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ABSTRACT

A generalization of the Inverse flexible weibull distribution
so-called the Kumaraswamy-Inverse flexible weibull
distribution is proposed and studied. Various structural
properties including explicit expressions for the moments,
quantiles and moment generating function of the new
distribution are derived. The estimation of the model
parameters is performed by maximum likelihood method and
the observed Fisher’s information matrix is derived. For
different values of sample sizes, Monte Carlo simulation is
performed to investigate the precision of the maximum
likelihood estimates. The usefulness of the kumaraswamy
inverse flexible distribution for modeling data is illustrated
using real data.
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1. INTRODUCTION

The Inverse Flexible Weibull distribution was introduced by
El-Gohary et.al. [1], and it has been studied and discussed as a
lifetime model. If a random variable Y has a flexible weibull

extension FW distribution [2], the variable X = % will have an

Inverse Flexible Weibull Extension IFW distribution. Thus, a
random variable X is said to have an Inverse Flexible Weibull
Extension distribution with parameters u > 0 and o > 0 if it's
cumulative distribution function (cdf) are given by;

H ox
F(x;p,0) =e™*  ,x>0,u,0>0 D

The probability density function (pdf) corresponding to (1)
becomes

u .
f(x;p,0) = {xiz + 0} ex e ™ x>0,u,0>0 (2)

In many practical situations, classical distributions do not
provide adequate fit to real data. So, several generators of
introducing one or more parameters to generate new
distributions have been studied recently in the statistical
literature. Some well-known generators are Marshall-Olkin
generated family (MO-G) by Marshall and OlKkin [3], beta —
G by Eugene et al. [4], Transmuted — G by Shaw and
Buckley [5], Kumaraswamy-G (K-G) by Cordeiro and de
Castro [6], McDonald-G (Mc-G) by Alexander et al. [7],
gamma-G (type 1) by Zografos and Balakrishanan [8],
gamma-G (type 2) by Risti’c and Balakrishanan [9], log-
gamma-G by Amini et al. [10], logistic-G by Torabi and
Montazari [11], exponentiated generalized-G by Cordeiro et al
[12], Transformed-Transformer (T-X) by Alzaatreh et al. [13],
Weibull-G by Bourguignon et al. [14], and logistic-X by
Tahir et al.[15] . Among these generators, the K-G family has
received increased attention after the convincing debate on the

pitfalls of the beta-G family by Jones [16]. For a baseline
random variable having pdf g(x) and cdf G(x), Cordeiro and
de Castro [6] defined the two-parameter K-G cdf by

F) =1-{1-G()9# ©)
The pdf corresponding to (3) becomes
f(x) = aBG) {1 — G(x)*}F~? (4)
dG (x)

Where g(x) = = and a > 0 and B > 0 are two extra

shape parameters whose role are to govern skewness and tail
weights.

In this Article, the main propose an extension of the IFW
model called the Kumaraswamy Inverse Flexible Weibull
Extension KIFW “for short” distribution based on equations
(3) and (4). This paper is organized as follows. Section 2,
defines the cumulative, density and hazard functions of the
KIFW distribution. Following that (Section 3) introduces
some mathematical and statistical properties including,
quantile function, moments and moment generating function.
The maximum likelihood estimation of the parameters is
determined in Section 4. Section 5 evaluates the performance
of a maximum likelihood method by using Monte Carlo
simulation. Real data sets are analyzed in Section 6 and the
results are compared with existing distributions. Finally,
concluding remarks are addressed in section 7.

2. KUMARASWAMY INVERSE

FLEXIBLE WEIBULL DISTRIBUTION
Inserting (2) in (4), the four-parameter KIFW cdf is defined
by

[ 15
F(x) =1—[1—67°‘eX ] , x>0, o,B,p,o>0 (5

The pdf corresponding to (5) becomes

oX

" b
f(x) = ap {Xiz + 0} ex X gaex [1 — eTaex

For notational purpose, we write; X~KIFW(a, B, 1, 6) It can
be seen that if a = =1, the distribution in Equation (6)
reduces to an Inverse Flexible Weibull Extension Distribution
with parameters p and o.

Figure 1 illustrates the graphical behavior of the pdf of
Kumaraswamy inverse Flexible Weibull distribution for
selected values of the parameters a and g with p = 1.2 and o=
1.8.

The survival function for the KIFW distribution is given by;

b8
Sx)=1-FKx) = [1 — eTaex ] , x>0, (7

The hazard function is thus given by;
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Fig. 1 The graph for the PDF function of KIFW
distribution for different values of &« and g with u = 1.2
and o= 1.8.
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Figure 2. The graph for the Hazard function of KIFW
distribution for different values of ¢ and g with u = 1.2
and o= 1.8.

3. MATHEMATICAL AND
STATISTICAL PROPERTIES

3.1 Useful Expansions

By using the generalized binomial theorem, can be used
K ox B-1 _1yi
[1 —eTaer ] = af Z?‘;O( L 16 exp[ ioex™ ](9)

it T(B-i)
Inserting the above expansion in (6) gives

fx) = aﬂz (_l.!l)i @) ){# + a} X
=0

N

X exp [—(i + 1)ae5_ax] (10)
By using the power series for the exponential function, it can
be written as follow:

exp [—(i + 1)ae%_”x] =37,
Inserting (11) in (10) gives

(—1)f<f|+1)faf G (11
e
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) (—1)¥ (i + 1Y I T(B)
f) = “ﬁzz TB-10)

Il
i=0j= i J:
x {ux~2 + o} U+ g=G+1)ox (12)
Finally, by using the series expansion
I + D)k pk
(J+1) Z (] ) —k (13)

The PDF of KIFWE distribution can be expressed as

B (—1) (i + 1)  + D*T()
f&) = “ﬂzzz k! TB—10)

i= j=0k=

X {Mx—(k+2)e—(j+l)crx + axk e—(j+1)ax} (14)

Thus, some statistical properties of the proposed distribution
can be derived from (14). For example, the moment and
moment generating function of X can be obtained from this
equation.

3.2 Quantile and Simulation of KIFW
The quantile of the KIFW distribution is obtained by solving
the following equation, with respect to x,

F(xq) = q, 0<g<1 (15)

Using the distribution function of KIFW distribution, from
(6), we have

Lfax ﬁ
1- [1 —emae™ q] =q
By solving the above equation, we obtain
oxZ+c(@x, —p=0 (16)
Where

( 1\)
J loge <1 - [1 - Q]ﬁ> L
_ - J
By solving the above equation, we obtain x, as follows

_=¢(@) ¥ Ve(@)? + 4op
20

Since the quantile x, is positive, then we obtain x, as follows

_—c(q) F c(@)* + 4op
o (17)

¢ =

C(CI) = log,

Xq

So, the simulation of the KIFW distribution random variable
is straightforward. Let U be a uniform variable of the unit
interval (0,1). Thus by means of inverse transformation
method, we consider the random variable X given by

X = —c(u)+/c(w)2+4ou
20

Since the median is 50% quantile, then by setting q =% in
equation (17), we get the median of KIFW distribution.

3.3 The Moments

The r — th moment of the random variable X with probability
density function f(x) is given by
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i = f X F(x) dx (18)

Substituting from Eqi.mz14) into (18), as follow:

B ( 1) 1410/ + DY)
“ﬁzz k! TG -1

i= j=0k=0
J- {er—(k+2)e—(]+1)o'x + a.xr—ke—(j+1)UX}dx (19)
0
By using the definition of gamma function, in the form
rQ) = Jrﬂtl—le"?”dt, Lz>0

0
We obtain the r — th moment of KIFW distribution in the
form

SO (DY (+ D+ DEET(R)

ur—“ﬁ;;kzo ik rg-o
prr— (et 1) | oG —(k—1)

G+ D50 * G+ Do)

(20)

3.4 The Moment Generating Function
The moment generating function of the random variable X
with the density function f (x) is given by

My (t) = fe”‘ f(x)dx 21D

—0
Using series expansion of e®* , we obtain
0
-

M@® = S 22)

r=0
Substituting from Eq. (20) into Eq. (22) we obtain the moment
generating function of KIFW distribution in the form
My (t)

(=D (i + 1) j+ DFp* T
‘“ﬁzzzz jrk!r! rp-ri
i=0j=0k=0r=0
urir—(k+1)
{[(j + Dol
ol'(r—(k—-1)
G+ Der=o}

4. PARAMETER ESTIMATION

In this section, the maximum likelihood estimation is used to
estimate the unknown parameters. Let X;,X,,...,X, be a
random sample of size n from the KIFW distribution given by
(6). The likelihood function for the vector of parameters

0 = (a, B, 1, o) can be expressed as
n

n (1 Bgn
if=apr] | {iz ¥ a} Zheileom ) gma g 1
x?

i=1 V!

(23)

n

n B-1
1_[ {1 _ ezi=1(x£i—0xi)}

i=1

Hence, the log-likelihood function £(®) becomes
n

1 i
+Z 08! <x1 +a)

i=

n n u

+ Z (ﬁ - crxl-> - aZ;zzéxT‘”"
4 Xi
i=1

i=1

£(®) = n.[log, (a) + log. ()]
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+(B - 1) Zmbge (1 ~ e‘_> (24)
i=1

The partial derivatives of £(®) with respect to each parameter
a, 8, u and o are given by:

n n K gy _ %"”‘i
n Loy exi e ¢
V=2 e @Dy e (25)
i=1 i=1 (1 — gmae™ )
e 7
Up = E + Ziﬂbge <1 — eae™ > (26)
i=1
U =¥ —F——+3- a2?=1%+
xlz(x7_+a> !
N et
a(B - 1)2—,4% (27)

i=1

n 1 n u
U, =Z——in +a2xie7i_axi
= (4 =
G

]
By
——0X; Pl
.eXi e aet

n
—a(B - DZM—LM (28)

i=1 (1 — gmae’ l)
Setting these equations to zero and solving them
simultaneously yields the MLEs of the four parameters. For
interval estimation of the model parameters, we require the
4 x 4 observed information matrix J(®) = {U,s} (forr,s =
a,B,u,0) given in Appendix. Under standard regularity
conditions, the multivariate  normal  N,(0; J(®)™1)
distribution can be used to construct approximate confidence
intervals for the model parameters. (Cox and Hinkley [17]),
here, /() is the total observed information matrix evaluated
at®. Then, the 100(1 — )% confidence intervals for a, 8, u
and ¢ are given by:

& + zv[var(@), f + zr ’var([;’) , i+ zviJvar(i) and & +
2 2 2
zvyJvar(8) respectively, where the var(.)’s denote the
2

diagonal elements of J(©®)~! corresponding to the model
parameters, and zvis the quantile (1—%) 100% of the
2

standard normal distribution. The likelihood ratio LRT
statistic can be used to check if the KIFW distribution is
strictly “superior” to the IFW distribution for a given data set.
Then, the test of Hy:a =B =1 versus H;: a#f #1is
equivalent to compare the KIFW and IFW distributions and
the LRT statistic becomes A = 2{¢(&, 8,1, 8) — (1,1, /7, &)},
where &, 5,/ and 6 are the MLEs under H; and ji and & are
the estimates under Hy. The LRT statistic A is asymptotically
(as n — ) distributed as )(g , where q is the number of
parameters specified under H,. The LRT rejects H, if
A> xZi_, ,where yz.,_, denotes the 100y % quantile of the
Z distribution.

5. SIMULATION RESULTS

We shall report the results from a Monte Carlo experiment on
the finite sample behavior of the MLEs of the parameters
a,B,uand g. The simulation was carried out using the GW
Basic programming language and were obtained from 1,000
Monte Carlo replications. In each replication, a random
sample of size n is drawn from the KIFW(a,B,u,0)
distribution and the parameters were estimated by maximum
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likelihood. In Table 1, we present the means of the MLEs of
the four parameters with the corresponding bias and root
mean squared error (RMSE) for sample sizes 50, 100 and 200.
The true parameters values used in the data generating
processes are a = 1.5, = 05u = 2.0 ando =15 .
Based on the figures in Table 1, we note that the MSEs of the
estimates decay toward zero as the sample size increases, as
usually expected under standard regularity conditions. As the
sample size n increases, the mean estimates of the parameters
tend to be closer to the true parameter values. This fact
supports that the asymptotic normal distribution provides an
adequate approximation to the finite sample distribution of the
estimates.

Table 1. Mean estimates and root mean squared errors of
the MLEs based Monte Carlo simulation.
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Tables 3 provide the MLEs of the model parameters. The
model selection is carried out using the AIC (Akaike
information criterion), the BIC (Bayesian information
criterion) and the CAIC (Consistent Akaike information
criteria):

AIC = 2q — 20(®), BIC = qlog(n) — 2£(0) and CAIC =

_ni‘;"_l_zz(@), Where £(©) denotes the log-likelihood

function evaluated at the maximum likelihood estimates, q is
the number of parameters and n is the sample size. Since the
values of the AIC, BIC and CAIC are smaller for the KIFW
distribution compared with those values of the other models,
the new distribution seems to be a very competitive model to
these data.

Table 3: MLEs of the model parameters, the
corresponding SEs (given in parentheses) and the statistics
AIC, BIC and CAIC Estimates Statistic

Parameters a B u o
1.50018 | 0.51999 | 2.05879 | 1.50081
Mean
|Z| Bi 0.00018 | 0.01999 | 0.05879 | 0.00081
& ias
o
RMSE 0.00307 | 0.08050 | 0.22873 | 0.02196
Mean 1.50000 | 0.50909 | 2.02991 | 1.50003
% Bi 0.00000 | 0.00909 | 0.02991 | 0.00003
5 ias
o
RMSE 0.00019 | 0.05662 | 0.15828 | 0.00019
Mean 1.50000 | 0.50570 | 2.01643 | 1.50001
% . 0.00000 | 0.00570 | 0.01643 | 0.00001
N Bias
o
RMSE 0.00003 | 0.03685 | 0.10910 | 0.00003

6. APPLICATIONS

In this section, we illustrate the usefulness of the KIFW
distribution. We fit this distribution to the real data sets and
compare the results with the Inverse Weibull W and Inverse
flexible Weibull Extension IFW distributions. The data set
given in Table 2 is taken from Murthy, Xie, and Jiang (2004)
page 180 [18] and represents 50 items put into use at t = 0
and failure times are in weeks.

Table 2: 50 items put into use at t = 0 and their failure
times in weeks

0.013 0.065 0.111 0.111 0.163 0.309

0.426 0.535 0.684 0.747 0.997 1.284

1.304 1.647 1.829 2.336 2.838 3.269

3.973 3.981 4.520 4.789 4.849 5.202

5.291 5.349 5911 6.018 6.427 6.456

6.572 7.023 7.087 7.291 7.787 8.596

9.388 10.281 | 10.713 | 11.658 | 13.006 | 13.388

13.842 17.152 | 17.283 | 19.418 | 23.471 | 24.777

32.795 | 48.105

Model IwW IFW KIFW
1.819
a (0.00069)
b 0.854
(0.12029)
1.125 0.027 0.015
H (0.16557) (0.00424) (0.00429)
0.479 0.136 0.181
° (0.04542 (0.01878) (0.00011)
10O) -168.641 -161.070 -153.334
AIC 341.282 326.140 314.668
BIC 345.106 329.964 322.316
CAIC 341.537 326.395 315.557

The IFW distribution is a special case of KIFW distribution.
We want to test if these data fit the IFW or the KIFW, using
the likelihood ratio testA = 2{¢(a, 5, {,6) — ¢(1,1,i,8)}.
The hypotheses are as follows:
Hy:a = 1,8 = 1(IFW)
versusHy :a# 1,8 # 1 (KIFW).

The likelihood ratio statistic A is 15.472. We observed that
the calculated LRT statistic is greater than the upper 99%
quantile of a chi-square random variable with 2 degree of
freedom )(22,99% =9.210, it is clear that we reject the null

hypotheses. We can therefore conclude that this data fits the
KIFW distribution much better than the IFW distribution.
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Figure 3: The Fitted cumulative distribution function for
the data.

7. CONCLUSIONS

Here is a new proposal model that concluded from the current
essay and it's called kumaraswamy inverse flexible Weibull
extension distribution which extends the inverse flexible
Weibull extension distribution in the analysis of data with real
support. An obvious reason for generalizing a standard
distribution is because the generalized form provides more
flexibility in modeling real data. We derive expansions for
moments and for the moment generating function. The
estimation of parameters is approached by the method of
maximum likelihood, also the information matrix is derived.
An application of the KIFW distribution to real data show that
the new distribution can be used quite effectively to provide
better fits than the IFW distribution.Finally, we hope that the
proposed model will attact wider applications in reliability
engineering, survival and life time data.
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9. APPENDIX

The elements of the observed Fisher information matrix J (@)
for the parameters (a, 8, i, o)

Uaa Ua[? Uau Uaa
. U U U
](0) - _ BB Uﬂll Uﬁa
: : g uo
N A
are given by
2

B £—ox;
n (exi axl) e—ae"l ¢

n
Uoca=_?_(.8_1)z -
i=1 (1—6*‘”’” l)

() (e
-B-1 Z <e ) €

— (29)
i=1 (1 —_ e—ae"iiiaxi)
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(32)

(33)

(34)

(35)
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2
n (exﬁiwxi) e"’e%"ﬂxi
—2@-1))

L—crxi

i=1 x? (1—6‘“9” )

2 B _ox; 2

n (exif_gxi) (e“'exi L>
—*B-1)

ox; 2 (36)

n 1 n u
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