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ABSTRACT 

A generalization of the Inverse flexible weibull distribution 

so-called the Kumaraswamy-Inverse flexible weibull 

distribution is proposed and studied. Various structural 

properties including explicit expressions for the moments, 

quantiles and moment generating function of the new 

distribution are derived. The estimation of the model 

parameters is performed by maximum likelihood method and 

the observed Fisher’s information matrix is derived. For 

different values of sample sizes, Monte Carlo simulation is 

performed to investigate the precision of the maximum 

likelihood estimates. The usefulness of the kumaraswamy 

inverse flexible distribution for modeling data is illustrated 

using real data. 
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1. INTRODUCTION 
The Inverse Flexible Weibull distribution was introduced by 

El-Gohary et.al. [1], and it has been studied and discussed as a 

lifetime model. If a random variable Y has a flexible weibull 

extension FW distribution [2], the variable X =
1

Y
 will have an 

Inverse Flexible Weibull Extension IFW distribution. Thus, a 

random variable X is said to have an Inverse Flexible Weibull 

Extension distribution with parameters μ > 0 and σ > 0 if it's 

cumulative distribution function (cdf) are given by;  

                      F x; μ, σ  = e−e
μ
x
−σx

  , x > 0, μ, σ > 0            (1) 

The probability density function (pdf) corresponding to (1) 

becomes 

   f x; μ, σ  =  
μ

x2
+ σ e

μ
x
−σx e−e

μ
x
−σx

 , x > 0, 𝜇, 𝜎 > 0     (2) 

In many practical situations, classical distributions do not 

provide adequate fit to real data. So, several generators of 

introducing one or more parameters to generate new 

distributions have been studied recently in the statistical 

literature. Some well-known generators are Marshall-Olkin 

generated family (MO-G) by Marshall and Olkin [3], beta −
G by Eugene et al. [4], Transmuted− G by Shaw and 

Buckley [5], Kumaraswamy-G (K-G) by Cordeiro and de 

Castro [6], McDonald-G (Mc-G) by Alexander et al. [7], 

gamma-G (type 1) by Zografos and Balakrishanan [8], 

gamma-G (type 2) by Risti´c and Balakrishanan [9], log-

gamma-G by Amini et al. [10], logistic-G by Torabi and 

Montazari [11], exponentiated generalized-G by Cordeiro et al 

[12], Transformed-Transformer (T-X) by Alzaatreh et al. [13], 

Weibull-G by Bourguignon et al. [14], and  logistic-X by 

Tahir et al.[15] . Among these generators, the K-G family has 

received increased attention after the convincing debate on the 

pitfalls of the beta-G family by Jones [16]. For a baseline 

random variable having pdf g(x) and cdf G(x), Cordeiro and 

de Castro [6] defined the two-parameter K-G cdf by 

                                 F x = 1 −  1 − G x α β                          (3) 

The pdf corresponding to (3) becomes 

                       f x = αβG x α−1 1 − G x α β−1                 (4) 

Where g(x)  =  
dG (x)

dx
 and α >  0 and β >  0 are two extra 

shape parameters whose role are to govern skewness and tail 

weights. 

In this Article, the main propose an extension of the IFW 

model called the Kumaraswamy Inverse Flexible Weibull 

Extension KIFW  “for short” distribution based on equations 

(3) and (4). This paper is organized as follows. Section 2, 

defines the cumulative, density and hazard functions of the 

KIFW distribution. Following that (Section 3) introduces 

some mathematical and statistical properties including, 

quantile function, moments and moment generating function. 

The maximum likelihood estimation of the parameters is 

determined in Section 4. Section 5 evaluates the performance 

of a maximum likelihood method by using Monte Carlo 

simulation. Real data sets are analyzed in Section 6 and the 

results are compared with existing distributions. Finally, 

concluding remarks are addressed in section 7. 

2. KUMARASWAMY INVERSE 

FLEXIBLE WEIBULL DISTRIBUTION 
Inserting (2) in (4), the four-parameter KIFW cdf is defined 

by 

     F x  = 1 −  1 − e−αe
μ
x
−σx

 
β

 , x > 0,   α, β, μ, σ > 0     (5) 

The pdf corresponding to (5) becomes 

  f x  = αβ  
μ

x2
+ σ e

μ
x
−σx e−αe

μ
x
−σx

 1 − e−αe
μ
x
−σx

 
β−1

 (6) 

For notational purpose, we write; X~KIFW(α, β, μ, σ) It can 

be seen that if α = β = 1, the distribution in Equation (6) 

reduces to an Inverse Flexible Weibull Extension Distribution 

with parameters μ and σ. 

Figure 1 illustrates the graphical behavior of the pdf of 

Kumaraswamy inverse Flexible Weibull distribution for 

selected values of the parameters α and β with μ = 1.2 and σ= 

1.8. 

The survival function for the KIFW distribution is given by; 

           S x = 1 − F x  =  1 − e−αe
μ
x
−σx

 
β

, x > 0,             (7) 

The hazard function is thus given by; 
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           𝑕 𝑥 =
𝑓 𝑥 

𝑆 𝑥 
 =

αβ  
𝜇
𝑥2 + 𝜎 𝑒

𝜇
𝑥
−𝜎𝑥 e−𝛼𝑒

𝜇
𝑥
−𝜎𝑥

 1 − e−𝛼𝑒
𝜇
𝑥
−𝜎𝑥

 
             (8) 

 

 

Fig. 1 The graph for the PDF function of KIFW 

distribution for different values of 𝜶 and 𝜷 with 𝝁 = 𝟏. 𝟐 

and 𝝈= 1.8. 

 

 

Figure 2. The graph for the Hazard function of 𝐊𝐈𝐅𝐖 

distribution for different values of 𝜶 and 𝜷 with 𝝁 = 𝟏. 𝟐 

and 𝝈= 1.8. 

3. MATHEMATICAL AND 

STATISTICAL PROPERTIES 

3.1 Useful Expansions 
By using the generalized binomial theorem, can be used 

 1 − e−𝛼𝑒
𝜇
𝑥
−𝜎𝑥

 
𝛽−1

= 𝛼𝛽 
(−1)𝑖

𝑖!
∞
𝑖=0

Γ(𝛽)

Γ(𝛽−𝑖)
exp  −𝑖𝛼𝑒

𝜇

𝑥
−𝜎𝑥  (9) 

Inserting the above expansion in (6) gives 

𝑓 𝑥 = 𝛼𝛽 
 −1 𝑖

𝑖!

∞

𝑖=0

Γ 𝛽 

Γ 𝛽 − 𝑖 
 
𝜇

𝑥2
+ 𝜎 𝑒

𝜇
𝑥
−𝜎𝑥

 

                                 × exp  −(𝑖 + 1)𝛼𝑒
𝜇
𝑥
−𝜎𝑥                           (10) 

By using the power series for the exponential function, it can 

be written as follow:   

    exp  −(𝑖 + 1)𝛼𝑒
𝜇

𝑥
−𝜎𝑥  =  

(−1)𝑗 (𝑖+1)𝑗𝛼 𝑗

𝑗 !
∞
𝑖=0 𝑒j(

𝜇

𝑥
−𝜎𝑥)      (11)                                                       

Inserting (11) in (10) gives 

𝑓(𝑥) = 𝛼𝛽  
 −1 𝑖+𝑗

𝑖! 𝑗!

∞

𝑗=0

 𝑖 + 1 𝑗𝛼𝑗Γ 𝛽 

Γ 𝛽 − 𝑖 
                        

∞

𝑖=0

 

                        ×   𝜇𝑥−2 + 𝜎 𝑒(j+1)
𝜇
𝑥 𝑒−(j+1)𝜎𝑥                     (12) 

Finally, by using the series expansion  

                            𝑒(j+1)
𝜇
𝑥 =  

(𝑗 + 1)𝑘𝜇𝑘

𝑘!

∞

𝑘=0

𝑥−𝑘                       (13) 

The PDF of KIFWE distribution can be expressed as 

𝑓 𝑥 = 𝛼𝛽   
 −1 𝑖+𝑗

𝑖! 𝑗! 𝑘!

∞

𝑘=0

 𝑖 + 1 𝑗𝛼𝑗  j + 1 𝑘μ𝑘Γ 𝛽 

Γ 𝛽 − 𝑖 

∞

𝑗=0

∞

𝑖=

 

                   ×  {𝜇𝑥− 𝑘+2 𝑒− j+1 𝜎𝑥 + 𝜎𝑥−𝑘 𝑒− j+1 𝜎𝑥 }        (14) 

Thus, some statistical properties of the proposed distribution 

can be derived from (14). For example, the moment and 

moment generating function of X can be obtained from this 

equation.  

3.2 Quantile and Simulation of KIFW  
The quantile of the 𝐾𝐼𝐹𝑊 distribution is obtained by solving 

the following equation, with respect to 𝑥𝑞  

                     𝐹 𝑥𝑞 =  𝑞,                      0 <  𝑞 <  1                (15) 

Using the distribution function of 𝐾𝐼𝐹𝑊 distribution, from 

(6), we have 

                             1 −  1 − e−𝛼𝑒
𝜇
𝑥𝑞

−𝜎𝑥𝑞

 

𝛽

= 𝑞                                   

By solving the above equation, we obtain  

                            𝜎𝑥𝑞
2 + 𝑐 𝑞 𝑥𝑞 − 𝜇 = 0                                  (16) 

Where 

𝑐 𝑞 =  𝑙𝑜𝑔𝑒

 
 
 

 
 

− 

𝑙𝑜𝑔𝑒  1 −  1 − 𝑞 
1
𝛽 

𝛼

 
 
 

 
 

     

By solving the above equation, we obtain 𝑥𝑞  as follows 

      𝑥𝑞 =
−𝑐 𝑞  ∓  𝑐 𝑞 2 +  4𝜎𝜇

2𝜎
 

Since the quantile 𝑥𝑞  is positive, then we obtain 𝑥𝑞  as follows 

                               𝑥𝑞 =
−𝑐 𝑞  ∓  𝑐 𝑞 2 +  4𝜎𝜇

2𝜎
               (17) 

So, the simulation of the KIFW distribution random variable 

is straightforward. Let U be a uniform variable of the unit 

interval (0,1). Thus by means of inverse transformation 

method, we consider the random variable X given by 

𝑋 =
−𝑐 𝑢 + 𝑐(𝑢)2+4𝜎𝜇

2𝜎
                              

Since the median is 50% quantile, then by setting 𝑞 =
1

2
  in 

equation (17), we get the median of 𝐾𝐼𝐹𝑊 distribution. 

3.3 The Moments 
The 𝑟 − 𝑡𝑕 moment of the random variable 𝑋 with probability 

density function 𝑓 𝑥  is given by 
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                          𝜇𝑟
′ =  𝑥𝑟

∞

−∞

𝑓 𝑥  𝑑𝑥                                        (18)  

Substituting from Eq. (14) into (18), as follow: 

 

𝜇𝑟
′ = 𝛼𝛽   

 −1 𝑖+𝑗

𝑖! 𝑗! 𝑘!

∞

𝑘=0

 𝑖 + 1 𝑗𝛼𝑗  j + 1 𝑘μ𝑘Γ 𝛽 

Γ 𝛽 − 𝑖 

∞

𝑗=0

∞

𝑖=

 

    {𝜇𝑥𝑟− 𝑘+2 𝑒− j+1 𝜎𝑥 + 𝜎𝑥𝑟−𝑘𝑒− j+1 𝜎𝑥 }

∞

0

𝑑𝑥         (19) 

By using the definition of gamma function, in the form 

Γ 𝜆 =  𝜂𝜆𝑡𝜆−1𝑒−𝜂𝑡
𝜆
𝑑𝑡

∞

0

,                    𝜆, 𝑧 > 0 

We obtain the 𝑟 − 𝑡𝑕 moment of 𝐾𝐼𝐹𝑊  distribution in the 

form 

𝜇𝑟
′ = 𝛼𝛽   

 −1 𝑖+𝑗

𝑖! 𝑗! 𝑘!

∞

𝑘=0

 𝑖 + 1 𝑗𝛼𝑗  j + 1 𝑘μ𝑘Γ 𝛽 

Γ 𝛽 − 𝑖 

∞

𝑗=0

∞

𝑖=0

 

                
𝜇Γ(𝑟 − (𝑘 + 1)

[(𝑗 + 1)𝜎]𝑟−(𝑘+1)
+

𝜎Γ(𝑟 − (𝑘 − 1)

[(𝑗 + 1)𝜎]𝑟−(𝑘−1)
               (20) 

3.4 The Moment Generating Function 
The moment generating function of the random variable 𝑋 

with the density function 𝑓(𝑥) is given by  

                           𝑀𝑋 𝑡 =  𝑒𝑡𝑥
∞

−∞

𝑓 𝑥 𝑑𝑥                                (21) 

Using series expansion of 𝑒𝑡𝑥  , we obtain  

                                 𝑀𝑋 𝑡 =  
𝑡𝑟

𝑟!

∞

𝑟=0

𝜇𝑟
′                                       (22) 

Substituting from Eq. (20) into Eq. (22) we obtain the moment 

generating function of 𝐾𝐼𝐹𝑊 distribution in the form 

𝑀𝑋 𝑡 

= 𝛼𝛽    
 −1 𝑖+𝑗

𝑖! 𝑗! 𝑘! 𝑟!

∞

𝑟=0

 𝑖 + 1 𝑗𝛼𝑗  j + 1 𝑘μ𝑘Γ 𝛽 𝑡𝑟

Γ 𝛽 − 𝑖 

∞

𝑘=0

∞

𝑗=0

 

∞

𝑖=0

 

             ×  
𝜇Γ(𝑟 − (𝑘 + 1)

[(𝑗 + 1)𝜎]𝑟−(𝑘+1)

+
𝜎Γ(𝑟 − (𝑘 − 1)

[(𝑗 + 1)𝜎]𝑟−(𝑘−1)
                           (23)  

4. PARAMETER ESTIMATION 
In this section, the maximum likelihood estimation is used to 

estimate the unknown parameters. Let 𝑋1, 𝑋2, … . , 𝑋𝑛  be a 

random sample of size 𝑛 from the KIFW distribution given by 

(6). The likelihood function for the vector of parameters 

𝚯 =  (𝛼, 𝛽, 𝜇, 𝜎) can be expressed as 

𝑙𝑓 = 𝛼𝑛𝛽𝑛   
𝜇

𝑥𝑖
2 + 𝜎 

𝑛

𝑖=1

𝑒
  

𝜇
𝑥𝑖
−𝜎𝑥𝑖 

𝑛
𝑖=1 𝑒−𝛼  𝑒

𝜇
𝑥𝑖

−𝜎𝑥𝑖𝑛
𝑖=1  

  𝟏− 𝒆
 (

𝝁
𝒙𝒊
−𝝈𝒙𝒊)

𝒏
𝒊=𝟏  

𝜷−𝟏𝒏

𝒊=𝟏

 

Hence, the log-likelihood function ℓ(𝚯) becomes 

ℓ(𝚯) = 𝑛.  log𝑒 𝛼 + log𝑒 𝛽  +  log𝑒⁡ 
𝜇

𝑥𝑖
2 + 𝜎 

𝑛

𝑖=1

 

+  
𝜇

𝑥𝑖
− 𝜎𝑥𝑖 − 𝛼 ⁡𝑒

𝜇
𝑥𝑖
−𝜎𝑥𝑖

𝑛

𝑖=1

 

𝑛

𝑖=1

    

                        +(𝛽 − 1) ⁡

𝑛

𝑖=1

log𝑒  1 − 𝑒−𝛼𝑒
𝜇
𝑥𝑖

−𝜎𝑥𝑖

              (24) 

The partial derivatives of ℓ(𝚯) with respect to each parameter 

𝛼, 𝛽, 𝜇 and 𝜎 are given by: 

𝑈𝛼 =
𝑛

𝛼
− 𝑒

𝜇
𝑥𝑖
−𝜎𝑥𝑖

𝑛

𝑖=1

+  𝛽 − 1  
𝑒
𝜇
𝑥𝑖
−𝜎𝑥𝑖𝑒−𝛼𝑒

𝜇
𝑥𝑖

−𝜎𝑥𝑖

 1 − 𝑒−𝛼𝑒
𝜇
𝑥𝑖

−𝜎𝑥𝑖
 

𝑛

𝑖=1

     (25) 

                𝑈𝛽 =
𝑛

𝛽
+  ⁡

𝑛

𝑖=1

log𝑒  1 − 𝑒−𝛼𝑒
𝜇
𝑥𝑖

−𝜎𝑥𝑖

                     (26) 

         𝑈𝜇 =  
1

𝑥𝑖
2 

𝜇

𝑥𝑖
2+𝜎 

𝑛
𝑖=1 +  

1

𝑥𝑖

𝑛
𝑖=1 − 𝛼 

𝑒
𝜇
𝑥𝑖

−𝜎𝑥𝑖

𝑥𝑖

𝑛
𝑖=1 + 

                   𝛼 𝛽 − 1  
𝑒
𝜇
𝑥𝑖
−𝜎𝑥𝑖𝑒−𝛼𝑒

𝜇
𝑥𝑖

−𝜎𝑥𝑖

𝑥𝑖  1 − 𝑒−𝛼𝑒
𝜇
𝑥𝑖

−𝜎𝑥𝑖
 

𝑛

𝑖=1

                        (27) 

𝑈𝜎 =  
1

 
𝜇
𝑥𝑖

2 + 𝜎 

𝑛

𝑖=1

− 𝑥𝑖

𝑛

𝑖=1

+ 𝛼 𝑥𝑖𝑒
𝜇
𝑥𝑖
−𝜎𝑥𝑖

𝑛

𝑖=1

 

                   −𝛼 𝛽 − 1  
𝑥𝑖𝑒

𝜇
𝑥𝑖
−𝜎𝑥𝑖𝑒−𝛼𝑒

𝜇
𝑥𝑖

−𝜎𝑥𝑖

 1 − 𝑒−𝛼𝑒
𝜇
𝑥𝑖

−𝜎𝑥𝑖
 

𝑛

𝑖=1

                     (28) 

Setting these equations to zero and solving them 

simultaneously yields the MLEs of the four parameters. For 

interval estimation of the model parameters, we require the 

4 × 4 observed information matrix  𝐽 Θ = {𝑈𝑟𝑠 } (𝑓𝑜𝑟 𝑟, 𝑠 =
𝛼, 𝛽, 𝜇, 𝜎) given in Appendix. Under standard regularity 

conditions, the multivariate normal 𝑁4(0;  𝐽(Θ )−1) 

distribution can be used to construct approximate confidence 

intervals for the model parameters. (Cox and Hinkley [17]), 

here, 𝐽(𝛩 ) is the total observed information matrix evaluated 

at Θ . Then, the 100 1 − 𝛾 % confidence intervals for 𝛼, 𝛽, 𝜇 

and 𝜎 are given by: 

 𝛼 + 𝑧𝛾

2
 𝑣𝑎𝑟(𝛼 ), 𝛽 + 𝑧𝛾

2

 𝑣𝑎𝑟(𝛽 ) , 𝜇 + 𝑧𝛾

2
 𝑣𝑎𝑟(𝜇 ) 𝑎𝑛𝑑  𝜎 +

𝑧𝛾

2

 𝑣𝑎𝑟 𝜎    respectively, where the 𝑣𝑎𝑟(. )’𝑠 denote the 

diagonal elements of  𝐽(Θ )−1 corresponding to the model 

parameters, and  𝑧𝛾  

2

is the quantile   1 −
𝛾

2
 100% of the 

standard normal distribution. The likelihood ratio LRT 

statistic can be used to check if the 𝐾𝐼𝐹𝑊 distribution is 

strictly “superior” to the 𝐼𝐹𝑊 distribution for a given data set. 

Then, the test of 𝐻0 ∶ 𝛼 = 𝛽 = 1 versus 𝐻1 ∶  𝛼 ≠ 𝛽 ≠ 1 is 

equivalent to compare the 𝐾𝐼𝐹𝑊 and 𝐼𝐹𝑊 distributions and 

the LRT statistic becomes Λ = 2{ℓ(α , 𝛽 , μ , σ ) − ℓ 1,1, 𝜇 , 𝜎  }, 

where 𝛼 , 𝛽 , 𝜇  and 𝜎  are the MLEs under 𝐻1 and 𝜇  and 𝜎  are 

the estimates under 𝐻0. The LRT statistic Λ is asymptotically 

(as 𝑛 → ∞ ) distributed as 𝜒𝑞
2 , where 𝑞 is the number of 

parameters specified under 𝐻0 . The LRT rejects 𝐻0 if 

Λ > 𝜒𝑞;1−𝛾
2  , where 𝜒𝑞;1−𝛾

2  denotes the 100𝛾 % quantile of the 

𝜒𝑞
2  distribution. 

5. SIMULATION RESULTS 
We shall report the results from a Monte Carlo experiment on 

the finite sample behavior of the MLEs of the parameters 

𝛼, 𝛽, 𝜇 and 𝜎. The simulation was carried out using the GW 

Basic programming language and were obtained from 1,000 

Monte Carlo replications. In each replication, a random 

sample of size n is drawn from the 𝐾𝐼𝐹𝑊(𝛼, 𝛽, 𝜇, 𝜎 ) 

distribution and the parameters were estimated by maximum 
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likelihood. In Table 1, we present the means of the MLEs of 

the four parameters with the corresponding bias and root 

mean squared error (RMSE) for sample sizes 50, 100 and 200. 

The true parameters values used in the data generating 

processes are 𝛼 =  1.5, 𝛽 =  0.5, 𝜇 =  2.0 and 𝜎 = 1.5 . 

Based on the figures in Table 1, we note that the MSEs of the 

estimates decay toward zero as the sample size increases, as 

usually expected under standard regularity conditions. As the 

sample size n increases, the mean estimates of the parameters 

tend to be closer to the true parameter values. This fact 

supports that the asymptotic normal distribution provides an 

adequate approximation to the finite sample distribution of the 

estimates. 

Table 1. Mean estimates and root mean squared errors of 

the MLEs based Monte Carlo simulation. 

Parameters 𝛼 𝛽 𝜇 𝜎 

N
=

5
0

 

Mean 
1.50018 0.51999 2.05879 1.50081 

Bias 
0.00018 0.01999 0.05879 0.00081 

RMSE 
0.00307 0.08050 0.22873 0.02196 

N
=

1
0
0

 

Mean 
1.50000 0.50909 2.02991 1.50003 

Bias 
0.00000 0.00909 0.02991 0.00003 

RMSE 
0.00019 0.05662 0.15828 0.00019 

N
=

2
0
0

 

Mean 
1.50000 0.50570 2.01643 1.50001 

Bias 
0.00000 0.00570 0.01643 0.00001 

RMSE 
0.00003 0.03685 0.10910 0.00003 

 

6. APPLICATIONS 
In this section, we illustrate the usefulness of the 𝐾𝐼𝐹𝑊 

distribution. We fit this distribution to the real data sets and 

compare the results with the Inverse Weibull 𝐼𝑊 and Inverse 

flexible Weibull Extension 𝐼𝐹𝑊 distributions. The data set 

given in Table 2 is taken from Murthy, Xie, and Jiang (2004) 

page 180 [18] and represents 50 items put into use at 𝑡 = 0 

and failure times are in weeks. 

Table 2: 𝟓𝟎 items put into use at 𝒕 = 𝟎 and their failure 

times in weeks 

0.013 0.065 0.111 0.111 0.163 0.309 

0.426 0.535 0.684 0.747 0.997 1.284 

1.304 1.647 1.829 2.336 2.838 3.269 

3.973 3.981 4.520 4.789 4.849 5.202 

5.291 5.349 5.911 6.018 6.427 6.456 

6.572 7.023 7.087 7.291 7.787 8.596 

9.388 10.281 10.713 11.658 13.006 13.388 

13.842 17.152 17.283 19.418 23.471 24.777 

32.795 48.105     

 

Tables 3 provide the MLEs of the model parameters. The 

model selection is carried out using the AIC (Akaike 

information criterion), the BIC (Bayesian information 

criterion) and the CAIC (Consistent Akaike information 

criteria): 

 𝐴𝐼𝐶 = 2𝑞 − 2ℓ(𝚯 ),  𝐵𝐼𝐶 = 𝑞𝑙𝑜𝑔(𝑛) − 2ℓ(𝚯 )  and 𝐶𝐴𝐼𝐶 =
2𝑞𝑛

𝑛−𝑞−1
− 2ℓ(𝚯 ). Where ℓ(𝚯 ) denotes the log-likelihood 

function evaluated at the maximum likelihood estimates, q is 

the number of parameters and n is the sample size. Since the 

values of the AIC, BIC and CAIC are smaller for the 𝐾𝐼𝐹𝑊 

distribution compared with those values of the other models, 

the new distribution seems to be a very competitive model to 

these data.  

Table 3: MLEs of the model parameters, the 

corresponding SEs (given in parentheses) and the statistics 

AIC, BIC and CAIC Estimates Statistic 

Model IW IFW KIFW 

a   
1.819 

(0.00069) 

b   
0.854 

(0.12029) 

μ 
1.125 

(0.16557) 

0.027 

(0.00424) 

0.015 

(0.00429) 

σ 
0.479 

(0.04542 

0.136 

(0.01878) 

0.181 

(0.00011) 

ℓ(𝛉 ) -168.641 -161.070 

 

-153.334 

 

AIC 341.282 326.140 

 

314.668 

 

BIC 345.106 329.964 

 

322.316 

 

CAIC 341.537 326.395 

 

315.557 

 

 
The 𝐼𝐹𝑊 distribution is a special case of 𝐾𝐼𝐹𝑊 distribution. 

We want to test if these data fit the 𝐼𝐹𝑊 or the 𝐾𝐼𝐹𝑊, using 

the likelihood ratio test Λ =  2 ℓ(α , 𝛽 , μ , σ ) − ℓ 1,1, μ , σ   . 
The hypotheses are as follows: 

𝐻0 ∶  𝛼 =  1, 𝛽 =  1  𝐼𝐹𝑊  

𝑣𝑒𝑟𝑠𝑢𝑠 𝐻1 ∶ 𝛼 ≠ 1 , 𝛽 ≠  1 (𝐾𝐼𝐹𝑊) . 

The likelihood ratio statistic Λ is 15.472. We observed that 

the calculated LRT statistic is greater than the upper 99% 

quantile of a chi-square random variable with 2 degree of 

freedom 𝜒2,99%
2 = 9.210, it is clear that we reject the null 

hypotheses.  We can therefore conclude that this data fits the 

KIFW distribution much better than the IFW distribution. 
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Figure 3: The Fitted cumulative distribution function for 

the data. 

 

7. CONCLUSIONS 
Here is a new proposal model that concluded from the current 

essay and it's called kumaraswamy inverse flexible Weibull 

extension distribution which extends the inverse flexible 

Weibull extension distribution in the analysis of data with real 

support. An obvious reason for generalizing a standard 

distribution is because the generalized form provides more 

flexibility in modeling real data. We derive expansions for 

moments and for the moment generating function. The 

estimation of parameters is approached by the method of 

maximum likelihood, also the information matrix is derived. 

An application of the KIFW distribution to real data show that 

the new distribution can be used quite effectively to provide 

better fits than the IFW distribution.Finally, we hope that the 

proposed model will attact wider applications in reliability 

engineering, survival and life time data.  
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9. APPENDIX  
The elements of the observed Fisher information matrix 𝐽 𝜽  
for the parameters (𝛼, 𝛽, 𝜇, 𝜎) 

𝐽 𝜽 =  −

 
 

 

  

𝑈𝛼𝛼 𝑈𝛼𝛽 𝑈𝛼𝜇 𝑈𝛼𝜎

. 𝑈𝛽𝛽 𝑈𝛽𝜇 𝑈𝛽𝜎

. . 𝑈𝜇𝜇 𝑈𝜇𝜎

. . . 𝑈𝜎𝜎

    

 
 

 

 

are given by 

𝑈𝛼𝛼 = −
𝑛

𝛼2
−  𝛽 − 1  

 𝑒
𝜇
𝑥𝑖
−𝜎𝑥𝑖 

2

𝑒−𝛼𝑒
𝜇
𝑥𝑖

−𝜎𝑥𝑖

 1 − 𝑒−𝛼𝑒
𝜇
𝑥𝑖

−𝜎𝑥𝑖
 

𝑛

𝑖=1

 

       −(𝛽 − 1) 

 𝑒
𝜇
𝑥𝑖
−𝜎𝑥𝑖 

2

 𝑒−𝛼𝑒
𝜇
𝑥𝑖

−𝜎𝑥𝑖

 

2

 1 − 𝑒−𝛼𝑒
𝜇
𝑥𝑖

−𝜎𝑥𝑖
 

2

𝑛

𝑖=1

                   (29) 
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         𝑈𝛼𝛽 = ⁡

𝑛

𝑖=1

 𝑒
𝜇
𝑥𝑖
−𝜎𝑥𝑖 𝑒−𝛼𝑒

𝜇
𝑥𝑖

−𝜎𝑥𝑖

 1 − 𝑒−𝛼𝑒
𝜇
𝑥𝑖

−𝜎𝑥𝑖
 

                                (30) 

𝑈𝛼𝜇 = − 
𝑒
𝜇
𝑥𝑖
−𝜎𝑥𝑖

𝑥𝑖

𝑛

𝑖=1

+  𝛽 − 1  
𝑒
𝜇
𝑥𝑖
−𝜎𝑥𝑖𝑒−𝛼𝑒

𝜇
𝑥𝑖

−𝜎𝑥𝑖

𝑥𝑖  1 − 𝑒−𝛼𝑒
𝜇
𝑥𝑖

−𝜎𝑥𝑖
 

𝑛

𝑖=1

 

−𝛼 𝛽 − 1  
 𝑒

𝜇
𝑥𝑖
−𝜎𝑥𝑖 

2

𝑒−𝛼𝑒
𝜇
𝑥𝑖

−𝜎𝑥𝑖

𝑥𝑖  1 − 𝑒−𝛼𝑒
𝜇
𝑥𝑖

−𝜎𝑥𝑖
 

𝑛

𝑖=1

          

               +𝛼 𝛽 − 1  

 𝑒
𝜇
𝑥𝑖
−𝜎𝑥𝑖 

2

 𝑒−𝛼𝑒
𝜇
𝑥𝑖

−𝜎𝑥𝑖

 

2

𝑥𝑖  1 − 𝑒−𝛼𝑒
𝜇
𝑥𝑖

−𝜎𝑥𝑖
 

2

𝑛

𝑖=1

          (31) 

𝑈𝛼𝜎 =  𝑥𝑖𝑒
𝜇
𝑥𝑖
−𝜎𝑥𝑖

𝑛

𝑖=1

−  𝛽 − 1  
𝑥𝑖𝑒

𝜇
𝑥𝑖
−𝜎𝑥𝑖𝑒−𝛼𝑒

𝜇
𝑥𝑖

−𝜎𝑥𝑖

𝑥𝑖  1 − 𝑒−𝛼𝑒
𝜇
𝑥𝑖

−𝜎𝑥𝑖
 

𝑛

𝑖=1

 

        +𝛼 𝛽 − 1  
𝑥𝑖  𝑒

𝜇
𝑥𝑖
−𝜎𝑥𝑖 

2

𝑒−𝛼𝑒
𝜇
𝑥𝑖

−𝜎𝑥𝑖

 1 − 𝑒−𝛼𝑒
𝜇
𝑥𝑖

−𝜎𝑥𝑖
 

𝑛

𝑖=1
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𝑥𝑖  𝑒
𝜇
𝑥𝑖
−𝜎𝑥𝑖 

2

 𝑒−𝛼𝑒
𝜇
𝑥𝑖

−𝜎𝑥𝑖

 

2

 1 − 𝑒−𝛼𝑒
𝜇
𝑥𝑖

−𝜎𝑥𝑖
 

2

𝑛

𝑖=1

                (32) 

                                    𝑈𝛽𝛽 = −
𝑛

𝛽2
                                      (33) 

                       𝑈𝛽𝜇 = 𝛼 
𝑒
𝜇
𝑥𝑖
−𝜎𝑥𝑖𝑒−𝛼𝑒

𝜇
𝑥𝑖

−𝜎𝑥𝑖

𝑥𝑖  1 − 𝑒−𝛼𝑒
𝜇
𝑥𝑖

−𝜎𝑥𝑖
 

𝑛

𝑖=1

                (34) 

         𝑈𝛽𝜎 = −𝛼 
𝑥𝑖𝑒

𝜇
𝑥𝑖
−𝜎𝑥𝑖𝑒−𝛼𝑒

𝜇
𝑥𝑖

−𝜎𝑥𝑖
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𝜇
𝑥𝑖

−𝜎𝑥𝑖
 

𝑛

𝑖=1
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𝑥𝑖
4  

𝜇
𝑥𝑖

2 + 𝜎 

2

𝑛
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𝑛
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𝑒
𝜇
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𝜇
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𝑛
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2
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𝑛
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