
International Journal of Computer Applications (0975 – 8887)

Volume 154 – No.10, November 2016

7

PPreDeConStream: A Parallel Version of

PreDeConStream Algorithm

 Reza Tashvighi
Department of Computer Engineering,

 Tehran North Branch,
 Islamic Azad University,

Tehran, Iran

Alireza Bagheri*
Department of Computer Engineering, Tehran North

Branch, Islamic Azad University,
Tehran, Iran

Department of Computer Engineering and Information
Technology, Amirkabir University of Technology,

Tehran, Iran

ABSTRACT

Clustering is one of the major techniques in data mining.

Clustering data streams have drawn attentions in the past few

years because of their ever-growing presence. Data streams

add more challenges to clustering such as limited time, limited

memory and one pass clustering. Further, discovering clusters

with arbitrary shapes is important in data stream applications.

Now a few clustering techniques for data streams exist in

multidimensional spaces and the technique of "clustering

projected or subspace" is used. Therefore, the task of

projected clustering (or subspace clustering) has to be defined.

PreDeConStream is a density-based data stream clustering

algorithm for clustering high-dimensional data streams. In this

paper, PPreDeConStream is present as a parallel version of

PreDeConStream algorithm in the shared memory model. The

theoretical and experimental results show that

PPreDeConStream offers nearly linear speedup while keeps

other advantages of PreDeConStream.

General Terms

Data mining, data stream, parallel algorithms, clustering,

micro cluster

Keywords

Clustering data stream algorithms, parallel algorithms,

microcluster, density-based clustering, shared memory model.

1. INTRODUCTION
Every day, a huge amount of data will be made and the high

percentage of them has been created in the recent years

making us not able to store such massive amounts of data.

Therefore, much attention has been made into mining data

streams, but a few algorithms introduced into this area.

Clustering is an important way to extract data streams. In

clustering, data is classified into some groups.

Data streaming applications such as [1] are as follows:

financial, network monitoring, security, telecommunication

data management, web applications, manufacturing, sensor

networks, and others. Algorithms clustering data streams are

categorized into these main types: Partitioning, Hierarchical,

Density-based, Grid-based and Model-based algorithms.

Comprehensive methods of the data stream algorithms are

based on data density. In a clustering survey [2], algorithms

based on density in the data stream are classified into two

general groups of microclustering, and grid-based algorithms.

With this approach, the clusters of different shapes can be

identified.

Clustering data streams must handle the following challenges:

 Handling noisy data

 Handling evolving data

 Limited time

 Limited memory

 Handling high-dimensional data

There are different algorithms for Density-based clustering

data stream approach. DenStream [3] is a well-known

Density-based microcluster of data stream's algorithms.

High dimensional data has challenged, known as the curse of

dimensionality [4]. HDDStream [5] algorithm is intended to

handle the high dimensions by extending DenStream. This

algorithm keeps the online phase summary from both points

and dimensions of clusters' final offline phase based on a

PreDeCon [6] algorithm.

HDDStream algorithm has introduced to prefer vector for

each microcluster, which is related to preferring dimension in

high-dimensional data. At the time of pruning such as

Denstream, microcluster weight periodically is controlled.

Nowadays, since a large amount of data must be analyzed, the

algorithms should be performed effectively in terms of time

complexity. To improve time complexity of existing

algorithms, parallelization is considered. Parallel and

distributed computing have important roles in decreasing the

response time. With parallel computing, the performance of

clustering can be improved. For example, the G-DenStream

[7] used in heterogeneous environments for diverse

computing with OpenCL [8] implementation has been

proposed.

In phase offline [7], an effective strategy is provided on the

GPU. Calculating the distances between the data points is

executed in parallel on GPU. Algorithm ensures a very good

work and parallel GPU with low divergence is achieved.

Similar calculations in the G-DenStream from any point with

the center microcluster are performed effectively in parallel.

PreDeConStream [9] is similar to HDDStream; however, the

algorithm improves the efficiency of HDDStream on the

offline phase. Nevertheless, searching the impact neighboring

clusters and upgraded cluster are a time-consuming process.

In this paper, PPreDeConStream algorithm is presented, a

parallel version of PreDeConStream in the shared memory

model. The complexity of parallel version PPreDeConStream

algorithm is 1/P sequential PreDeConStream algorithm, where

the number of processors is denoted by P.

International Journal of Computer Applications (0975 – 8887)

Volume 154 – No.10, November 2016

8

The remaining of the paper is organized as follows. In section

2, the preliminaries is given. In section 3, PreDeConStream

algorithm is described and section 4 presents the parallel

algorithm, PPreDeConStream. Section 5 shows the

experimental results. Section 6 lists the conclusions and

highlights the future works.

2. PRELIMINARIES
PreDeConStream [9] uses the notions of density-based

clusters, mentioned in PreDeCon [6] and DenStream [3]. The

algorithm applies the ideas of the subspace and micro cluster.

To control dimensions, which is relevant to a cluster, the

notion of subspace preference for each point is used.

This algorithm, like other data stream clustering algorithms,

uses online and offline famous models. In offline phase, the

effective localization of the resulting cluster by changing the

stream was affected at a particular time and then keeps only

the final cluster. The algorithm defines the interval time that

ensures no changes will be done as a result of clustering.

Online phase also provides several lists for organizing the

speed up to update.

Ideas and notions of this section come from [9]. The

following definitions are used to clarify PreDeConStream.

PreDeConStream has seven input parameters; four density

parameters 𝜀𝑁 , 𝜀𝐹 ,𝜇𝑁 , 𝜇𝐹 and fading parameter λ and

preference parameter 𝜏 and sensitivity to outliers

parameter 𝛽. Since the algorithm uses a density-based

clustering over its online and offline phases, similar symbols

that appear in both phases are differentiated with a 𝐹 subscript

for the offline phase and 𝑁 for the online phase [9]. They

should be chosen as suggested in [3].

Let 𝐷𝑆 be a database of d-dimensional points (𝐷𝑆 ⊂ 𝑅𝑑),

where the set of attributes is denoted by 𝐴𝑖 = 𝐴1, 𝐴2, ⋯ , 𝐴𝑑
and Dist: 𝑅𝑑 × 𝑅𝑑 → 𝑅𝑑 is a metric distance function between

points in DS.

According to [10] Note that weight of a given point of time

arrival is calculated based on fade function weight. The

adopted decay role follows the exponential function given by

𝑓 𝑡 = 2−𝜆𝑡 , where the 𝜆 > 0 limit decides the decay rate,

and t is the current time. The higher the value of 𝜆, the lower

the importance of the past data regarding the most recent data
[10].

Based on these ideas [9], the classic definitions of

density-based data stream clustering is derived:

Definition 1 [9] Core Microcluster. At time t, the core

microcluster is defined as close points 𝑝1, ⋯ , 𝑝𝑛 with time

stamps 𝑡1, ⋯ , 𝑡𝑛 . It is depicted by a tuple 𝐶𝑀𝐶(𝑤, 𝑐, 𝑟) with:

1. Weight,𝑤 = 𝑓 𝑡 − 𝑡𝑗 , 𝑤 ≥𝑛
𝑗 =1 𝜇𝑁

2. Center, 𝐶 =
 𝑓 𝑡−𝑡𝑗 𝑝𝑗

𝑛
𝑗=0

𝑤

3. Radius, 𝑟 =
 𝑓 𝑡−𝑡𝑗 𝑑𝑖𝑠𝑡 (𝑝𝑗 ,𝑐)𝑛

𝑗=0

𝑤
, 𝑟 ≤ 𝜀𝑁

The types of microclusters are also given, the potential micro

cluster and the outlier microcluster, to allow quickly

recognize changes in the data stream.

Definition 2 [9] Potential and Outlier microcluster. A

potential microcluster 𝑃𝑀𝐶 = (𝐶𝐹1 , 𝐶𝐹2 , 𝑤, 𝑐, 𝑟) is denoted

as follows:

1. Weight, 𝑤 = 𝑓 𝑡 − 𝑇𝑗 , 𝑤 ≥𝑛
𝑗 =1 𝛽𝜇𝑁

2. Linear weighted sum of the points, 𝐶𝐹1 = 𝑓 𝑡 −𝑛
𝑗 =0

𝑇𝑗𝑝𝑗

3. linear weighted squared sum of the points, 𝐶𝐹2 =
 𝑓 𝑡 − 𝑇𝑗 𝑝𝑗

2𝑛
𝑗 =0

4. Center, 𝐶 =
𝐶𝐹1

𝑤

5. Radius, 𝑟 = 𝐶𝐹2

𝑤
−

𝐶𝐹1

𝑤

2

An outlier microcluster 𝑂𝑀𝐶 = 𝐶𝐹1 , 𝐶𝐹2 , 𝑤, 𝑐, 𝑟, 𝑡0
indicates similar PMC with the following modifications:

1. Weight, 𝑤 = 𝑓 𝑡 − 𝑇𝑗 , 𝑤 <𝑛
𝑗 =1 𝛽𝜇𝑁

2. In addition, the entry point is decided to going to outlier

microcluster, either it evolves or fades.

Definition 3 [9] Microclusters Maintenance. Any core,

potential, or outlier microclusters at time 𝑡 𝑀𝐶𝑡 =

 𝐶𝐹1 , 𝐶𝐹2 , 𝑤 is maintained as follows:

If a point impacts 𝑀𝐶 at time 𝑡 + 1 then its statistics become:

𝑀𝐶𝑡+1 = 2−𝜆 . 𝐶𝐹1 + 𝑝, 2−𝜆 . 𝐶𝐹2 + 𝑝2, 2−𝜆 . 𝑤 + 1 . In a

different state, if no point was appended to MC for any time

interval 𝛿𝑡 , the microcluster can be made after any time

interval 𝛿𝑡 as follows:

𝑀𝐶𝑡+𝛿𝑡 = 2−𝜆𝛿𝑡 . 𝐶𝐹1 + 𝑝, 2−𝜆𝛿𝑡 . 𝐶𝐹2 + 𝑝2, 2−𝜆𝛿𝑡 . 𝑤 .

The maximum weight 𝑤𝑚𝑎𝑥 of any core, potential or outlier

microcluster MC is
1

1−2−𝜆
.The minimum duration time for a

newly produced micro cluster to get bigger into a potential

microcluster is𝑇𝑝 =
1

𝜆
 𝑙𝑜𝑔2

1

1− 𝛽𝜇𝑁 1−2−𝜆
 . The minimum

duration time demanded a potential microcluster to decay into

an outlier microcluster is 𝑇𝑑 =
1

𝜆
 𝑙𝑜𝑔2 𝛽𝜇𝑁 .

Definition 4 [9] Minimum Offline Clustering Legality

Interval. The minimum legality interval of an offline

clustering 𝑇𝑣 defines the time within which PreDeConStream

does not need to update the offline clustering since it is still

valid because no change of the status of any microcluster

status happened. It is defined as 𝑇𝑣 = 𝑚𝑖𝑛 𝑇𝑝 , 𝑇𝑑 .

Definition 5 [9] Subspace Preference Vector 𝑾𝒄 . For each

dimension 𝑖th, if the variance of the microclusters 𝑐 of the

Euclidean 𝜀 − 𝑛𝑒𝑖𝑔𝑏𝑜𝑟𝑜𝑜𝑑 𝑁𝐸𝐹(𝑐) is below a user-defined

threshold, then the 𝑖𝑡 entry of the preference subspace vector

𝑤𝑐 is set to a constant ≥ 1 , otherwise, the entry is set to 1.

A data structure manages the updated and non-updated

microclusters at each timestamp in an efficient and effective

way (see

Figure 1). The algorithm grouped the microclusters into

multiple lists according to their weight.

International Journal of Computer Applications (0975 – 8887)

Volume 154 – No.10, November 2016

9

Figure 1: A sample of outlier and potential lists [9]

There are two types of lists: outlier lists 𝑙𝑗
𝑜 , and potential

lists 𝑙𝑖
𝑝

. The borders of the lists are 𝑊𝑑 = 1, 𝑊𝑚𝑖𝑛 =

𝛽𝜇𝑁 , 𝑊𝑚𝑎𝑥 =
1

1−2−𝜆
 . The internal borders are selected

as 𝑤𝑖
𝑝

=
𝑤𝑖−1

𝑝

2−𝜆
 for the potential lists, and 𝑤𝑖

𝑜 = 2−𝜆𝑤𝑖−1
𝑜 + 1

for the outlier lists [9]. All microclusters in these two types of

lists that are not hit in the previous timestamp disappear to a

lower-weighted list.

As DenStream, PreDeConStream discovers a cluster uniquely

by any of its preference-weighted core microclusters.

3. THE PreDeConStream ALGORITHM
To find data stream clusters, the PreDeConStream [9]

algorithm merely runs one pass over the database according to

limit setting.

In the initialization phase of PreDeConStream algorithm, the

minimum time span 𝑇𝑣 is calculated and uses the PreDeCon

[6] algorithm on the first early points, and forms the

preliminary lists potential microclusters.

The algorithm is needed to an initial potential of

microclustering to get started. During the initial setup

algorithm, the points of a data stream are buffered and call

PreDeCon algorithm with least 𝛽𝜇𝑁 points in its

𝜀𝑁 −neighborhood.

In online process, for each data point, if the aggregate of the

weights of the data points in the neighborhood 𝜀(𝑁) radius is

above the weight 𝛽𝜇𝑁 threshold, then a potential

microcluster is generated. When a new data point arrives, it is

added to either the nearest existing potential microcluster or

outlier microcluster. A microcluster is chosen with the

distance less than or equal to the radius threshold [2]. If it

does not belong to any of lists then, a new outlier microcluster

is created, and it is placed in the outlier lists.

In PreDeConStream, offline processing of the data stream, the

neighbors of newly inserted potential microclusters as well as

deleted p-microclusters is checked. The subspace chose

vectors of these neighboring microclusters are updated and

put in a list as updated microclusters. The affected

microcluster list is used in the offline phase as expanding

clusters to improve the efficiency of the offline phase [2].

Finally, a list of potential microclusters is needed to be

reinserted into the clustering. Starting from a microclustered

in the list UPDSEED, the algorithm PreDeCon [6] is called

with considering the old existing clustering.

4. THE PPreDeConStream ALGORITHM
In this proposed parallel algorithm, all the points and

microclusters are available to each of P processors by the

shared memory. Using parallel techniques can enhance

processing speed. The both techniques data and task division

are applied.

In initialization phase of the proposed parallel algorithm, the

initial clustering is computed with an adapted version of

PPreDeCon [11](see Figure 2).

Figure 2: The pseudo code of the initPPreDeCon

In PPreDeCon, data is randomly divided among P processors.

Each processor checkpoint that is in the neighborhood creates

Algorithm initPPreDeCon(𝐃𝐛𝐮𝐟, d, ε, μ, λ, δ)

/* assumption: each point in D in marked as unclassified

and Dj is set of point of each Processor */

Processor j, 𝟎 ≤ 𝐣 < 𝑃 do

 for each unclassified 𝐨 ∈ 𝐃𝐛𝐮𝐟 do

 if 𝐂𝐎𝐑𝐄𝐝𝐞𝐧
𝐩𝐫𝐞𝐟 𝐨 then /*expand a new cluster*/

 create new microCluster p-micro

 generate new clusterID

 insert all 𝐱 ∈ 𝓝𝛆
𝐰 𝐨 𝐨 into queue Q;

 while 𝐐 ≠ ∅ do

 q = first point in Q;

 compute 𝐑 = 𝐱 ∈ 𝐃𝐈𝐑𝐑𝐄𝐀𝐂𝐇𝐝𝐞𝐧
𝐩𝐫𝐞𝐟 𝐪, 𝐱 ;

 for each 𝐱 ∈ 𝐑 do

 if x is unclassified then

 insert x in Q;

 if x is unclassified or noise then

 assign current clusterID to x

 insert x into microCluster

 remove q from Q;

 else

 mark o as noise;

 end.

 End.

 Add p-micro into p-microCluster lists

 end.

// Merge step

Processor j, 𝟎 ≤ 𝐣 < 𝑃 do

 for each classified 𝐦 ∈ 𝐃𝐣 do

 if |clusterID| > 1 then

 // number of clusterID that point gets

 set Min of them as clusterID;

 remove m point from microcluster in the list 𝒍𝒋
𝒑

 end.

International Journal of Computer Applications (0975 – 8887)

Volume 154 – No.10, November 2016

10

clusters. A new cluster identification (CID) is created, and a

fresh cluster is expanded.

After all the processors finish their work, some points may get

more than one CID [11]. This problem should be resolved. To

resolving, in merge step, the algorithm sets the minimum CID

for each point with more than one CID and removes from

microcluster list 𝑙𝑖
𝑝

.

The sequential algorithm finds the nearest point on the list of

potential clusters and outlier micro spends a lot of time. Also,

in procedure fade algorithm spends a lot of time. In update

clusters' procedure, the algorithm spends a lot of time.

Pseudo-code in Figure 3 is provided to search for the nearest

microclusters of a point. The structure maintenance of

microclusters contains several lists. In parallel, a list of the

nearest microclusters is found and the closest microcluster in

the list is selected and also the fade task can be executed for

all microclusters by means of a single one-dimensional list

(see Figure 4).

Figure 3: Search the nearest point from a list of

microclusters

In the update clustering procedure, the neighbors of newly

inserted potential microclusters, as well as deleted possible

microclusters, are checked and put in a list as affected

microclusters. Finally, the actual microclusters of UPDSEED

need to be reinserted into the clustering and call PPreDeCon

algorithm.

A task for all elements is affected by repeating the list of

microclusters. This is the task of the proposed algorithm is

done in parallel. The influence microcluster list is used for

PPreDeCon [11] algorithm. The pseudo-code parallel updated

clustering in the proposed algorithm is shown in Figure 5.

Figure 4: Update fade microcluster

5. EXPERIMENTAL EVALUATION
In this section, accuracy and time complexity of

PPreDeConStream are evaluated. PPreDeConStream, as well

as comparative PreDeConStream algorithm, were

implemented in C and OpenMP [12] library. All the

experiments were done on a CentOS Linux operating system

with two and four processors.

Datasets: For the evaluation of PPreDeConStream, two data

sets were used:

1. Network Intrusion Detection data set KDD CUP'99

(KDD-cup) [13] used to evaluate several stream

clustering algorithms [3] with 494021 TCP connections;

each represents either a normal connection or any of 22

different types of attacks. Each connection consists of 42

dimensions.

2. Physiological data set [14] is a multivariate data set

recorded from a patient in the sleep with 3400 objects.

Each connection consists of three dimensions, heart rate,

the respiration rate, and the blood oxygen.

Evaluation measure and limit settings to evaluate the quality

of the clustering results, the cluster purity [3] measure is used.

Purity of clusters is defined as follows:

purity =

 C i
d

 C i
K
i=1

K
× 100% (1)

Where K denotes the number of clusters. Ci
d denotes the

number of points with the dominant class label in cluster i th.
 Ci denotes the number of points in cluster i th [3].

For efficiency, runtime was tested in seconds. Experiments

Purity and runtime were tested for both PreDeConStream and

PPreDeConStream algorithms.

Evaluation of Clustering Quality: Unless mentioned, the

limits were set similar to [9] as follows: decay factor 𝜆 =
0.25, initial data object 𝐼𝑛𝑖𝑡 = 2000, and horizon 𝐻 = 5,

and ε𝐹 = 2 × ε𝑁 and speed 𝑣 = 1000.

Using the Network Intrusion Detection data set for both

algorithms, the limits are set to μ𝑁 = 10, μ𝐹 = 5, 𝛽 = 0.23,

 𝜏 = 32.

It can be seen from Figure 6 the cluster purity of

PreDeConStream and PPreDeConStream for KDD Cup99 is

equal.

//The weight w is 𝛽𝜇𝑁 for potential and 𝑤𝑑 for outlier

micro-cluster .

Algorithm updateFadeMicroClusters

 (𝑙𝑖𝑠𝑡 𝐿m , 𝑤𝑒𝑖𝑔𝑡 𝑤,time 𝛿𝑡)

 Processor j, 0 ≤ j < 𝑃 do

 for each Microcluster m𝑐 ∈ L𝑚 do

 if the weight of m𝑐 < w then

 delete m𝑐 ;
 if (m-1) not zero then

 add m𝑐 into 𝐿m−1;

 end if;

 end if;

 end for;

end.

min
distance

= list_min_distance[i]

Algorithm search Nearest MicroClusterPoint (list Lm ,

data point p)

Processor j, 0 ≤ j < 𝑃 do

 for each m ∈ Lm do

 compute distance p from m

 if distance ≤ list_min_distance j then

 z list min
distance j

= distance

 list min
micro j

= m

 end-if.

 End for.

//merge for find minimum of minimum list

 for each 0 ≤ i < 𝑃 do

 if list_min_distance[i] ≤ min_distance then

 min
micro

= list_min_micro[i]

 end-if.

 End for.

return min_micro;

International Journal of Computer Applications (0975 – 8887)

Volume 154 – No.10, November 2016

11

Figure 5: Parallel update clustering procedure in the

proposed algorithm

Figure 6: Clustering purity for KDDcup99 dataset

Using the patient in the sleep data set for both algorithms, the

limits are set to 𝜇𝑁 = 5, 𝜇𝐹 = 3, 𝜀𝑁 = 4, 𝛽 = 0.2, 𝜏 = 3 and

speed data stream 𝑣 = 100. It can be seen from Figure 7
 the cluster purity of PreDeConStream and
PPreDeConStream is equal.

In all experiments, PPreDeConStream discovered all the

clusters and detected noises as well as PreDeConStream.

The experimental results are summarized in Figure 8 and

Figure 9. In these experiments, the number of processor P is 2

and 4.

The result shows the run time of PPreDeConStream is lower

than PreDeConStream, which is compared in Figure 8 and

Figure 9.

Figure 7: Clustering purity for a patient in the sleep

dataset

Figure 8 : Runtime comparison between PreDeConStream

and PPreDeConStream for KKCup99

Figure 9: Runtime comparison between

PreDeConStream and PPreDeConStream a patient in the

sleep dataset

 𝑈𝑃𝐷𝑆𝐸𝐸𝐷 ← 𝑈𝑃𝐷𝑆𝐸𝐸𝐷𝑖 ∪ 𝑈𝑃𝐷𝑆𝐸𝐸𝐷𝑑

Algorithm P_updateClustering (C)

 Processor j, 0 ≤ j < 𝑃 do

 for all 𝒄𝒑 ∈ 𝑰𝒏𝒔𝒆𝒓𝒕_𝑷𝑴𝑪 do

 compute the subspace preference vector 𝑤𝑐𝑝
;

 for all 𝒄𝒒 ∈ 𝑵𝜺𝑭(𝒄𝒑) do

 update the subspace preference vector of cq ;

 if core member property of cq has changed then

 add cq to AFFECTED_CORESi

 end if;

 end for;

 compute UPDSEEDi based on

 AFFECTED_CORESi;

 end for;

Processor j, 0 ≤ j < 𝑃 do

 for all 𝒄𝒅 ∈ 𝑫𝒆𝒍𝒆𝒕𝒆_𝑷𝑴𝑪 do

 for all cq ∈ NεF(cd) do

 pdate the subspace preference vector of cq ;

 if core member property of cq has changed then

 add cq to AFFECTED_CORESd;

 end if;

 end for;

 compute UPDSEEDd based on

 AFFECTED_CORESd;

 end for;

Processor j, 0 ≤ j < 𝑃 do

 Call PPreDeCon(𝑈𝑃𝐷𝑆𝐸𝐸𝐷) with considering the old

cluster structure.

International Journal of Computer Applications (0975 – 8887)

Volume 154 – No.10, November 2016

12

6. CONCLUSIONS
In this paper, the parallel clustering algorithm

PPreDeConStream was presented for mining large and high

dimensional data stream clustering. Lack of time can be

solved by parallel computing. The parallel implementation

uses the shared memory model. The experiments showed that

the actual clustering could be performed with excellent

speedup and good response time.

Speedup the algorithm has been nearly linear with the number

of processors. The presented algorithm showed that the

quality of the clusters also keeps in the parallel version.

Other advantages of this algorithm were accuracy and

supporting high dimensional data sets comparing to other

density-based clustering algorithms; it also discovers arbitrary

shapes and is effective in noise detecting.

The future scope of this idea can be followed in below

functions: financial, network monitoring, security,

telecommunication data management, web applications,

manufacturing, sensor networks, and others.

In the future, a parallel version of the message passing model

of the algorithm is considered. Focusing on reducing time

spent in all the step of the algorithm may be taken as future

works. Focus on methods based on density. A parallel version

of other data streams mining methods may be considered in

the future. However, one may consider the message passing

model, map-reduce model, distributed memory and

heterogeneous platforms.

7. REFERENCES
[1] E. Ikonomovska, S. Loskovska and D. Gjorgjevik, "A

Survey of Stream Data Mining," In Proc. the 8th

National Conference, pp. 9-25, 2007.

[2] A.Amini, T. Y. Wah and H. Saboohi, "On Density-Based

Data Streams Clustering Algorithms: A Survey," Journal

of Computer Science And Technology, vol. 29, no. 1, pp.

116-141, 2014.

[3] F. Cao, M. Ester, W. Qian and A. Zhou, "Density-Based

Clustering over an Evolving Data Stream with Noise," In

Proc. the 2006 SIAM Conference on Data Mining, pp.

328-339, 2006.

[4] C. C. Aggarwal and C. K. Reddy, Data Clustering

Algorithms and Applications, Chapman & Hall, 2014.

[5] A.Ntoutsi, A. Zimek, T. Palpanas, P. Kroger and H.-P.

Kriegel, "Density-based Projected Clustering over High

Dimensional Data Streams," Proceedings of the 2012

SIAM International Conference on Data Mining, pp.

987-998, 2012.

[6] C. Bohm, K. Kailing, H.-P. Kriegel and P. Kroger,

"Density Connected Clustering with Local Subspace

Preferences," Data Mining, 2004. ICDM '04. Fourth

IEEE International Conference, pp. 27-34, 2004.

[7] M. Hassani, A. Tarakji, L. Georgiev and T. Seidl,

"Parallel Implementation of a Density-Based Stream

Clustering Algorithm Over a GPU Scheduling System,"

Trends and Applications in Knowledge Discovery and

Data Mining, pp. 441-453, 2014.

[8] "The OpenCL Specification Version: 2.0 Document

Revision: 26," Khronos OpenCL Working Group, 2014.

[9] M. Hassani, P. Spaus, M. M. Gaber and T. Seidl,

"Density-Based Projected Clustering of Data Streams,"

Scalable Uncertainty Management, vol. 7520, pp. 311-

324, 2012.

[10] J. A. Silva, E. R. Faria, R. C. Barros and J. P. Gama,

"Data Stream Clustering: A Survey," ACM Computing

Surveys (CSUR), vol. 46, no. 1, pp. 1-37, 2013.

[11] R. Biglari and A. Bagheri, "PPreDeCon: A Parallel

version of Preference Density Connected Clustering

Algorithm," International Journal of Computer

Applications (IJCA), vol. 107, no. 1, pp. 22-26, 2014.

[12] "OpenMP Application ProgramInterface Version 4.0,"

July 2013. [Online]. Available: www.openmp.org.

[Accessed 17 10 2015].

[13] "KDD Cup 1999 Data," The UCI KDD Archive, 28

October 1999. [Online]. Available:

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

. [Accessed 2 8 2015].

[14] N. Gershenfeld and A. Weigend, "The Santa Fe Time

Series Competition Data," Addison-Wesley, 1994.

[Online]. Available: http://www-

psych.stanford.edu/~andreas/Time-

Series/SantaFe.html#setB. [Accessed 1 11 2015].

IJCATM : www.ijcaonline.org

