>

14. <h1><%=_title2%></h1>

15. <form id="EditItemForm" method="post"

runat="server">

16. Description

17. <asp:textbox ID="DescriptionTextbox" runat="server"

Font-Names="Verdana" Font-Size="8pt"

Width="100%"></asp:textbox>

18.

19. Priority

20. <asp:DropDownList ID="PriorityList" Font-

Names="Verdana" Font-Size="8pt"

runat="server"></asp:DropDownList>

21. <asp:Label ID="ErrorLabel" runat="server" Text=""

Visible="false" ForeColor="Red"></asp:Label>

22. <asp:LinkButton ID="SaveButton"

onclick="SaveButton_Click" Text="SaveChanges"

runat="server"></asp:LinkButton>

 …

25. <asp:LinkButton ID="LinkButton1" runat="server"

onclick="LinkButton1_Click">return

26. </asp:LinkButton>

27. </form>

28. </body>

29. </html>

// The C# code-behind class of the EditItem Page
30. using System;

31. using System.Collections;

…

45. public partial class EditItem : System.Web.UI.Page

46. {

47. protected string _title2;

48. public string connStr = ConfigurationManager.

ConnectionStrings["ConnectionString"].

ConnectionString;

49. protected static string[] _priorites = { "Low", "Medium",

"High" };

50. public string idStrED;

51. protected void Page_Load(object sender, EventArgs e)

52. {

53. SqlConnection con = new SqlConnection(connStr);

54. idStrED = Request.Params["id"];

55. _title2 = (idStrED == null ? "New" : "Edit") +

"ToDoListItem";

56. if (!IsPostBack)

57. {

58. foreach (string s in _priorites)

59. {

60. PriorityList.Items.Add(s);

61. if (idStrED != null)

International Journal of Computer Applications (0975 – 8887)

Volume 153 – No 8, November 2016

15

Fig 1: The ASPX file and the C# code-behind class of the

EditItem Page (Continued)

The first step in the proposed Web applications data flow

testing approach is to perform data flow analysis of the

example Web page. This step includes two tasks: constructing

the Web application data flow model for the example Web

page, as described in Sec. 4, then collecting information about

the defs and uses of the page variables, as described in Sec. 5.

Fig. 2 shows the CFGs of the components of example Web

page, annotated with defs and uses of the page variables.

From the collected data flow information, the def-use chains

of Web application variables are computed, then the list of du-

paths of the example Web page are constructed as described

in [11]. Table 4 shows the list of the constructed du-paths. In

this list, each du-path is represented by: a def-node (a node

containing a def of a variable); a use-node (a node containing

a use of that variable); and the set of nodes that must not be

included in that path (nodes containing other defs of that

variable). These nodes are called killing nodes [11]. The value

(-1) is used in the killing node column to indicate that the du-

path has no killing nodes.

After determining the list of du-paths for the program being

tested, the tester runs the program with test data. During each

test run, the traversed path is recorded. At the end of a test

run, the traversed path is checked to see whether it covers any

of the constructed du-paths, and a report is produced to the

tester showing the du-paths that have not been covered yet. A

path is said to cover a du-path if it has a subpath that starts at

the def-node and ends at the use node of the du-path and does

not pass through its killing nodes [11]. The tester then re-runs

the program with different test data until all the remaining du-

paths are covered, unless there are some infeasible paths that

cannot be covered by any test data.

Fig. 3 shows the report produced by the system, which have

been developed to implement the proposed approach, after a

test run of the example application. It shows the traversed

path, the covered du-paths, and the du-paths that are not

covered yet. More test runs are performed until the remaining

du-paths are covered, if possible.

7. CONCLUSION
In this paper, an approach to data flow testing of ASP.NET

Web applications has been proposed. This approach consists

of three steps: The first step is the construction of a Web

application data flow model to support data flow analysis of

ASP.NET Web applications. This model consists of four types

of flow graphs: control flow graph (CFG), interprocedural

control flow graph (ICFG), page control flow graph (PCFG),

and composite control flow graph (CCFG). The second step is

the data flow analysis of the Web application to be tested, to

collect information about the defs and uses of its variables.

Five types of variables/data objects, which can be found in

ASP.NET Web applications, have been considered: traditional

program variables and arrays, instance variables of the code-

behind class, simple and complex ASP.NET server controls

and their properties, implicit session/state objects, and objects

of built-in classes, such as SQL server classes. The third step

is the computation of the def-use chains of the Web

application variables, using the collected data flow

information, with the constructed Web application data flow

model, and the data flow testing technique described in [11].

In the proposed approach, testing is performed in four levels,

Function, Interprocdural, Page, and Inter-Page levels. In

each level, the def-use chains of the variables of interest are

computed, then test data can be generated to cover these def-

use chains, in order to fulfill one of the data flow coverage

criteria, namely the all-uses criterion. Finally, the application

of the proposed approach has been illustrated through a case

study.

Currently, experiments are being conducted to evaluate the

effectiveness of the proposed approach in the structural testing

of Web applications, and to evaluate its ability to expose

different types of errors that may occur in the code-behind and

ASPX files of Web applications.

62. {

62. con.Open();

63. string queryStr = "select * from items where

id=" +idStrED;

64. SqlDataAdapter ad =

new SqlDataAdapter(queryStr, con);

65. DataSet ds = new DataSet();

66. ad.Fill(ds);

67. DataTable tb1 = ds.Tables[0];

68. if (tb1.Rows.Count > 0)

69. {

70. DataRow row = tb1.Rows[0];

71. PriorityList.SelectedValue =

row["priority"].ToString();

72. DescriptionTextbox.Text =

row["description"].ToString();

73. }

74. con.Close();

75. }

76. }

77. }

78. }

79. public void SaveButton_Click(object

sender,System.EventArgs e)

80. {

81. OnSubmit(idStrED);

82. }

83. private void OnSubmit(string f)

84. {

85. SqlConnection con = new SqlConnection(connStr);

86. con.Open();

87. string idStrF=Request.Params["id"];

88. string desc = DescriptionTextbox.Text.ToString();

89. int priorityN=PriorityList.SelectedIndex+1;

90. string priority = PriorityList.SelectedValue.ToString();

91. SqlCommand cmd = new SqlCommand();

92. if ((f == null) || (idStrF == null))

93. {

94. cmd = new SqlCommand("insert into items

(description,priority) values ('" + desc + "','" +

priority + "')", con);

95. cmd.ExecuteNonQuery();

96. con.Close();

97. }

98. else

99. {

100. cmd = new SqlCommand("update items set

description='" + desc + "',priority='" + priority +

"' where id=" + f, con);

101. cmd.ExecuteNonQuery();

102. con.Close();

103. }

104. con.Close();

105. }

106. protected void LinkButton1_Click(object sender,

EventArgs e)

107. {

108. Response.Redirect("ToDoList.aspx");

109. }

110. }

International Journal of Computer Applications (0975 – 8887)

Volume 153 – No 8, November 2016

16

Fig 2. The CFGs of the components of example Web page

Page_Load

Code-Behind Class

ICFG

class EditItem

Def (connStr,48)

Def (_priorities,49)

Use (connStr,53)

Def (con,53)

Def (idStrED,54)

Use (id,54)

Def (-title2,55)

Use (idStrED,55)

Def (S,58)

Use (_prionties,58)

Use (s,60)

Def (priortyList.Items,60)

Use (idStrED,61)

50

49

48

45

46-47

59

58

57

55

54

53

51-52

61

60

56

76

77

78

79

Use (con,63)

Def (queryStr,64)

Use (idStrED,64)

Def (ad,65)

Use (queryStr,65)

Use (con,65)

Def (ds,66)

Def (ds,67)

Use (ad,67)

Def (tb1,68)

Use (ds,68)
68

67

66

65

64

63

62 Use (tb1,69)

Def (row,71)

Use (tb1,71)

Def (prioritylist.

Selectedvalue,72)

Use (row,72)

Def (DescriptionTextbox.

Text,73)

Use (row,73)

Use (con,248)

74

73

72

70

71

69

75

ASPX Fike

CFG

 Use (_title2,5)

Use (_title2,14)

Def (EditItem Form,15)

Def

(DescriptionTextbox,17)

14

6-13

5

1-4

0

19

18

17

16

15
 Def (linkButton1,25) 25

23-24

 Def (saveButton,22) 22

 Def (ErrorLabel,21) 21

 Def (priorityList,20) 20

29

28

27

26

International Journal of Computer Applications (0975 – 8887)

Volume 153 – No 8, November 2016

17

Fig 2: The CFGs of the components of example Web page (Continued)

Fig 3: The Report of the fulfillment of all-uses criterion for the example Web page after a test run

******** RUN (1) ********

PATH NUMBER: 1

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 77

58 59 60 61 77 58 59 60 61 77 78 79 0 1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

27 28 29 52 53 54 55 56 79 80 81 82 84 85 86 87 88 89

90 91 92 93 94 95 96 97 98 105 106 83 0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

26 27 28 29 52 53 54 55 56 79

THE NEWLY DU-PATHS COVERED BY THIS PATH:

<(_title2,55),5>, <(connStr,48),53>, <(idStrED,54),55>,

<(_priorites,49),58>, <(s,58),60>, <(idStrED,54),61>,

<(_title2,55),14>, <(SaveButton,22),80>, <(idStrED,54),82>,

<(connStr,48),86>, <(con,86),87>, <(f,84),93>, <(idStrF,88),93>,

<(con,86),95>, <(desc,89),95>, <(priority,91),95>, <(cmd,95),96>,

<(con,86),97>, <(con,86),105>

THE DU-PATHS NOT COVERED YET

<(con,53),63>, <(idStrED,54),64>, <(con,53),65>,

<(queryStr,64),65>, <(ad,65),67>, <(ds,67),68>, <(tb1,68),69>,

<(tb1,68),71>, <(row,71),72>, <(row,71),73>, <(con,53),75>,

<(f,84),101>, <(con,86),101>, <(desc,89),101>,

<(priority,91),101>, <(cmd,101),102>, <(con,86),103>,

<(LinkButton1,25),107>

SaveButton_

Click

OnSubmit

LinkButton1_

Click

Use (SaveButton,80)

Use (idStrED,82)

Def (f , 84)

Use (connStr,86)

 Def (con,86)

Use (con,87)

Def (idstrF,88)

Def (desc,,89)

Use (DescriptionTextbox

.Text,89)

Def (priorityN,90)

Def (priority,91)

Use (priorityList.SelectedValue,91)

Def (cmd,92)

Use (f,93)

Use (idStrF,93)

Def (cmd,95)

Use (desc,95)

Use (priority,95)

Use (con,95)

Use (cmd,96)

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

79

Code-Behind Class

ICFG

(Continued)

Use (LinkButton1,107)

Def (cmd,101)

Use (desc,101)

Use (priority,101)

Use (con,101)

Use (f,101)

Use (cmd,102)

Use (con,103)

Use (con,105)

108

109

110

105

106

107

102

103

104

98

101

0

100

99

Use (con,97)
97

International Journal of Computer Applications (0975 – 8887)

Volume 153 – No 8, November 2016

18

Table 4. The list of du-paths and killing nodes of the example Web page

No. Variable
Def

node

Use

node

Killing

Nodes
No. Variable

Def

node

Use

node

Killing

Nodes

0 _title2 55 5 -1 20 idStrED 54 82 -1

1 _title2 55 14 -1 21 connStr 48 86 -1

2 connStr 48 53 -1 22 con 86 87 -1

3 idStrED 54 55 -1 23 f 84 93 -1

4 _priorites 49 58 -1 24 idStrF 88 93 -1

5 s 58 60 -1 25 con 86 95 -1

6 idStrED 54 61 -1 26 desc 89 95 -1

7 con 53 63 -1 27 priority 91 95 -1

8 idStrED 54 64 -1 28 cmd 95 96 92, 101

9 con 53 65 -1 29 con 86 97 -1

10 queryStr 64 65 -1 30 f 84 101 -1

11 ad 65 67 -1 31 con 86 101 -1

13 ds 67 68 66 32 desc 89 101 -1

14 tb1 68 69 -1 33 priority 91 101 -1

15 tb1 68 71 -1 34 cmd 101 102 92, 95

16 row 71 72 -1 35 con 86 103 -1

17 row 71 73 -1 36 con 86 105 -1

18 con 53 75 -1 37 LinkButton1 25 107 -1

19 SaveButton 22 80 -1

8. REFERENCES
[1] Liu, C., Kung, D. C., Hsia, P., and Hsu, C. 2000 Object-

based data flow testing of Web applications. In

Proceedings of the First Asia-Pacific Conference on

Quality Software.

[2] Liu, C. H., Kung, D. C., Hsia P. 2001. Object-based data

flow testing of Web applications. Int. J. Soft. Eng. and

Know. Eng. 11 (April 2001), 157-179

[3] Lee, S. C. and Offutt, J. 2001 Generating test cases for

XML-based Web component interactions using mutation

analysis. In Proceedings of the 12th International

Symposium on Software Reliability Engineering.

[4] Ricca, F., Tonella, P. 2001 Analysis and testing of Web

applications. In Proceedings of the International

Conference on Software Engineering.

[5] Ricca, F., Tonella, P. 2004 A 2-layer model for the

white-box testing of Web applications. In Proceedings of

the Sixth IEEE Workshop on Web Site Evolution.

[6] Mansour, N., and Houri, M. 2006. Testing Web

applications. Information and Software Technology. 48

(2006), 31–42.

[7] Qi, Y., Kung, D., and Wong, E. 2006. An agent-based

data-flow testing approach for Web applications.

Information and Software Technology. 48 (2006), 1159–

1171.

[8] Liu, C.-H. 2006. Data flow analysis and testing of JSP-

based Web applications. Information and Software

Technology. 48 (2006), 1137–1147.

[9] Frankl, P. G. and Weiss, S. 1993. An Experimental

Comparison Of The Effectiveness Of Branch Testing

And Data Flow Testing. IEEE Trans. on Soft. Eng. 19

(August 1993), 774-787.

[10] Rapps, S. and Weyuker, E. J. 1985. Selecting software

test data using data flow information. IEEE Trans. on

Soft. Eng. 11 (1985), 367-375.

[11] Girgis, M. R. 1993. Using Symbolic Execution and Data

Flow Criteria to Aid Test Data Selection. Software

Testing, Verification and Reliability. 3 (1993), 101-112.

[12] Spaanjaars, I. 2010. Beginning ASP.NET 4 in C# and

VB. Wiley Publishing, Inc.

[13] msdn.microsoft.com, 2016. HttpRequest.Params

Property. https://msdn.microsoft.com/en-us/library/

system.Web.httprequest.params(v=vs.110).aspx

[14] Deitel, P. J. and Deitel, H. M. 2009. Visual C# 2008

How to Program. 3rd Edition, Pearson Education Inc.

[15] msdn.microsoft.com, 2016. DataGridColumnCollection

Class. https://msdn.microsoft.com/en-us/library/

system.Web.ui.webcontrols.datagridcolumncollection(v=

vs.110).aspx.

[16] Lyon-Smith, J. 2002. ASP.NET to Do List Application.

http://www.codeproject.com.

IJCATM : www.ijcaonline.org

