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ABSTRACT 

Clustering is one of the major techniques in data mining. 

Clustering data streams have drawn attentions in the past few 

years because of their ever-growing presence. Data streams 

add more challenges to clustering such as limited time, limited 

memory and one pass clustering. Further, discovering clusters 

with arbitrary shapes is important in data stream applications. 

Now a few clustering techniques for data streams exist in 

multidimensional spaces and the technique of "clustering 

projected or subspace" is used. Therefore, the task of 

projected clustering (or subspace clustering) has to be defined. 

PreDeConStream is a density-based data stream clustering 

algorithm for clustering high-dimensional data streams. In this 

paper, PPreDeConStream is present as a parallel version of 

PreDeConStream algorithm in the shared memory model. The 

theoretical and experimental results show that 

PPreDeConStream offers nearly linear speedup while keeps 

other advantages of PreDeConStream. 

General Terms 

Data mining, data stream, parallel algorithms, clustering, 

micro cluster 

Keywords 

Clustering data stream algorithms, parallel algorithms, 
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1. INTRODUCTION 
Every day, a huge amount of data will be made and the high 

percentage of them has been created in the recent years 

making us not able to store such massive amounts of data. 

Therefore, much attention has been made into mining data 

streams, but a few algorithms introduced into this area. 

Clustering is an important way to extract data streams. In 

clustering, data is classified into some groups. 

Data streaming applications such as [1] are as follows: 

financial, network monitoring, security, telecommunication 

data management, web applications, manufacturing, sensor 

networks, and others. Algorithms clustering data streams are 

categorized into these main types: Partitioning, Hierarchical, 

Density-based, Grid-based and Model-based algorithms.   

Comprehensive methods of the data stream algorithms are 

based on data density.  In a clustering survey [2], algorithms 

based on density in the data stream are classified into two 

general groups of microclustering, and grid-based algorithms. 

With this approach, the clusters of different shapes can be 

identified. 

Clustering data streams must handle the following challenges: 

 Handling noisy data 

 Handling evolving data 

 Limited time 

 Limited memory 

 Handling high-dimensional data 

There are different algorithms for Density-based clustering 

data stream approach. DenStream [3] is a well-known 

Density-based microcluster of data stream's algorithms.   

High dimensional data has challenged, known as the curse of 

dimensionality [4]. HDDStream [5]  algorithm is intended to 

handle the high dimensions by extending DenStream. This 

algorithm keeps the online phase summary from both points 

and dimensions of clusters' final offline phase based on a 

PreDeCon [6] algorithm. 

HDDStream algorithm has introduced to prefer vector for 

each microcluster, which is related to preferring dimension in 

high-dimensional data. At the time of pruning such as 

Denstream, microcluster weight periodically is controlled. 

Nowadays, since a large amount of data must be analyzed, the 

algorithms should be performed effectively in terms of time 

complexity. To improve time complexity of existing 

algorithms, parallelization is considered. Parallel and 

distributed computing have important roles in decreasing the 

response time. With parallel computing, the performance of 

clustering can be improved.  For example, the G-DenStream 

[7] used in heterogeneous environments for diverse 

computing with OpenCL [8] implementation has been 

proposed.  

In phase offline [7], an effective strategy is provided on the 

GPU. Calculating the distances between the data points is 

executed in parallel on GPU. Algorithm ensures a very good 

work and parallel GPU with low divergence is achieved. 

Similar calculations in the G-DenStream from any point with 

the center microcluster are performed effectively in parallel.  

PreDeConStream [9] is similar to HDDStream; however, the 

algorithm improves the efficiency of HDDStream on the 

offline phase. Nevertheless, searching the impact neighboring 

clusters and upgraded cluster are a time-consuming process. 

In this paper, PPreDeConStream algorithm is presented, a 

parallel version of PreDeConStream in the shared memory 

model. The complexity of parallel version PPreDeConStream 

algorithm is 1/P sequential PreDeConStream algorithm, where 

the number of processors is denoted by P. 
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The remaining of the paper is organized as follows. In section 

2, the preliminaries is given. In section 3, PreDeConStream 

algorithm is described and section 4 presents the parallel 

algorithm, PPreDeConStream. Section 5 shows the 

experimental results. Section 6 lists the conclusions and 

highlights the future works. 

2. PRELIMINARIES 
PreDeConStream [9] uses the notions of density-based 

clusters, mentioned in PreDeCon [6] and DenStream [3]. The 

algorithm applies the ideas of the subspace and micro cluster. 

To control dimensions, which is relevant to a cluster, the 

notion of subspace preference for each point is used.  

This algorithm, like other data stream clustering algorithms, 

uses online and offline famous models. In offline phase, the 

effective localization of the resulting cluster by changing the 

stream was affected at a particular time and then keeps only 

the final cluster. The algorithm defines the interval time that 

ensures no changes will be done as a result of clustering. 

Online phase also provides several lists for organizing the 

speed up to update. 

Ideas and notions of this section come from [9]. The 

following definitions are used to clarify PreDeConStream. 

PreDeConStream has seven input parameters; four density 

parameters 𝜀𝑁 , 𝜀𝐹  ,𝜇𝑁 , 𝜇𝐹  and fading parameter λ and 

preference parameter  𝜏 and sensitivity to outliers 

parameter 𝛽. Since the algorithm uses a density-based 

clustering over its online and offline phases, similar symbols 

that appear in both phases are differentiated with a 𝐹 subscript 

for the offline phase and 𝑁 for the online phase [9]. They 

should be chosen as suggested in [3]. 

Let 𝐷𝑆 be a database of d-dimensional points (𝐷𝑆 ⊂ 𝑅𝑑 ), 

where the set of attributes is denoted by 𝐴𝑖 =  𝐴1, 𝐴2, ⋯ , 𝐴𝑑   
and Dist: 𝑅𝑑 × 𝑅𝑑 → 𝑅𝑑  is a metric distance function between 

points in DS.  

According to [10] Note that weight of a given point of time 

arrival is calculated based on fade function weight.  The 

adopted decay role follows the exponential function given by 

𝑓 𝑡 = 2−𝜆𝑡  , where the  𝜆 >  0 limit decides the decay rate, 

and t is the current time. The higher the value of 𝜆, the lower 

the importance of the past data regarding the most recent data 
[10]. 

Based on  these  ideas [9],  the  classic  definitions  of    

density-based data stream clustering is derived: 

Definition 1 [9] Core Microcluster. At time t, the core 

microcluster is defined as close points 𝑝1, ⋯ , 𝑝𝑛  with time 

stamps 𝑡1, ⋯ , 𝑡𝑛 . It is depicted by a tuple 𝐶𝑀𝐶(𝑤, 𝑐, 𝑟) with: 

1. Weight,𝑤 =   𝑓 𝑡 − 𝑡𝑗  , 𝑤 ≥𝑛
𝑗 =1 𝜇𝑁  

2. Center, 𝐶 =
 𝑓 𝑡−𝑡𝑗  𝑝𝑗

𝑛
𝑗=0

𝑤
 

3. Radius, 𝑟 =
 𝑓 𝑡−𝑡𝑗  𝑑𝑖𝑠𝑡 (𝑝𝑗 ,𝑐)𝑛

𝑗=0

𝑤
, 𝑟 ≤ 𝜀𝑁  

The types of microclusters are also given, the potential micro 

cluster and the outlier microcluster, to allow quickly 

recognize changes in the data stream. 

Definition 2 [9] Potential and Outlier microcluster. A 

potential microcluster 𝑃𝑀𝐶 = (𝐶𝐹1     , 𝐶𝐹2     , 𝑤, 𝑐, 𝑟) is denoted 

as follows: 

1. Weight, 𝑤 =  𝑓 𝑡 − 𝑇𝑗  , 𝑤 ≥𝑛
𝑗 =1 𝛽𝜇𝑁  

2. Linear weighted sum of the points,  𝐶𝐹1      =  𝑓 𝑡 −𝑛
𝑗 =0

𝑇𝑗𝑝𝑗 

3. linear weighted squared sum of the points,  𝐶𝐹2     =
 𝑓 𝑡 − 𝑇𝑗  𝑝𝑗

2𝑛
𝑗 =0  

4. Center,  𝐶 =
𝐶𝐹1      

𝑤
 

5. Radius,  𝑟 =   𝐶𝐹2       

𝑤
−  

𝐶𝐹1      

𝑤
 

2

 

An outlier microcluster 𝑂𝑀𝐶 =  𝐶𝐹1     , 𝐶𝐹2     , 𝑤, 𝑐, 𝑟, 𝑡0   
indicates similar PMC with the following modifications: 

1. Weight, 𝑤 =  𝑓 𝑡 − 𝑇𝑗  , 𝑤 <𝑛
𝑗 =1 𝛽𝜇𝑁  

 

2. In addition, the entry point is decided to going to outlier 

microcluster, either it evolves or fades. 

Definition 3 [9] Microclusters Maintenance. Any core, 

potential, or outlier microclusters at time 𝑡 𝑀𝐶𝑡 =

 𝐶𝐹1     , 𝐶𝐹2     , 𝑤  is maintained as follows: 

If a point impacts 𝑀𝐶 at time 𝑡 + 1 then its statistics become: 

𝑀𝐶𝑡+1 =   2−𝜆 . 𝐶𝐹1     + 𝑝, 2−𝜆 . 𝐶𝐹2     + 𝑝2, 2−𝜆 . 𝑤 + 1 .  In a 

different state, if no point  was appended to MC for any time 

interval   𝛿𝑡   , the microcluster can be made after any time 

interval 𝛿𝑡 as follows: 

𝑀𝐶𝑡+𝛿𝑡 =  2−𝜆𝛿𝑡 . 𝐶𝐹1     + 𝑝,  2−𝜆𝛿𝑡 . 𝐶𝐹2     + 𝑝2, 2−𝜆𝛿𝑡 . 𝑤  .  

The maximum weight   𝑤𝑚𝑎𝑥  of any core, potential or outlier 

microcluster MC   is 
1

1−2−𝜆
.The minimum duration time for a 

newly produced micro cluster to get bigger into a potential 

microcluster is𝑇𝑝 =  
1

𝜆
 𝑙𝑜𝑔2  

1

1− 𝛽𝜇𝑁 1−2−𝜆 
   . The minimum 

duration time demanded a potential microcluster to decay into 

an outlier microcluster is 𝑇𝑑 =  
1

𝜆
 𝑙𝑜𝑔2 𝛽𝜇𝑁  . 

Definition 4 [9] Minimum Offline Clustering Legality 

Interval. The minimum legality interval of an offline 

clustering 𝑇𝑣  defines the time within which PreDeConStream 

does not need to update the offline clustering since it is still 

valid because no change of the status of any microcluster 

status happened. It is defined as 𝑇𝑣 = 𝑚𝑖𝑛 𝑇𝑝 , 𝑇𝑑 . 

Definition 5 [9] Subspace Preference Vector 𝑾𝒄 . For each 

dimension  𝑖th, if the variance of the microclusters 𝑐 of the 

Euclidean 𝜀 − 𝑛𝑒𝑖𝑔𝑏𝑜𝑟𝑜𝑜𝑑 𝑁𝐸𝐹(𝑐) is below a user-defined 

threshold, then the 𝑖𝑡 entry of the preference subspace vector 

𝑤𝑐  is set to a constant ≥ 1 , otherwise, the entry is set to 1.  

A data structure manages the updated and non-updated 

microclusters at each timestamp in an efficient and effective 

way (see  

Figure 1). The algorithm grouped the microclusters into 

multiple lists according to their weight.  
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Figure 1: A sample of outlier and potential lists [9] 

There are two types of lists: outlier lists 𝑙𝑗  
𝑜 , and potential 

lists 𝑙𝑖
𝑝

. The borders of the lists are 𝑊𝑑 = 1,   𝑊𝑚𝑖𝑛 =

𝛽𝜇𝑁  ,  𝑊𝑚𝑎𝑥 =
1

1−2−𝜆
 . The internal borders are selected 

as 𝑤𝑖
𝑝

=
𝑤𝑖−1

𝑝

2−𝜆
 for the potential lists, and 𝑤𝑖

𝑜 = 2−𝜆𝑤𝑖−1
𝑜 + 1 

for the outlier lists [9]. All microclusters in these two types of 

lists that are not hit in the previous timestamp disappear to a 

lower-weighted list. 

As DenStream, PreDeConStream discovers a cluster uniquely 

by any of its preference-weighted core microclusters. 

3.  THE PreDeConStream ALGORITHM  
To find data stream clusters, the PreDeConStream [9] 

algorithm merely runs one pass over the database according to 

limit setting. 

In the initialization phase of PreDeConStream algorithm, the 

minimum time span 𝑇𝑣  is calculated and uses the PreDeCon 

[6] algorithm on the first early points, and forms the 

preliminary lists potential microclusters. 

The algorithm is needed to an initial potential of 

microclustering to get started. During the initial setup 

algorithm, the points of a data stream are buffered and   call 

PreDeCon algorithm with least 𝛽𝜇𝑁 points in its 

𝜀𝑁 −neighborhood. 

In online process, for each data point, if the aggregate of the 

weights of the data points in the neighborhood 𝜀(𝑁 ) radius is 

above the weight 𝛽𝜇𝑁  threshold, then a potential 

microcluster is generated. When a new data point arrives, it is 

added to either the nearest existing potential microcluster or 

outlier microcluster. A microcluster is chosen with the 

distance less than or equal to the radius threshold [2]. If it 

does not belong to any of lists then, a new outlier microcluster 

is created, and it is placed in the outlier lists.  

In PreDeConStream, offline processing of the data stream, the 

neighbors of newly inserted potential microclusters as well as 

deleted p-microclusters is checked. The subspace chose 

vectors of these neighboring microclusters are updated and 

put in a list as updated microclusters. The affected 

microcluster list is used in the offline phase as expanding 

clusters to improve the efficiency of the offline phase [2]. 

Finally, a list of potential microclusters is needed to be 

reinserted into the clustering. Starting from a microclustered 

in the list UPDSEED, the algorithm   PreDeCon [6] is called 

with considering the old existing clustering. 

4. THE PPreDeConStream ALGORITHM 
In this proposed parallel algorithm, all the points and 

microclusters are available to each of P processors by the 

shared memory. Using parallel techniques can enhance 

processing speed. The both techniques data and task division 

are applied. 

In initialization phase of the proposed parallel algorithm, the 

initial clustering is computed with an adapted version of 

PPreDeCon [11](see Figure 2). 

 

Figure 2: The pseudo code of the initPPreDeCon 

In PPreDeCon, data is randomly divided among P processors. 

Each processor checkpoint that is in the neighborhood creates 

Algorithm  initPPreDeCon(𝐃𝐛𝐮𝐟, d, ε, μ, λ, δ) 

/* assumption: each point in D in marked as unclassified 

and Dj is set of point of each Processor */ 

Processor j, 𝟎 ≤ 𝐣 < 𝑃 do 

   for each unclassified     𝐨 ∈ 𝐃𝐛𝐮𝐟      do 

  if  𝐂𝐎𝐑𝐄𝐝𝐞𝐧
𝐩𝐫𝐞𝐟 𝐨  then  /*expand a new cluster*/ 

      create new microCluster  p-micro 

      generate new clusterID 

             insert all 𝐱 ∈ 𝓝𝛆
𝐰 𝐨 𝐨  into queue Q; 

             while 𝐐 ≠ ∅ do 

             q = first point in Q; 

             compute  𝐑 =  𝐱 ∈ 𝐃𝐈𝐑𝐑𝐄𝐀𝐂𝐇𝐝𝐞𝐧
𝐩𝐫𝐞𝐟 𝐪, 𝐱  ; 

             for each 𝐱 ∈ 𝐑 do 

  if   x is unclassified   then 

       insert x in Q; 

       if    x is unclassified or noise   then 

           assign current clusterID to x 

                          insert x into microCluster    

           remove    q   from Q; 

       else 

             mark o as noise; 

              end. 

          End. 

                Add p-micro into p-microCluster lists   

    end. 

// Merge step 

Processor  j, 𝟎 ≤ 𝐣 < 𝑃 do 

   for each classified  𝐦 ∈ 𝐃𝐣  do 

        if   |clusterID| > 1   then   

        // number of clusterID that point gets 

              set Min of them as clusterID; 

         remove  m point from microcluster in the list 𝒍𝒋
𝒑
 

     end. 
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clusters. A new cluster identification (CID) is created, and a 

fresh cluster is expanded. 

After all the processors finish their work, some points may get 

more than one CID [11]. This problem should be resolved. To 

resolving, in merge step, the algorithm sets the minimum CID 

for each point with more than one CID and removes from 

microcluster list 𝑙𝑖
𝑝

. 

The sequential algorithm finds the nearest point on the list of 

potential clusters and outlier micro spends a lot of time. Also, 

in procedure fade algorithm spends a lot of time. In update 

clusters' procedure, the algorithm spends a lot of time. 

Pseudo-code in Figure 3 is provided to search for the nearest 

microclusters of a point. The structure maintenance of 

microclusters contains several lists. In parallel, a list of the 

nearest microclusters is found and the closest microcluster in 

the list is selected and also the fade task can be executed for 

all microclusters by means of a single one-dimensional list 

(see  Figure 4). 

 

Figure 3: Search the nearest point from a list of 

microclusters 

In the update clustering procedure, the neighbors of newly 

inserted potential microclusters, as well as deleted possible 

microclusters, are checked and put in a list as affected 

microclusters. Finally, the actual microclusters of UPDSEED 

need to be reinserted into the clustering and call PPreDeCon 

algorithm. 

A task for all elements is affected by repeating the list of 

microclusters. This is the task of the proposed algorithm is 

done in parallel. The influence microcluster list is used for 

PPreDeCon [11] algorithm. The pseudo-code parallel updated 

clustering in the proposed algorithm is shown in Figure 5. 

 

Figure 4: Update fade microcluster 

5. EXPERIMENTAL EVALUATION  
In this section, accuracy and time complexity of 

PPreDeConStream are evaluated. PPreDeConStream, as well 

as comparative PreDeConStream algorithm, were 

implemented in C and OpenMP [12] library. All the 

experiments were done on a CentOS Linux operating system 

with two and four processors.  

Datasets: For the evaluation of PPreDeConStream, two data 

sets were used: 

1. Network Intrusion Detection data set KDD CUP'99 

(KDD-cup) [13] used to evaluate several stream 

clustering algorithms [3] with 494021 TCP connections; 

each represents either a normal connection or any of 22 

different types of attacks. Each connection consists of 42 

dimensions. 

2. Physiological data set [14]  is a multivariate data set 

recorded from a patient in the sleep with 3400 objects. 

Each connection consists of three dimensions, heart rate, 

the respiration rate, and the blood oxygen. 

Evaluation measure and limit settings to evaluate the quality 

of the clustering results, the cluster purity [3] measure is used.  

Purity of clusters is defined as follows: 

purity =
 

 C i
d  

 C i  
K
i=1

K
× 100%                          (1) 

Where K denotes the number of clusters.  Ci
d  denotes the 

number of points with the dominant class label in cluster i th. 
 Ci  denotes the number of points in cluster i th [3].  

For efficiency, runtime was tested in seconds. Experiments 

Purity and runtime were tested for both PreDeConStream and 

PPreDeConStream algorithms. 

Evaluation of Clustering Quality: Unless mentioned, the 

limits were set similar to [9] as follows: decay factor 𝜆 =
0.25, initial data object 𝐼𝑛𝑖𝑡 =  2000, and horizon 𝐻 =  5, 

and ε𝐹 = 2 × ε𝑁 and speed 𝑣 = 1000. 

Using the Network Intrusion Detection data set for both 

algorithms, the limits are set to μ𝑁 = 10, μ𝐹 = 5, 𝛽 = 0.23, 

 𝜏 = 32.  

It can be seen from Figure 6  the cluster purity of 

PreDeConStream and PPreDeConStream for KDD Cup99 is 

equal.  

//The weight w is 𝛽𝜇𝑁  for potential and 𝑤𝑑  for outlier 

micro-cluster .  

Algorithm updateFadeMicroClusters 

          (𝑙𝑖𝑠𝑡 𝐿m , 𝑤𝑒𝑖𝑔𝑡 𝑤,time 𝛿𝑡) 

 

 Processor j, 0 ≤ j < 𝑃 do 

   for each Microcluster m𝑐 ∈ L𝑚  do 

    if   the weight of m𝑐  < w then 

       delete m𝑐 ;  
      if (m-1) not zero then  

          add m𝑐   into 𝐿m−1;   

      end if; 

    end if; 

 end for; 

end. 

min
distance

=   list_min_distance[i] 

Algorithm search  Nearest MicroClusterPoint (list Lm , 

data point p) 

 

Processor    j, 0 ≤ j < 𝑃 do 

    for each   m ∈ Lm       do 

           compute distance p from m 

             if  distance ≤ list_min_distance j  then 

            z        list min
distance  j 

=  distance 

                     list min
micro  j 

= m 

              end-if. 

        End for. 

//merge for find minimum of minimum list 

   for  each 0 ≤ i < 𝑃 do  

          if list_min_distance[i] ≤ min_distance then 

 min
micro

= list_min_micro[i] 

           end-if. 

      End for. 

 

return min_micro; 



International Journal of Computer Applications (0975 – 8887) 

Volume 154 – No.10, November 2016 

11 

 

Figure 5: Parallel update clustering procedure in the 

proposed algorithm 

 

Figure 6: Clustering purity for KDDcup99 dataset 
 

Using the patient in the sleep data set for both algorithms, the 

limits are set to  𝜇𝑁 = 5, 𝜇𝐹 = 3, 𝜀𝑁 = 4, 𝛽 = 0.2, 𝜏 = 3 and 

speed data stream 𝑣 = 100. It can be seen from Figure 7 
 the cluster purity of PreDeConStream and 
PPreDeConStream is equal. 
 

In all experiments, PPreDeConStream discovered all the 

clusters and detected noises as well as PreDeConStream.  

The experimental results are summarized in  Figure 8 and 

Figure 9. In these experiments, the number of processor P is 2 

and 4.  

The result shows the run time of PPreDeConStream is lower 

than PreDeConStream, which is compared in Figure 8 and 

Figure 9. 

 

Figure 7: Clustering purity for a patient in the sleep 

dataset 

 

Figure 8 : Runtime comparison between PreDeConStream 

and PPreDeConStream for KKCup99 

 

Figure 9: Runtime comparison between 

PreDeConStream and PPreDeConStream a patient in the 

sleep dataset 

 𝑈𝑃𝐷𝑆𝐸𝐸𝐷 ← 𝑈𝑃𝐷𝑆𝐸𝐸𝐷𝑖  ∪  𝑈𝑃𝐷𝑆𝐸𝐸𝐷𝑑  

Algorithm P_updateClustering (C) 

  Processor  j, 0 ≤ j < 𝑃 do 

      for all 𝒄𝒑 ∈ 𝑰𝒏𝒔𝒆𝒓𝒕_𝑷𝑴𝑪 do 

    compute the subspace preference vector 𝑤𝑐𝑝
; 

             for all 𝒄𝒒 ∈ 𝑵𝜺𝑭(𝒄𝒑) do 

           update the subspace preference vector of cq ; 

       if core member  property of cq  has changed then  

  add cq  to AFFECTED_CORESi  

           end if; 

      end for; 

      compute UPDSEEDi based on  

               AFFECTED_CORESi; 

  end for; 

Processor j, 0 ≤ j < 𝑃  do 

     for all 𝒄𝒅 ∈ 𝑫𝒆𝒍𝒆𝒕𝒆_𝑷𝑴𝑪 do 

    for all cq ∈ NεF(cd) do 

       pdate the subspace preference vector of cq ; 

       if core member  property of cq  has changed then  

 add cq  to AFFECTED_CORESd;  

       end if; 

    end for; 

    compute UPDSEEDd based on    

             AFFECTED_CORESd; 

  end for; 

Processor j, 0 ≤ j < 𝑃  do 

  Call   PPreDeCon(𝑈𝑃𝐷𝑆𝐸𝐸𝐷) with considering the old 

cluster structure. 
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6. CONCLUSIONS  
In this paper, the parallel clustering algorithm 

PPreDeConStream was presented for mining large and high 

dimensional data stream clustering. Lack of time can be 

solved by parallel computing. The parallel implementation 

uses the shared memory model. The experiments showed that 

the actual clustering could be performed with excellent 

speedup and good response time. 

Speedup the algorithm has been nearly linear with the number 

of processors. The presented algorithm showed that the 

quality of the clusters also keeps in the parallel version. 

Other advantages of this algorithm were accuracy and 

supporting high dimensional data sets comparing to other 

density-based clustering algorithms; it also discovers arbitrary 

shapes and is effective in noise detecting. 

The future scope of this idea can be followed in below 

functions: financial, network monitoring, security, 

telecommunication data management, web applications, 

manufacturing, sensor networks, and others. 

In the future, a parallel version of the message passing model 

of the algorithm is considered. Focusing on reducing time 

spent in all the step of the algorithm may be taken as future 

works. Focus on methods based on density. A parallel version 

of other data streams mining methods may be considered in 

the future. However, one may consider the message passing 

model, map-reduce model, distributed memory and 

heterogeneous platforms.  
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