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ABSTRACT
In the present paper, a twin pair (xn, yn) and (Xn, Yn)
of numbers related to one and two variable Tchebychev
polynomials of first and second kinds are proposed. Certain
Combinatorial Identities of the twin pairs are stated and proved.
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1. INTRODUCTION
Tchebychev polynomials belong to hypergeometric family of

functions [3, 6, 7, 8, 9, 11, 12, 13]. They play a very important
role in both pure and applied Mathematics. For instance, they have
many applications in Number Theory in the context of continued
fractions and Combinatorial Identities [1, 2, 4, 5, 7, 10, 14, 15].
Also they are extensively used in Best Approximation Theory of
Numerical Analysis [3, 6, 8, 11, 12, 13].

In the present paper, a pair (Tn(x, y), Un(x, y)) of two variable
homogenous polynomials of degree n are proposed. When
y =1, the polynomials will reduce to (Tn(x), Un(x)), Tchebychev
polynomials of first and second kinds in single variable. The
Recurrence Relations, Hypergeometric series represention,
Rodrigue formula, Generating Functions and Determinant
formulas are worked out.

In sections 3 and 4,certain Combinatorial Identities of twin pairs
(xn, yn) and (Xn, Yn) related to Tchebychev Polynomials are
stated and proved respectively.

2. A GENERALIZATION OF TCHEBYCHEV
POLYNOMIALS AND EXTENDED RESULTS

Definition: Generalized Tchebychev Polynomial of first kind in
two variables x and y of degree n, denoted by Tn(x, y) is

Tn(x, y) =
1

2

[
[x+

√
x2 − y2]n + [x−

√
x2 − y2]n

]
.

It is a homogeneous polynomial of degree n and hence

Tn(x, y) = ynTn

(
x

y

)
.

Generalized Tchebychev Polynomial of Second kind in two
variables x and y of degree n, denoted by Un(x, y) is

Un(x, y) =
1

2
√
x2 − y2

[
[x+

√
x2 − y2]n+1 − [x−

√
x2 − y2]n+1

]
.

It is also a homogeneous polynomial of degree n and hence

Un(x, y) = ynUn

(
x

y

)
.

When y = 1, Tn(x, y) and Un(x, y) are nothing but Tn(x) and
Un(x) respectively.
Initial Polynomials: The initial polynomials of generalized
Tchebychev polynomials of first and second kind in two variables
are

Tn(x, y) : 1, x, 2x2 − y2, 4x3 − 3xy2, . . . ,

Un(x, y) : 1, 2x, 4x2 − y2, 8x3 − 4xy2, . . . .

Three Term Recurrence Relations: By direct verification using
the definition, one can show that the following Recurrence Relation
is satisfied by the generalized Tchebychev Polynomials of first kind
in two variables:

Tn+1(x, y) = 2xTn(x, y)− y2Tn−1(x, y),

T0(x, y) = 1, T1(x, y) = x, n = 1, 2, 3, . . . .

Similarly, one can show that the following Recurrence relation
is satisfied by the generalized Tchebychev Polynomials of second
kind in two variables:

Un+1(x, y) = 2xUn(x, y)− y2Un−1(x, y),

U0(x, y) = 1, U1(x, y) = 2x, n = 1, 2, 3, . . . .
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Tn(x, y) and Un(x, y) are also connected by the following three
term recurence relation:

Tn+1(x, y) = xUn(x, y)− y2Un−1(x, y),

U0(x, y) = 1, U1(x, y) = 2x, n = 1, 2, 3, . . . .

Hypergeometric Series Representation: Tchebychev
Polynomials of first and second kind in one variable can be
represented in the form of hypergeometric series as follows [9].

Tn(x) = 2F1

(
−n, n; 1

2
;
1− x
2

)
,

Un(x) = (n+ 1) 2F1

(
−n, n+ 2;

3

2
;
1− x
2

)
.

The generalized Tchebychev polynomials of first and second
kind in two variables also have the following extended result and
the proof will be similar to one variable case.

THEOREM 1. The hypergeometric representation for
generalized Tchebychev polynomials are

Tn(x, y) = yn 2F1

(
−n, n; 1

2
;
y − x
2y

)
,

and Un(x, y) = yn(n+ 1) 2F1

(
−n, n+ 2;

3

2
;
y − x
2y

)
.

Rodrigue Formula: The Rodrigue formula for Tchebychev
Polynomials of first kind in one variable is

Tn(x) =
(−1)n2nn!

(2n)!
(1− x2) 1

2
dn

dxn
(1− x2)n− 1

2 ,

Tn(x, y) = ynTn

(
x

y

)
= yn

(−1)n2nn!
(2n)!

(y2 − x2) 1
2

(y2)
1
2

∂n

∂xn

(
(y2 − x2)n− 1

2

(y2)n−
1
2

)

=
1

yn
(−1)n2nn!

(2n)!
(y2 − x2) 1

2
∂n

∂xn
(y2 − x2)n− 1

2 .

Similarly the Rodrigue formula for genarlised Tchebychev
polynomials of second kind in two variables can be derived. The
extended result is stated in the following theorem.

THEOREM 2. The Rodrigue formula for generalized
Tchebychev polynomials are

Tn(x, y) =
1

yn
(−1)n2nn!

(2n)!
(y2 − x2) 1

2
∂n

∂xn
(y2 − x2)n− 1

2 ,

and

Un(x, y) =
1

yn
(−1)n2n(n+ 1)!

(2n+ 1)!
(y2 − x2)− 1

2
∂n

∂xn
(y2 − x2)n+ 1

2 .

Generating Functions:

Put f(x, y, t) =

∞∑
n=0

Tn(x, y)t
n.

f(x, y, t) = T0(x, y) + T1(x, y)t+ · · ·
+Tn+1(x, y)t

n+1 + · · ·
−2xtf(x, y, t) = −2xT0(x, y)t− 2xT1(x, y)t

2 − · · ·
−2xTn(x, y)t

n+1 − · · ·

y2t2f(x, y, t) = T0(x, y)y
2t2 + T1(x, y)y

2t3 + · · ·
+Tn−1(x, y)y

2tn+1 + · · · .

Summing all the three expressions on both sides, we get

(1− 2xt+ t2y2)f(x, y, t) = 1 + xt− 2xt

f(x, y, t) =
1− xt

1− 2xt+ t2y2
.

Similarly the generalized Tchebychev polynomials of second kind
in two variables can be shown to have a genarating function stated
in the following theorem combined with that of Tn(x, y).

THEOREM 3. The genarating function for generalized
Tchebychev polynomials are

∞∑
n=0

Tn(x, y)t
n =

1− xt
1− 2xt+ t2y2

and
∞∑

n=0

Un(x, y)t
n =

1

1− 2xt+ t2y2
.

Determinants Formulas: We state the following theorem for
generalized Tchebychev polynomials of first and second kinds
without proof because they follow directly from their three term
recurrence relations.

THEOREM 4. The determinants formulas for generalized
Tchebychev polynomials are

Tn(x, y) =

∣∣∣∣∣∣∣∣∣∣∣∣

x −y 0 · · · 0 0
−y 2x −y 0 · · · 0

0 −y
. . . −y 0 0

...
...

...
. . .

...
...

0 0 0 0 −y 2x

∣∣∣∣∣∣∣∣∣∣∣∣
and

Un(x, y) =

∣∣∣∣∣∣∣∣∣∣∣∣

2x −y 0 · · · 0 0
−y 2x −y 0 · · · 0

0 −y
. . . −y 0 0

...
...

...
. . .

...
...

0 0 0 0 −y 2x

∣∣∣∣∣∣∣∣∣∣∣∣
.

3. CERTAIN COMBINATORIAL IDENTITIES OF
THE FIRST PAIR

Let xn := Tn(N) and yn := Un−1(N), where N =2,3, . . . .
Then they satsify the following three term recurrence relations:
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xn+1 = 2Nxn − xn−1, x0 = 1, x1 = N (1)
yn+1 = 2Nyn − yn−1, y0 = 1, y1 = 2N (2)
xn+1 = Nyn+1 − yn, y1 = 1, y2 = 2N (3)

As a result, they have the following Binet forms:

xn =
1

2

[
[N +

√
N2 − 1]n + [N −

√
N2 − 1]n

]
(4)

yn =
1

2
√
N2 − 1

[
[N +

√
N2 − 1]n − [N −

√
N2 − 1]n

]
(5)

Using (1) − (5), the following combinatorial identities are
derived.

THEOREM 5. The pair (xn, yn) satisfies the following
identities:

5(i)

[
xn yn
xn+1 yn+1

]
=

[
x1 y1
x2 y2

] [
N 1

(N2 − 1) N

]n−1
.

5(ii) xnyn+1 − ynxn+1 = 1.

5(iii)
xn+1

yn+1

= N −
1

2N −

1

2N −···−

1

2N
.

PROOF.
5(i): The result is proved by using Mathematical Induction on n.
For n = 1 the result is obvious.
Suppose for n = k, the result is true.[

xk yk
xk+1 yk+1

]
=

[
x1 y1
x2 y2

] [
N 1

(N2 − 1) N

]k−1
.

The result directly follows for n = k + 1, if the following
identities are true:

xk+1 = Nxk + (N2 − 1)yk (6)
yk+1 = 1.xk +Nyk (7)

Using (2) follwed by (3), one obtains (7)

yk+1 = 2Nyk − yk−1
= Nyk + [Nyk − yk−1]
= Nyk + xk.

Using (7) and (3)

Nyk+1 = Nxk +N2yk and

xk+1 −Nyk+1 = −yk.

One obtains (6), by direct addition on both sides.
5(ii): The result directly follows by taking determinant on both
sides of 5(ii) because

det

[
x1 y1
x2 y2

]
= N(2N)− (2N2 − 1) · 1 = 1

5(iii): The three term recurrence relations (3) and (2)can be
rewritten as follows.

xn+1

yn+1

= N −
1

yn+1

yn

yn+1

yn
= 2N −

1
yn

yn−1

.

As a result

xn+1

yn+1

= N − 1

2N −

1

2N −

1

2N −···−

1

2N
, because

y1
y0

= 2N.

THEOREM 6. The sequence {xn} satisfies the following
identities

6(i)

[
xn−1 xn
xn xn+1

]
=

[
1 N
N 2N2 − 1

] [
0 −1
1 2N

]n−1
.

6(ii) xn−1xn+1 − x2n = N2 − 1.

6(iii)
xn+1

xn
= 2N −

1

2N −

1

2N −···−

1

2N −

1

N
.

PROOF.

6(i): Again the result is proved by using Mathematical Induction.
Put

Ak =

[
xk−1 xk
xk xk+1

]
; B =

[
0 −1
1 2N

]
,

then

P (1) : A1 = A1B
0

P (k) : Ak = A1B
k−1

P (k + 1) : Using the three term recurrence relation for
xn+1 in (1), we get Ak+1 = AkB. Further using P (k), one arrive
at Ak+1 = A1B

k.

6(ii): The identity can be directly deduced by applying determinant
on both sides of 6(i).

6(iii): The three term recurrence relations (1) yields

xn+1

xn
= 2N −

1

2N −

1

2N −···−

1

2N −

1

N
, because

x1
x0

= N.

THEOREM 7. The sequence {yn} satisfies the following
identities

7(i)

[
yn−1 yn
yn yn+1

]
=

[
0 1
1 N

] [
0 −1
1 2N

]n−1
.

7(ii) yn−1yn+1 − y2n = −1.

7(iii)
yn+1

yn
= 2N − 1

2N −

1

2N −

1

2N −···−

1

2N
.

PROOF.

7(i): Again the result is proved by using Mathematical Induction
on n. Put

Ak =

[
yk−1 yk
yk yk+1

]
; B =

[
0 −1
1 2N

]
.

Then P (1) : A1 = A1B
0

P (k) : Ak = A1B
k−1

3
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P (k + 1) : Using the three term recurrence relation for
yn+1 in (1), we get Ak+1 = AkB. Further using P (k), one arrive
at Ak+1 = A1B

k.

7(ii): The identity can be directly deduced by applying determinant
on both sides of 7(i).

7(iii): The three term recurrence relations (2) yields

yn+1

yn
= 2N − 1

2N −

1

2N −

1

2N −···−

1

2N
, because

y1
y0

= 2N.

4. CERTAIN COMBINATORIAL IDENTITIES OF
THE SECOND PAIR

Let Xn := Tn(N,K) and Yn :=
Un−1(N,K), where N = 2, 3, . . . ,
K = 1, 2, . . . ,N − 1 and N2 − K2 is not a square number.
When K = 1,Xn = xn and Yn = yn. Hence we can expect
similar identities for Xn and Yn and their proofs will also be quite
similar to those of one variable case except for small adoptation
to incopartion K2. In the present section, we describe the similar
identities for Xn and Yn with out giving proofs.
The three term recurrence relations are as follows.

Xn+1 = 2NXn −K2Xn−1,X0 = 1, X1 = N. (8)
Yn+1 = 2NYn −K2Yn−1, Y0 = 0, Y1 = 1. (9)
Xn+1 = NYn+1 −K2Yn, Y0 = 0, Y1 = 1. (10)

A pair of use full identities are

Xn+1 = NXn + (N2 −K2)Yn. (11)
Yn+1 = Xn +NYn. (12)

The Binet forms are as follows

Xn =
1

2

[
[N +

√
N2 −K2]n + [N −

√
N2 −K2]n

]
.

(13)

Yn =
1

2
√
N2 −K2

[
[N +

√
N2 −K2]n − [N −

√
N2 −K2]n

]
.

(14)

An interesting special case: When N = 3 and K = 2,

X1 = 3,X2 = 14,X3 = 72, . . . ,Xn = 2n−1L2n.

Y1 = 1, Y2 = 5, Y3 = 32, . . . , Yn = 2n−1F2n.

Where Ln and Fn are well known Lucas and Fibonacci numbers
[2, 5, 15].

THEOREM 8. The pair (Xn, Yn) satisfies the following
identities

8(i)

[
Xn Yn

Xn+1 Yn+1

]
=

[
X1 Y1

X2 Y2

] [
N 1

N2 −K2 N

]n−1
.

8(ii) XnYn+1 − YnXn+1 = K2 + (K2 − 1)φn−1(k
2),

where φn−1(k
2) = k2

k2n−2 − 1

k2 − 1
.

8(iii)
Xn+1

Yn+1

= N −
K2

2N −

K2

2N −···−

K2

2N
.

THEOREM 9. The sequence {Xn} satisfies the following
identities

9(i)

[
Xn−1 Xn

Xn Xn+1

]
=

[
1 N
N 2N2 −K2

] [
0 −K2

1 2N

]n−1
.

9(ii) Xn−1Xn+1 −X2
n = (N2 −K2) + (K2 − 1)ψn−1(k

2),

where ψn−1(k
2) = (N2 −K2)

k2n−2 − 1

k2 − 1
.

9(iii)
Xn+1

Yn

= 2N −
K2

2N −

K2

2N −···−

K2

N
.

THEOREM 10. The sequence {Yn} satisfies the following
identities

10(i)

[
Yn−1 Yn

Yn Yn+1

]
=

[
0 1
N 2N

] [
0 −K2

1 2N

]n−1
.

10(ii) Yn−1Yn+1 − Y 2
n = (−1) + (K2 − 1) + χn−2(k

2),

where χn−2(k
2) = −k

2n−2 − 1

k2 − 1
.

10(iii)
Yn+1

Yn

= 2N −
K2

2N −

K2

2N −···−

K2

2N
.

The results of this section are indeed non trivial generalizations
of those results proved in the previous section.
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