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ABSTRACT
Cloud computing has emerged as a new technology that aims to
provide unlimited virtualized resources to clients and enterprises.
As services and huge sensitive data are being moved to the cloud
server, a new challenge arises as to how to use the migrated data
in a way that preserves privacy. Due to privacy concerns, important
data should be encrypted before uploading onto cloud servers, so
that only authenticated clients can access the data. Searchable en-
cryption techniques allow the clients to search the encrypted data.
Public key encryption with keyword search (PEKS) is a scheme of
searchable encryption using a public key solution. In our scheme,
we present a novel public key encryption with the ’fixed and short
length’ keyword search which reduce the size of the keyword space
and get keywords with a fixed and short length. Further, we em-
ploye the Bloom filters (BFs), which can accelerate the search pro-
cess with a large amount of keywords. We also analyse the security
of our construction in the random oracle model.
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1. INTRODUCTION
1.1 Basic Concepts
Cloud computing [1, 2, 3, 4, 5] is one of today’s most attractive
technologies. In it, cloud service providers (CSP) offer an efficient
and secure data storage and computing service to consumers and
enterprises. A connected terminal is the only requirement for a user.
Cloud computing migrates the data to the cloud storage, where the
management of the data and services may not be fully reliable.
Many papers are focusing on the security of cloud data storage,
which is regarded as an important feature of the quality of service.
A currently standard solution to protect data in cloud computing
is applying cryptographic techniques to sensitive data. There are
very many cryptographic primitives that we are able to apply in this
manner. In recent years, many attempts have been made to propose
efficient and effective schemes to enable searching over encrypted
data.

Searchable Encryption is a cryptographic primitive that allows
clients to perform keyword-based searches on an encrypted
database [6, 7, 8, 9]. Searchable encryption can be done securely in
its full generality using the scheme in Ref. [10] on software protec-
tion depending on oblivious RAMs [10, 11]. Searchable encryption
can be classified into two fields: symmetric searchable encryption
(SSE) and asymmetric searchable encryption (ASE)
Symmetric Searchable Encryption (SSE): this type enables a data

owner to outsource the storage of its data to a remote server in a
private form, while maintaining the ability to conditionally search
over it. All prior techniques on SSE tackled the setting where only
the owner of the data can send search queries. In Ref. [6], the au-
thors consider the natural extension where an arbitrary group of
users other than the owner can send search queries. They suggest
sharing the secret key for database searching among all users.
Asymmetric Searchable Encryption (ASE): in this scheme, the user
who encrypt the data and sends it to the server is usually different
from the owner of the decryption secret key. In a classic public-key
scheme, a user publishes a public key while multiple senders send
their files to the server [12].

1.2 Related Work and Our Contributions
Song, Wagner, and Perrig [9] first proposed the notion of searchable
encryption for a single user. They presented a scheme in the sym-
metric key setting, which encrypts each word of a file separately.
However, this scheme can be applied to the private-key setting for
the user who owns his data and needs to outsourced it to a non-
trusted third party database. They also gave out some practical so-
lutions in which the searching overhead is linear in the file’s length.
On the other hand, this scheme is not suitable for many practical ap-
plications, such an outsourced database, an email routing system,
etc. [13]. Goh [8] introduced an efficient secure index construction
based on pseudo-random functions and Bloom filters that requires
O(n) search time, where n is the number of files in the collection;
it results in false positives. Unlike Goh, Chang and Mitzenmacher
[7] developed a new construction also with O(n) search time but
without false positives.
Boneh, Kushilevitz, Ostrovsky and Skeith [14] also employed a
Bloom filter that allows the users to keep the space that is used
to store the extra information ”small”. The technique is similar to
Goh’s use of Bloom filter [8]; the essential difference is that in their
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technique they consider a public-key solution, while Goh [8] sup-
ports a private-key solution. Wang, Chena, Lic, Zhaod and Shene
[15] proposed a novel verifiable search technique for outsourced
database based on an invertible Bloom filter (IBF).
The public key encryption with keyword search (PEKS) scheme
was first proposed by Boneh, Crescenzo, Ostrovsky, and Persiano
[12] This scheme enables searching keywords within encrypted
messages. PEKS is desirable for mobile devices, e.g. accessing en-
crypted email messages through the mobile Internet. Golle, Stad-
don, and Waters [16] presented schemes that allow for conjunctive
keyword queries on encrypted data. Boneh and Waters [17] devel-
oped [12] to support conjunctive, subset, and range comparisons
over the keywords.
Despite the efficiency of PEKS [12], there are some important cases
relating to the use of PEKS, which were studied in [18]. One of
these cases is where a server that has received the trapdoors can
save them in its memory and use them to retrieve all future emails
within that category. The scheme does not determine what happens
if the remote server memorizes the trapdoor, and also does not dis-
cuss protection against this situation. The user can solve this prob-
lem by using different keywords in different search operations, but
this solution is impractical, especially when the user needs to reuse
their keywords.
Our proposed solution to solve the above problem is to modify the
repeatedly used keywords by attaching them with the number of
their use times. For example, the keyword w = Science now be-
comes ẃ = Science||j, where j ∈ [1,∞]. In another words, if
j = 10, that means the keyword ’Science10’ has been used 10
times in search operations. Our above solution basically makes the
size of the keyword space unlimited, hence, we propose a prov-
ably secure scheme called Public key Encryption with ‘Fixed and
Short Length Keyword’ Search (PEKS-FSL) for an outsourced un-
structured database based on Bloom filters (BFs). By using a new
algorithm, which will be illustrated in Section 3.3, we can reduce
the size of the keyword space and get keywords with a fixed and
short length. Further more, the scheme enables the server to par-
ticipate in the encryption process, thus a data owner could pay less
computational cost for encryption, without leaking any information
about the plaintext.
Also, we show that our scheme is secure against adaptive chosen-
keyword attacks in the random oracle model ROM under the Bilin-
ear Inverse Diffie–Hellman problem (BIDHP).

1.3 Paper Organization
The rest of this paper is organized as follows. Section 2 introduces
the preliminaries. Then we provide the outline of the proposed
work, the problem formulation, the semantic security and construc-
tion of the PEKS-FSL scheme in Section 3. Section 4 gives the se-
curity analysis. Section 5 shows its performance and comparisons.
Finally, Section 6 introduces the brief conclusions.

2. PRELIMINARIES
2.1 PEKS algorithm
PEKS consists of three parties: the ‘sender’, the ‘receiver’, and the
‘server’. The sender creates and sends encrypted keywords (PEKS
ciphertexts). The server receives PEKS ciphertexts and performs
a search after receiving trapdoors from the receiver. The receiver
creates the trapdoors and sends them to the server to retrieve the
required data.

Definition 1. A public key encryption with keyword search

(PEKS) scheme consists of four polynomial-time algorithms as
follows:

- A Key Generation Algorithm KeyGenReceiver(k): Taking a
security parameter k as input, this algorithm creates a private
and public key pair (skR, pkR) of the receiver.

- A PEKS Algorithm PEKS(w, pkR): Taking a keyword w and
a receiver’s public key pkR as input, this algorithm produces
a PEKS ciphertext S= PEKS(pkR, w) which is a searchable
encryption of w.

- A Trapdoor Generation Algorithm Trapdoor(w, skR): Taking
a keyword w and a receiver’s private key skR as input, this
algorithm produces a trapdoor Tw for the keyword w.

- A Test Algorithm Test(S, Tw, pkR): Taking a PEKS cipher-
text S = PEKS(pkR, w

′), a trapdoor Tw for a keyword w and
a receiver’s public key pkR, this algorithm returns ”yes” if
w = w′ and ”no” otherwise.

The authors in Ref.[12] defined a security notion for PEKS
schemes indistinguishability of PEKS against chosen keyword
attack (IND-CKA).

IND-CKA game:

- KeyGen: The challenger C calls the KeyGen(k) algorithm to
produce (pkR, skR). pk is given to the attacker AT and skR
is kept secret from AT .

- Phase 1: The attacker AT can adaptively ask the challenger C
for the corresponding trapdoor Tw for any keyword w of his
choice.

- Challenge: At some point, the attacker AT sends the chal-
lenger two words w0 and w1 on which it wants to be chal-
lenged. The only restriction is that AT did not previously ask
for the trapdoors Tw0 or Tw1 . C picks a random b ∈ {0, 1}
and creates PEKS ciphertext C = PEKS(pk,wb), and returns it
to AT as the challenge PEKS ciphertext.

- Phase 2: AT can continue to ask for trapdoors Tw for any
keyword w of his choice as long as w 6= w0, w1.

- Guess: Finally, the attacker outputs its guess b′ ∈ {0, 1} and
wins the game if b = b′.
AT ’s advantage in attacking the scheme ε is defined as the
following function of the security parameter k:

|Advε,A(k) = |Pr[b = b′]− 1

2
|.

DEFINITION 2. The PEKS scheme is said to be IND-CKA secure
if for any polynomial time attacker AT we have that Advε,A(k) is
a negligible function.

2.2 Bilinear Pairing
DEFINITION 3. (Bilinear Pairing[19]) Let G1, G2 be two groups
of order p for some large prime p. Let α and β be elements of Zp.
A bilinear pairing is a map ê : G1 × G1 → G2 between these two
group with the following properties:

1. Bilinear: for all X,Y ∈ G1 and α, β ∈ Zp, e(αX, βY ) =
e(X,Y )αβ .

2. Non-degenerate: if X is a generator of G1 then e(X,X) is a
generator of G2.
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Fig. 1. A Toy Example of Bloom Filter

3. Computable: given X,Y ∈ G1 there is an efficient polynomial
time algorithms to compute e(X,Y ) ∈ G2.

We now review the definition of the Bilinear Diffie-Hellman
(BDH)[19] problem and the Bilinear Inverse Diffie-Hellman
(BDHI)[20] [21] [22] problem associated with the bilinear pair-
ings.

DEFINITION 4. Bilinear Diffie-Hellman Problem (BDH) Let
G1,G2 be two groups of prime order p. Let X be a generator of G1
and ê : G1 × G1 → G2 be an admissible bilinear map. The BDH
problem in (G1,G2, ê) is as follows: Given (X,αX, βX, γX) for
some α, β, γ ∈ Zp compute W = ê(X,X)αβγ ∈ G2. An algo-
rithm AT solves BDH problem with the probability ε in solving
BDH in (G1,G2, ê) if Pr[A(X,αX, βX, γX) = ê(X,X)αβγ ≥ ε

DEFINITION 5. Bilinear Inverse Diffie-Hellman (BIDH):
Let G1 and G2 be a finite cyclic groups of same order p, and X
is a generator of G1. Let α, β ∈ Zp , the BIDH problem is to
compute the value of bilinear pairing e(X,X)α

−1β , when given
X,αX, βX ∈ G1.

2.3 Bloom Filter
The Bloom filter (BF) was proposed by Burton Bloom in the 1970s
for database applications, but recently it has been used in many net-
work processing applications. BF is a space-efficient probabilistic
data structure based on hash functions. It is used to support mem-
bership queries by providing a representation of a set. In BF, the
data is treated as a string (e.g. an IP address, a name, an email,
etc.) and encoded in the filter by taking r hash functions hav-
ing digests within the filter size x, and by setting the related po-
sitions in the bit array BF. A Bloom filter for representing a set
W = w1, w2, ..., wn of n items is described by a bit array of x
bits, denoted by BF[1]...BF[x], initially all bits set to 0. BF uses r
independent hash functions h1, h2, ..., hr to map each item of W
to a random number ranging from 1 to x. To insert an element w of
the set W , we set all the BF[hi(w)](1 ≤ i ≤ r) bit to 1. Once the
set W is represented as a Bloom filter, in order to query whether a
data item w belongs to the set W , it suffices to check whether all
BF[hi(w)](1 ≤ i ≤ r), taken over the considered data, are set to 1
in the filter. If not, w is not in W . If all bits are set to 1, this means
that w is a member of W [23].
A simple example is illustrated in Fig. 1, where r = 3, w1 and w2

are encoded by three hash functions, and the three corresponding
items for each word are set to one. Note that a bit of the vector may
be set to one multiple times.
In BF, a false positive might happen, because of the collision of the
hash function, when a query for a data item not stored in the BF
nevertheless ‘hits’ all bits already set to 1. Suppose that the hash
functions are completely random. The the probability of a false pos-
itive for a non-member can be computed in a simple way. Let Pr
be the probability that a random bit of a Bloom filter is 0. After all

Fig. 2. Example of an unencrypted forward index

the n items are hashed into the BF, the probability that a specific
bit remain 0 is

Pr = (1− 1

x
)r∗n (1)

The false positive probability is

fp = (1− Pr)r ≈ (1− e
−rn
x )r (2)

The probability of a false positive fp can be minimized by choosing
the proper values for x and r. It is a well known result that the
minimum fp is attained for

x =
−n ln (FPR)

(ln 2)2
(3)

r =
x

n
ln2 (4)

The amount of space required to store a Bloom file is signifi-
cantly less compared to data structures, such as self-balancing bi-
nary search trees, hash tables, or simple arrays or linked lists, etc.
The time required to either add elements or to check whether an ele-
ment is in the set or not is completely independent of the number of
elements already in the set. We just need to find the r indices using
r hash functions. In hardware implementation, the Bloom filter is
regarded as a perfect scheme because its r lookups are independent
and can be parallelized.

2.4 Forward Index
Informally, a forward index structure refers to the indexing tech-
nique for files where each file’s unique id points to a set of key-
words contained in that file, as shown in Fig. 2. Hence the search
for a keyword using the forward index technique would require
sequentially scanning each file and comparing against all unique
keywords in each file. This structure requires O(n*m) comparisons,
where n is the number of files and m is the number of unique key-
words in a file. But one disadvantage of this kind of index is that it
leaks some information, e.g. how many keywords are in the index.
The applicability of a forward index structure is inefficient in terms
of the space needed to store the data and the number of computa-
tions needed to perform a search.
In Section (5.2), we will compare the efficiency of the Bloom filter
with that of the forward index in terms of the search time required
to retrieve the relevant data.

3. SYSTEM DESIGN
3.1 Problem Formulation
In our scheme, we have the data owner DO, the data user DU
and the cloud server S. Let F be a file collection consisting of
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n files, the collection of identifiers of files F where IDi is a
unique file identifier. The data owner DO encrypts a collection of
files F = {f1, f2, ..., fn} and gets the corresponding encrypted
files EncF = {ef1, ef2, ..., efn}. Data owner construct a se-
cure searchable index IDXfi from a set of m different keywords
Wfi = {w1, w2, ..., wm} extracted from each file in F as a per file
index. After that, DO encrypts each index using public key encryp-
tion and sends it with the encrypted files to S.
When DU wants to retrieve the file IDi that has a keyword query q,
he generates a trapdoor Tw for the queried keywords, and submits
it to the server S.
Upon receiving the trapdoor Tw from DU, the server participate in
the encryption operation by constructing a Bloom filter for each
searchable index IDXfi , then S tests the Bloom filter against
the trapdoor and retrieves the associated matched file EncRF =
{ef1, ef2, ..., efr} to the DU, EncRF ⊆ EncF . Finally, DU de-
crypts EncRF received through the access control mechanism.
Note that how to rank the encrypted files is outside the scope of
this paper; some excellent work on this problem can be found in
[24, 25, 26, 27, 28]

3.2 Semantic Security of the PEKS-SFL scheme
The proposed scheme is semantically secure (indistinguishability)
against an adaptive chosen keyword attack IND-CKA if every PPT
(Probabilistic Polynomial Time) attacker has a negligible advan-
tage. We define the security of the PEKS-SFL scheme as follows:

- Given the security parameter λ, the challenger B calls the key
generation algorithm KeyGenerator(λ) to generate a secret key
and public key DUpub, then he sends Upub to AT and keeps the
secret key to himself.

- Let AT be an adversary that can adaptively ask the challenger
for the trapdoor Tw for any keywordW ∈ {0, 1}∗ of its choice.

- Firstly, AT chooses two sets of keywords W∗0 = W0||J and
W∗1 = W1||J , which are not to be asked for the trapdoors TW0

or TW1
previously, and sends them to the challenger. Then B

picks a random µ ∈ {0, 1} and creates the secure index IDXWµ
using the BuildIndex algorithm and gives the attacker CWµ =
{DUpub, IDXW ∗

µ
}. AT can continue to ask for trapdoors Tw

for any keyword W of his choice as long as W 6= W∗0,W∗1.
Finally, AT outputs a guess µ′ ∈ {0, 1} and wins the game if
µ = µ′.

We define AT ′s advantage in breaking the PEKS-SFL scheme as

|AdvAT (λ) = |Pr[µ = µ′]− 1

2
|.

3.3 PEKS-SFL procedure
As mentioned before, there are some important cases relating to the
use of PEKS, which were not considered in [12]. One of these cases
is when a server that has received the trapdoors can save them in its
memory and may use them to retrieve all future emails within that
category. To solve this problem, we propose a scheme of public key
encryption with fixed and short length keyword search, PEKS-SFL,
to modify repeatedly used keywords by attaching to each one of
them the number of its use time; our solution makes the keywords
useless for the server to keep trapdoors. On the other hand, our
solution makes the size of the keyword space unlimited. Therefore,
we propose a new algorithm FixShoLen(q) where q is the query
or corresponding keyword. With its low computational overhead,
this algorithm reduces the length of all trapdoors and corresponding
keywords to six characters.

Algorithm 1 illustrates our proposed procedure, PEKS-SFL, for
making all trapdoors and corresponding keywords a fixed and short
length.
Algorithm 1- FixShoLen (q)

- q = q‖J , where J is the number of use times of the keyword(q).
- split q into two parts of characters as follows:

* P1: this part starts from the first character to (k/2)th character
if k mod 2 = 0, else the part starts from the first character to
(k − 1)/2th character. Where k is the length of the keyword.

* P2: this part starts from ((k/2) + 1)th character to kth if k
mod 2 = 0, else the part starts from ((k−1)/2)+1th character
to kth character.
Split each part into three subparts as follows:
• FP1,2

: the first character in each part.
• LP1,2

: the last character in each part.
• MP1,2

: the other characters (middle characters) in each
part. For this part,

* merge the characters as one character, the merge process in-
cludes summing the Ascii code of the mentioned characters

- recombine all parts as: x = FP1
MP1

LP1
‖FP2

MP2
LP2

.
- output x = h(x), where h is a cryptographic hash functions like

SHA-1.

Our scheme consists of another five algorithms: {a parameter gen-
eration algorithm ParamGenerator, a key generation algorithm
KeyGenerator, an index construction algorithm BuildIdx, a trap-
door generation algorithm TrapdoorGen, and a searchable index
algorithm SearchIdx}. These are scattered between three phases:
the Sender phase, Receiver phase, and Server phase.

3.4 Sender Phase
This phase includes three algorithms as detailed below:
Algorithm 2- ParamGenerator(λ)
Given a security parameter λ ∈ Z+ which determines the size of G
and GT , the algorithm works as follows:

1: generate a prime p, and select a random generator X of G.
2: choose two cyclic groups (G,+), (GT , .) of order p, and con-

struct a bilinear map ê : G × G → GT .
4: specify two hash functions H1 : {0, 1}∗ → Z∗p,H2 : GT →
{0, 1}logp , where H1 and H2 are random oracles, and select r
hash functions for the bloom filter Hbloom = {h1, ..., hr}.

5: return a common parameter CP=
{G,GT , p,X,H1,H2,Hbloom, ê},

Algorithm 3- KeyGenerator(CP)
This algorithm randomly selects the following elements:

1: a random β ∈ Z∗p as a DU private key, calculate the correspond-
ing public DUpub = βX .

2: a random α ∈ Z∗p as a DO private key, calculate the correspond-
ing public DOpub = αX .

Algorithm 4- BuildIdx(CP, F)
The data owner DO executes this algorithm to encrypt the keywords
Wfi and create a searchable encrypted index IDXfi as follows:

1: for each file fi ∈ F
2: encrypt the IDi with any semantically secure encryption tech-

nique where i ∈ [1, n]

3: compute the length x of the Bloom filter BFIDi as in equation
(3)
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4: extract the set of keywordsWfi from fi

5: for each keyword wj ∈ Wfi for j ∈ [1,m] do
6: apply FixShoLen algorithm on wj as: wsj=FixShoLen(wj)

7: encrypt the modified keyword wsj under the DU’s public key
and DO’s private key Encwj = αH1(wsj)X + αDUpub

8: Add the encrypted keyword Encwj to the Encwfi list

9: compute E = H2(ê(X,X)α)

10: store {Encrypted− IDi, Encwfi} in IDXfi
11: encrypt collection file F using a standard symmetric encryp-

tion algorithm(AES)
12: send E and the index IDXfi as the index for fi.

3.5 Receiver phase
This phase includes one algorithm as detailed below:
Algorithm 5: TrapdoorGen(q, CP)
The algorithm is executed by the data user to create a trapdoor as
follows:

1: apply FixShoLen algorithm on q as: qw = FixShoLen(q)

2: compute trapdoor under DU’s private key β as: Tw =
(H1(qw) + β)−1X

3: send the generated trapdoor Tw to the server.

3.6 Server phase
This phase includes one algorithm as detailed below:
Algorithm 6: SearchIdx(IDXfi , Encwfi , Tw,CP,E, x): Upon
receiving the trapdoor Tw, the server S executes this algorithm to
determine whether a given Index IDXfi contains the provided
keyword as follows:

1: create the Bloom filter BFIDi of x zero-bits
2: for each encrypted keyword Encwj ∈ Encwfi for j ∈ [1,m]

do
3: compute T = H2(ê(Encwj , Tw))

4: for y = 1 to r do
5: calculate independent hash functions: by = hy(T )

6: set BFIDi [by] = 1

7: calculate independent hash functions: h1(E), h2(E), ..., hr(E)

8: if all r locations of all independent hash functions inBFIDi are
1, then return the relevant encrypted file to DU

9: decrypt the relevant files EncRF using (AES) algorithm.

4. SECURITY ANALYSIS
THEOREM 1. The proposed PEKS-FSL scheme is semantically

secure against CKA in the random oracle model under the the Bi-
linear Inverse Diffie–Hellman Problem (BIDHP).

PROOF. Let AT be an attacker that wins the security game
(breaking the PEKS-FSL scheme) with an ε advantage. Suppose
AT makes qH1

and qH2
hash function queries and qT trapdoor

queries. Suppose further there is an algorithm B that breaks the
BIDH problem with advantage at least ε′, and suppose B is given
(p,G,GT , ê,X, βX). Then B’s goal is to solve a BIDHP. B inter-
acts with the forger AT in the security game as follows:
At any time, algorithm AT queries the random oracle H1 or H2.

- H1-queries: For responding to this type of query, B maintains
H1, a list < Wj , νj , Lj >. The list is initially empty.
WhenAT queriesWi from the random oracleH1, and algorithm
B responds as follows:
if Wi already appears in the list H1, then B responds with νi.
Otherwise, B generates a random coin Li ∈ {0, 1}. If Li = 0,
then B computes νi = bX for a randomly selected b ∈ Z∗p;
otherwise, Li = 1, B picks a random element a and computes
νi = a−1X .
In both cases, B adds the tuple< Wi, νi, Li > to the listH1 and
responds with H1(Wi) = νi.
When AT requests an encryption of keyword W ||J , Algorithm
B calls the above algorithm to respond to H1-queries to get νi ∈
G. Then he searches H1 for the keyword Wi||J . If Li = 1, then
B aborts. Otherwise, H1(Wi) = bX , and then B computes

Enc∗Wb = αH1(Wi||J)X + αDUpub

= α(bX)X + αDUpub

= α(bX)X + αβX

= αX(bX + β).

B can build a searchable index IDX by executing the algorithm
BuildIdx(CP, F). Then it returns the index IDX to AT .

- H2-queries: B maintains H2, a list (ϑ, δ). The list is initially
empty. At any time, AT issues a query ϑ to H2. B checks
whether ϑ appears in H2 in a pair (ϑ, δ). If not, B selects a
random value δ, adds the pair (ϑ, δ) to H2, and answers AT
with H2(ϑ) = δ.

- Trapdoor queries: When AT issues a query for the trapdoor
of the keyword Wi||J , B calls the above algorithm to respond
to H1-queries to get νi ∈ G, then searches the H1-list for the
query. If Li = 1, then B aborts. Otherwise, H1(Wi||J) = bX ,
and then B computes

Tw = (H1(Wi||J) + β)−1X

= (bX + β)−1X,

where B does know β, and answers AT with Tw.

- Challenge. Algorithm AT selects and sends a pair of keywords
W0 = {w0||J} and W1 = {w1||J} to B on which it wishes
to be challenged, and AT must not have asked previously for
the trapdoors of any of the words W0 or W1. After receiving
(W0,W1) from the attacker, B calls the above algorithm twice
to respond to H1-queries to get (W0, ν0, L0) and (W1, ν1, L1).
If both L0 and L1 are 0, then B reports failure and terminates.
Otherwise, B randomly picks µ ∈ {0, 1} such that Lµ = 1, and
then B responds with the challenge ciphertext Enc∗wµ and E∗

where E∗ ∈ {0, 1}logp Cµ = (Enc∗wµ , E
∗). The decryption of

the ciphertext is

Dec∗Wµ = H2(ê(Tw∗µ, EncW ∗
µ

))

= H2(ê(bX, a−1X))

= H2(ê(X,X)a
−1b)

by the definition Dec∗Wµ = E∗.
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B creates the secure index IDXfµ by executing the algorithm
BuildIdx(CP,F ) and sends IDXfµ as a challenge to AT .

- More queries. After the above challenge query, AT can
perform additional trapdoor queries, with same restriction that
Wi 6= W0,W1, B answers these queries as before.

- Output. Finally, AT outputs its guess µ′ ∈ {0, 1} for µ.

To complete the proof of the above theorem, we use the same pro-
cedure as in [12] to analyse the probability that B does not abort
during the Trapdoor and Challenge queries. We define the follow-
ing two events:

- Eve1: algorithm B does not abort during the Trapdoor queries.
- Eve2: algorithm B does not abort during the Challenge

queries.

We suppose that both events Eve1 and Eve2 occur with suffi-
ciently high probability. In terms of the first eventEve1, the proba-
bility ofEve1 is (1−1/(mqT +1))mqT ≥ 1/e, where 1/(qT +1)
is the probability that a trapdoor query makes B abort.
For the second event Eve2, the algorithm B does not abort during
the challenge phase if one of L0 and L1 is 0. By the definition of
the H1-list, Pr[Lµ = 0] = 1/(qT + 1) where µ ∈ {0, 1} and the
two values are independent of one another. So, we have that both
Pr[L0 = L1 = 1] = 1 − 1/qT ≥ (1 − 1/(qT + 1))2. Hence,
Pr[Eve2] is at least 1/qT . Consequently, the probability that B
does not abort during the entire simulation is Pr[Eve1 ∧Eve2] ≥
1/(eqT ).
As a result, if the advantage of AT against the proposed scheme is
ε, the probability of success of B against the BIDH challenge is at
least ε/(e(qT + 1).

5. PERFORMANCE ANALYSIS
Here, we show the preponderance of our PEKS-FSL scheme from
complexity analysis and experimental results.

5.1 Complexity analysis and comparison
In term of time complexity, the PEKS-FSL scheme uses the Bloom
filter to greatly reduce the time of a query search in the server side.
We analyse the time complexity in two aspects: the data owner side
and the server side. In the data owner side, the computation time
complexity of both our scheme and the schemes which have been
supported with a forward index, like [29, 30], for creating indexes
of keywords, are O(n*m), where n is the number of files, and m is
the number of keywords per file. In the server side, as mentioned
above, we propose an indexing method that has a single Bloom fil-
ter index for each file in the file collection. Our Bloom filter index
requires O(n) time to search for all files that contain a keyword,
while the schemes using a forward index have to test all files’ for-
ward indexes. In other words, these schemes require O(n*m) time
for a search.
In terms of space complexity, our scheme using a Bloom filter re-
quires negligible space compared to the entire data set. For large
file sets, our scheme is preferable to a forward index if some false
positives are allowed.

5.2 Experimental Evaluation
In this section, we conducted a thorough experimental evaluation
of the proposed scheme on a real-world dataset: Request for com-
ments database (RFC) [31]. We evaluate the Bloom filter index

Fig. 3. The Bloom filter and forward index construction time for a single
file v.s. # of the keywords

used in our scheme and compare its performance with that of other
schemes using a forward index, by implementing the search sys-
tems using MATLAB on a Windows 8 server with an Intel(R)
Core(TM) i5-3032M CPU at 2.60GHz.

I- Index Construction: Intuitively, the secure index construction
operation is a one-time computation. In our scheme, the index
construction time take less computational overhead, because the
server participates in the index construction operation, where the
computation mainly comes from the calculation of the hash func-
tion (we can use a BKDR hash function with different seeds to
encode the keyword in the filter). Fig. 3 shows the times needed
for the index construction operation. The construction time in-
creases linearly with the number of inserted keywords.

II- Search over Encrypted Index: Intuitively, the search operation
is executed at the cloud server side. Fig. 4 shows the times spent
by a server to perform a search query on the Bloom filter and on
the forward index. Obviously, with an increasing number of key-
words, the efficiency of a search using a Bloom filter is higher
than that using the forward index method. Fig. 5 shows the re-
sults of another time metric. In this set of experiments, we set
the number of keywords in the index to 1000, and the number
of querying keywords varies from 1 to 10. The figure shows the
times consumed for the search process using a Bloom filter and
using a forward index, versus the number of querying keywords.
Additionally, Fig. 6 shows the trapdoor construction time versus
the number of querying keywords.

6. CONCLUSION
In this paper, we constructed a new trapdoor, which is modified
every time, where an adversary cannot differentiate between two
trapdoors even when they come from the same keyword. In other
words, such a technique ensures that if the same keyword is en-
crypted multiple times, it will create different trapdoors, which in-
corporates the advantages of trapdoor indistinguishability. Further
more, the proposed scheme allows the server S to participate in the
encryption operation, thus a data owner could pay less computa-
tional cost for encryption, without leaking any information about
the plaintext. Via a thorough security analysis and experimental
evaluation of the use of a Bloom filter versus a forward index, we
have shown the suitability and efficiency of our scheme for practi-
cal use in a cloud environment.
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Fig. 4. The time consumed for the search process using Bloom filter and
forward index v.s. # of the keywords per file

Fig. 5. The time consumed for the search process using Bloom filter and
forward index v.s. # of the querying keywords

Fig. 6. Trapdoor construction time respect to the number of querying key-
words
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