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ABSTRACT 

Monaural source separation is an interesting area that has 

received much attention in the signal processing community 

as it is a pre-processing step in many applications. However, 

many solutions have been developed to achieve clean 

separation based on Non-Negative Matrix Factorization 

(NMF). In this work, we proposed a variant of Itakura-Saito 

Divergence NMF based on source filter model that captures 

the temporal continuity of speech signal. The algorithm shows 

a very good separation results for mixture of two speech 

sources in terms of artifacts reduction. Besides that, Source to 

distortion ratio (SDR) and Source to Artifact Ratio (SAR) 

were found to be higher when compared with NMF 

algorithms with Kullback-Leibler and Euclidean divergences. 

General Terms 

Signal processing.  

Keywords 

Itakura-Saito divergence, monaural source separation, Non 

Negative Matrix Factorization,  

1. INTRODUCTION 
Noise and interference reduction is one of the core issues that 

signal processing field attempts to resolve. Particularly in 

audio processing, obtaining "clean" sounds is very critical to 

many applications such as speech recognition, speech 

decoding, music transcription, etc. Unfortunately in practice, 

noise/interference-free environment does not really exist. 

Generally, recorded sequences consist of a mixture of 

numerous sounds as input, while some are specified as target 

signals and the rest as noise depending on the area of 

application. In contrast, human listeners often have little 

trouble paying attention to a single source in the presence of 

conflicting multiple sources [11,5]. This is because the 

masking effect has made the human auditory system to 

respond asymmetrically to energy in the spectral domain. 

Then, it is logical to assume that metrically asymmetric cost 

functions, with similar error weighting characteristics to that 

of the human ear i.e. weighting over-estimation less than 

under-estimation, are more suitable for audio spectrogram 

factorization   

Such mixtures are extremely commonplace; hence, this 

represents an important challenge.  

Many solution approaches have been developed for monaural 

source separation challenge. One of such is to use the natural 

cues of the signal class to group the transform coefficients of 

the source signals in a sparse representation of their mixture. 

However, for speech mixture, this technique has been applied 

in different spectral domains. This is where features such as 

common onset/offset and amplitude/frequency co- modulation 

of a speech signal’s time-frequency energy have been used to 

group localized segments of time-frequency energy. These are 

then merged using temporal structure such as pitch to solve 

separation challenge. Various Non-Negative Matrix 

factorization based techniques have been widely employed to 

achieve separation in this regime and these include shifted 

NMF [5] 

Non-negative matrix factorization (NMF) has   been proven to 

be well suited in the decomposition   multivariate data [12], 

subject to non-negativity constraint especially in the blind 

audio source separation. Though optimal source separation 

algorithm is still a serious challenge, yet, a number of 

applications involving a human operator are starting to yield 

satisfactory results [6]. 

The problem is to estimate the sources that are present in a 

linear instantaneous mixture of M   time-discrete input 

signals described by signal model: 

 
1

M

m n

m

S n S


  where, 1 m M   .     (1)  

The mixture is thereafter transformed into a spectrogram X   

by the application of short-time Fourier Transform (STFT). 

Since the input signals  ms n  are real and the spectrogram 

is symmetric, while the part representing the negative 

frequency range can be ignored. 

2. NON- NEGATIVE   MATRIX 

FACTORIZATION 
Nonnegative matrix factorization (NMF) of time-frequency 

representations such as the power spectrogram has become a 

popular tool in the signal processing community. 

It has been exploited in single channel separation of sound 

signals, because it generates a parts-based decomposition of 

audio spectrograms where the parts typically correspond to 

individual notes or chords. Various single channel audio 

separation algorithms based NMF have been developed. For 

example, perpetually weighted NMF was applied on the 

power spectrogram in order to model the human auditory 

system for sound attributes characterization as in [11]. In 

addition to that, a NMF model in Bayesian domain for 

monaural source separation has been proposed in [13], 

However, a prominent disadvantage of NMF is the task of 

performing the clustering of the basis functions to their 

individual sources after decomposition. With continual 
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progress that have been made in the search for algorithms for 

clustering the basis functions to sources, it still remain  an 

open area of research in which much works are required to 

developed optimal clustering algorithms.  

Given such a time-frequency representation
F NV R 

 , 

NMF consists in finding a factorization of the form 

X BG   

where 
F NB 

 , 
K NG 

 and ,K F N . 

The factorization is obtained by minimizing a cost function of 

the form  X, BGD . NMF as expressed in [8] approximates 

a nonnegative, real-valued matrix X  of size K T   as a 

product of matrices B  and G  . 

     

~

X X BG            (2) 

where B is of size F N   and G is of size K N  , with 

I as user defined parameter. The process of estimating B
and G is an optimization problem, the sole aim  of which is 

to minimize some cost function,  C  , with respect to G  

and B , subjected  to  non-negativity constraint on G  and 

B , which is expressible in the form written as:    

   , arg min C ; ,B G A B G  [3], provided , 0B G  .  

In the areas of speech and audio applications, where NMF is 

normally applied to spectrogram data, the cost functions are 

selected based on their perceptual relevance. In this work, 

Itakura Saito (IS)  distance NMF  algorithm is applied for the 

decomposition of the monaural mixture. 

From the foregoing, applying the IS cost function to minimize 

the problem: 

 

 \ ln 1
IS

C A BG
A A

BG BG
 

 
  

 
            (3)             

The preceeding cost functions are all generalized by   

divergence in [3] , such that: 

 
 

 

11
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Minimizing the cost function in [11] 

       , , t srC B G C B G C G C G                (5) 

where the reconstruction error  ,rc B G and also the 

temporal continuity  

   
2

2
1 2

, 1,

1J T

j t
t t j t jc G g g

 
                     (6)  

while the minimization is obtained as: 

2
,

1

1 T

j t j
t

g
T




                     (7)

                

The sparseness criterium  sC G   is given  as: 

 sC G  
,

1, 1
1, 1

/
J T

tj t
j t

f g  
 

                   (8)                       

Initialization of the matrices B and G are performed with 

the absolute values of Gamma noise (IS), the multiplicative 

update rules are thereafter applied in order to solve the 

optimization problem. 

2.1 Itakura- Saito divergence and its scale 

invariance property 
This divergence was derived by Itakura and Saito (1968) from 

the Maximum Likelihood (ML) estimation of short-time 

speech spectra under autoregressive modeling. It was defined 

as measure of the goodness of fit between two spectra and 

became popular in the speech community during the 

seventies. The divergence was applauded for its good 

perpetual quality of reconstructed signals. 

Authors in [7] developed a variant of an unsupervised 

inference procedure for audio source separation. Here, 

components in nonnegative matrix factorization (NMF) are 

clustered automatically in audio sources with the aid of a 

penalized maximum likelihood scheme. The penalty term that 

was imposed on this separation favored group sparsity, this is 

prompted by the assumption that the local amplitude of the 

sources are statistically independent. The algorithm extends 

multiplicative updates for NMF which leads to the proposition 

of a test statistic to tune hyper-parameters. 

For music transcription [1] proposed an Itakura Saito NMF 

based tempering approach convergence of IS-NMF to global 

minima. This algorithm is based on NMF with the beta-

divergence, where the shape parameter beta acts as a 

temperature parameter. 

In [6] is the adaptation of spectrum dictionaries in audio 

source separation with supervised learning. Here it was 

assumed that sample data of the audio sources to separate are 

available, a filter adaptation in the frequency domain is 

presented in the Non-Negative Matrix Factorization with the 

Itakura-Saito divergence regime. The algorithm had a capacity 

to retrieve the acoustical filter applied to the sources with high 

level of accuracy and demonstrated tangible higher 

performances on separation tasks with respect to the non-

adaptive model. 

One of the unique properties of IS divergence is that it is scale 

invariant, meaning that low energy components of X bear the 

same relative importance as high energy ones. This is relevant 

to situations in which the coefficients of X have a large 

dynamic range, such as in audio short-term spectra. The IS 

divergence equally results to desirable statistical 

interpretations of the NMF problem. Indeed, NMF can be 

recast as maximum likelihood (ML) estimation of B and G in 

superimposed signals under simple Gaussian assumptions [4]. 

Additionally, IS-NMF can be interpreted as Maximum 
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Likelihood of B and G in multiplicative Gamma noise [3], 

[4]. 

The IS divergence belongs to the class of Bregman 

divergences and has a limit case of the   divergence. Thus, 

the gradient descent multiplicative rules in these condensed 

form: 

     ( ) B

x yd d x y               (9) 

Which by implication makes IS divergence scale-invariant, 

that is  ( )x y ISd d x y    , the only one with 

this unique property among the   divergence family . The 

scale invariance means that the same relative weight is 

assigned to small and large coefficients of X in cost function 

such that a bad fit of the factorization for a low-power 

coefficient   fnX   will cost as much as a bad fit for higher 

power coefficient  i if n
X . On the other hand, 

factorizations obtained with 0  (such as with the 

Euclidean distance or the KL divergence) will rely more 

heavily on the largest coefficient so that less accuracy is 

expected in the recovery of the low-energy components. 

2.2 Computation of the update rules 

Estimation of the basis function B and the gain G  of the 

thj  basis function in frame T is carried out by applying the 

following update rules on vectors B and G respectively.  

T

T

XG
B B

BGG
             (10a)                  

T

T

B X
G G

B BG
 

                         (10b) 

                      

Minimizing (IS) using the gradient criterion  / BGBD X  

with respect to B and G  so that from [4]: 

    
2

(X/ BG) B
T

GD BG BG X


   


   (11)      

     
    2

(X/ BG)
T

B GD BG BG X





  


(12)                

   

                    
 

where ( )  denotes the Hadamard entry wise products and 

nA denotes the matrix with entries  ,

n

i j
A . The 

multiplicative gradient descent technique is equal to updating 

each parameter by multiplying its successive value obtained in 

previous iteration by the ratio of the negative and positive 

parts of the derivative of the criterion with respect to this 

parameter which are: 

      
   /f f   

 
                              (13)   

      
       /f f f  

                              (14)
      

 

Applying these, guarantee the non-negativity of the parameter 

updates, if and only if the initialization is setup with a 

nonnegative value. So that the update rules are now formed 

as: 

  
 

2

1

T

T

BG X G
B B

BG G










 




             (15)         

  

     (16)                  

 

Alternatively, it can 

be expressed as a variant of Bregman divergence which takes 

the form of: 

  
       xd x y x y

y
                         (17) 

where   is a strictly convex function of   that has a 

continuous derivative  . The IS divergence is obtained 

with    logy y    as in [4]. This gives: 

  
  

22

2

T

T

BG X G
B B

BG BG G






 


 





                 (18) 

       
  
  

2

2

T

T

B BG X
G G

B BG BG





 
 

 
                   (19)

      

 

3. ITAKURA-SAITO 

MULTIPLICATIVE UPDATE 

ALGORITHM 
In the minimization of the NMF problem, IS divergence is 

imposed on the factorization stage of the source filter model 

in [8]. This is done in order to further improve the separation 

performance and to investigate the computational efficiency 

(convergence and run time) of IS algorithm over other types 

of cost functions earlier applied on the model. 

3.1 IS-multiplicative update gradient 

descent 
This is perhaps the most efficient technique of evaluating the 

matrices B and G  through gradient descent by multiplicative 

updates. This update approach exploits the fact that 

multiplying any two nonnegative values produces another 

non-negative value. Then, initializing the elements of G   

and B   to non-negative values and given a non-negative A, 

the non-negativity constraint is imposed by applying 

multiplicative updates to B  and G ; this also implies  that if 

an element of either factor is assigned the value zero, during 

the update it remains at zero. One interesting characteristics of 

this technique is that it can be extended to a large number of 

cost functions. The IS algorithm is thus derived by setting

0 
 
and  logy y   . 

  
 

. 2

. 1

.
.

T

T

B BG X
G G

BG B






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This gradient descent algorithm has a normalization step at 

each iteration and this prevents trivial scale indeterminacies, 

thereby returning a constant valued cost function [4]. 

Summary of the IS-NMF Algorithm 

Input: Non-Negative Matrix X 

Output: Non Negative Matrices B and G such that 

X BG   

Initialize: B and G with non-negative values 

for 1:i n  do 

        

  
 

( 2)

( 1)

T

T

BG X G
B B

BG G

 

 


    

 

 

 

Normalize B and G  

End 

4. SEPARATION 
In the estimation of speech mixture, a model based monaural 

source separation algorithm is applied. Here a linear 

instantaneous mixture will be considered with a single gain 

from equation (1), which lead to model that corresponds to a 

source filter model. 

Non negative Matrix Factorization separates the magnitude 

spectrogram X of the mixture into a number of I channels, 

each with respective spectrograms 1ic i I    . The main 

motivation for adopting the NMF for the source separation 

problem is that it captures the pitch structure of speech and 

much more in its spectrogram representation. Inasmuch as 

human speech utterance and acoustic musical notes are 

pitched in nature, they can be described by a constant 

frequency basis vector iB and a time varying gain iG which 

equals envelope of a single note. NMF Mel Frequency 

Cesptral Coefficient (NMF-MFCC) clustering model as in [8] 

was applied to cluster the basis functions that belong to the 

same source. 

The i -th column of B and the i -th row of G  when 

multiplied form the spectrogram ic  of the i -th channel 

i i iC B G   where iC  is of rank one matrix [8] .  

It is assumed that the row iG  of matrix G  is low pass due to 

the continuity attribute of acoustic signals. It has been 

established that an additional cost function tC  is required 

when considering temporal continuity which tends to improve 

the separation quality for NMF algorithms particularly in 

speech separation. 

Thus, this cost function is expressed as: 

    

 

2

2

2

1

, , 1

,

T

t
t T

i

t

G i t G i t

c a

G i t





 







            (21)  

where T is the drop factor, since the mixture consists of 

sources of different length. 

5. EXPERIMENTAL SETUP 
The algorithm is implemented in MATLAB for single channel 

audio mixtures. A male voice and a female voice are recorded 

at Phonology Laboratory, University of Ibadan, Nigeria. Each 

of the speakers are made to make a sentence of which varied 

in duration of roughly 4 to 8 seconds at a sampling frequency 

of 16 kHz   

The magnitude spectrogram of the time-domain signal was 

obtained using the STFT. Hann windows of 4096 samples in 

length were selected, while 75% overlap was allowed between 

the successive Hann windows. The number of NMF basis 

functions (channels) for the test signals were equal to 15. The 

number of frequency basis functions may vary with the length 

(time duration) of the test samples in the test set used. In this 

work NMF was run for up to 600 iterations. 

Matrices B and G are randomly initialized with non-negative 

values. The cost function employed in the decomposition of 

the mixture is IS . The multiplicative updates and positive 

initialization for B and G ensure the factorization is non-

negative. The algorithm is set for number of sources equal to 

2 and it runs for 600 iterations. The number of translations k   
is 15. 

 

Figure 2: Spectrogram of the Mixture are NMF 

The figure above shows the decomposition of the speech 

mixture after decomposition by IS-NMF algorithm. The high 

energy region (0-20dB) shows the distribution of the formants 

that represent the components of the mixture. 

5.1 Separation Results 
It has been earlier reported in the methodology that IS-NMF 

was used in the data decomposition stage of this separation 

based on its excellent performance. 
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 
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Figure 3: Plots of separated sources in different domains 

(a) frequency (b) time 

Figure 3 (a) shows the amplitude spectrum of the separated 

sources. At the low end of the spectrum, source 1 has the 

highest spectral power and this reduces as it moves along the 

frequency spectrum. This corresponds to the male voice 

which is characterised with high pitch at low frequency. 

Source 2 shows an increasing trend in amplitude as it moves 

along the frequency spectrum. This corresponds to a female 

voice. 

From Figure 3(b) the time domain plot of the separated 

mixture is shown; the gap in between the sources shows the 

effect of sparsity which is a very important attribute of speech 

signal. 

5.2 Performance Evaluation 
Performance metrics were computed to assess the robustness 

of the separation model. The result obtained using IS -

mfccNMF
is compared with other factorisation models 

(Euclidean and Kullback - Leibler divergences) within the 

dynamic range of 5dB to 40dB . The separation results for 

M = 2 is presented in Table 1. 

Table 1: Performance Metrics for the Separation 

Algorithm 

R  IS - NMF  KL NMF  EU NMF  

S1 S2 S1 S2 S1 S2 

SDR 

5 10.97 12.66 10.18 8.73 8.71 10.02 

10 12.21 11.09 8.44 9.79 6.36 7.96 

20 9.39 11.15 8.24 9.21 8.89 7.58 

40 -10.31 -13.70 -13.70 -9.10 -13.84 -8.62 

SAR 

5 10.97 11.66 9.12 -8.73 -7.71 10.02 

10 8.22 11.09 8.44 9.80 4.36 5.96 

20 9.39 10.15 6.24 9.21 8.89 4.58 

40 -12.17 -10.31 -13.70 -9.10 -13.84 -8.62 

Note: S1 and S2, respectively, represent source 1 and source 

2; R denotes the dynamic range in dB  

From Table 1, it is found that the Source to Distortion Ratio 

( )SDR  and Source to Artefact Ratio ( )SAR of IS - NMF are 

the highest among the three separation models. Both 

computed values of SAR  and SDR increase steadily over the 

considered range. With this result, the performance of IS -

NMF is better than others over the dynamic range of 

mixtures. The most probable reason is that the divergence is 

not easily distorted by small values of noise when compare 

with other two models.  

Itakura-Saito distance has been found to be the most suitable 

cost function for the decomposition of non-negative data 

mixture, as it converges to local minimum over any number of 

iterations. Besides this, increasing the number of channels or 

the size of K yields better results of iteration and ultimately 

improved the quality of factorization. 

Moreover, the model produced a good separation results with 

high values of SDR and SAR for each of the separated 

sources. This is evident in Table 1, where the computed data 

show that the performance of the IS - NMF algorithm is 

highest among the NMF algorithms considered. 

6. CONCLUSION AND FUTURE 

WORKS 
We have constructed an Itakura –Saito divergence NMF for 

source separation which is applied in the estimation of 

monaural speech mixture. The algorithm achieved a very high 

separation result compared to other divergence-based 

algorithms in terms of SDR and SAR. From the foregoing, the 

algorithm has the potential of separating speech mixture that 

contains more than two sources. However, eliminating the 

constraint that the local minimal introduces into the cost 

function of the NMF is still an open issue, a probable   

solutions will be to adopt variants of Markov chain Monte 

Carlo (MCMC) simulation scheme to provide a deeper insight 

on the order of the criteria to achieve the minimization. 
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Also, the possibility of implementing Kalman filter on the 

separated outputs in order to minimize the artifacts that may 

be present in the estimated sources can be explored. 

This model can be extended, to other audio applications such 

as speech recognition, pitch modification and automatic music 

transcription. These applications would benefit from the 

availability of segregated sound sources from the mixture of 

audio signals to aid further processing. 
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