
International Journal of Computer Applications (0975 – 8887)

Volume 154 – No.8, November 2016

43

Regression Testing based on Genetic Algorithms

Esha Khanna
Assistant Professor

IT Department
D. A. V Institute of Management,

Faridabad, India

ABSTRACT

Regression testing re-executes the test cases to validate that

changes made in software does not affects the correct

functionality inherited from previous version. Due to limited

time and resources, test cases are prioritized based on some

criteria such that important test cases are executed within

testing period. The work proposes a genetic algorithm based

prioritization technique, which intelligently reorders the test

cases on maximum fault detection rate. The work paves the

way of genetic algorithms in regression testing.

General Terms

Algorithms, Reliability, Testing.

Keywords

Regression Testing, Test Case Prioritization, Genetic

Algorithms.

1. INTRODUCTION
Efficient and thorough testing is required to build quality

software. During maintenance phase, software may go

through number of changes. A bug may get fixed or new

functionality may be added. Regression testing re-executes the

test cases to validate that changed modules have not

interrupted the proper working of other modules [1]. It

ensures that the inherited functionality from previous version

has not been affected by the modification. Further, new test

cases that focus on enhanced software functionality are added

to the test suite. As a result, size of regression test suite grows

and test cases become colossal.

Re-executing all the regression test cases is a costly process.

Due to limited time, cost and resources only a part of test suite

is executed. Selection of such test cases has to be based on

some criterion such that quality of testing is not deteriorated.

One such technique is test case prioritization. In test case

prioritization, test cases are ordered in such a way that most

important test cases are executed before others [2].

The work proposes genetic algorithm based intelligent

technique to prioritize test cases for regression testing.

Genetic algorithms are adaptive heuristic search algorithms

that are based on Charles Darwin theory of the survival of the

fittest [3]. Genetic Algorithms are used to solve optimization

problem. The work proposes a technique that prioritizes

subsequence of regression test suite in such a way, that its

execution has a high rate of fault coverage when compared to

rates of randomly prioritized test suite. The work reviews

various techniques of test case prioritization.

The paper has been organized as follows. Section two

discusses regression testing. Section three reviews various

techniques of test case prioritization. Section four explains

genetic algorithms. Section five presents the proposed

framework and section six concludes.

2. REGRESSION TESTING
Software undergoes many changes during its maintenance

phase. New features reflecting new customer requirements are

added and some existing features are updated. Changes in the

version of software, requires its retesting to confirm that new

features have not affected the functioning of derived features.

This is known as regression testing. Regression testing is

selective retesting of the system or components to verify that

modifications have not caused an unintended effects and the

system or component still complies with its specified

requirements [4]. Regression testing is required in the

following scenarios [5].

 Software code is modified in accordance to changed

customer requirements.

 Functionality of software is enhanced.

 Fixing of defects in previous versions.

 Removal of obsolete functionality from previous

version.

Test cases of regression test suite are classified in three

categories [6].

 Test cases that tests all software functionality.

 Test cases that focuses on the functionality that may

be affected by the new changes.

 Test cases that are added to the test suite to test

enhanced software functionality.

As new test cases are added the size of regression test suite

grows rapidly. Regression is the most expensive phase of

software testing and is required whenever the software

functionality is updated. Regression testing may be done

manually or can be automated with help of playback tools [6].

Re-executing all the test cases of regression test suite is a

costly process. Due to restricted time and resources, subset of

test cases is executed. Techniques of regression testing are

selection, minimization and prioritization [7]. Test case

selection technique selects and re-executes only a subset of

test cases that focuses on changed module [7]. Test case

minimization technique reduces the test case suite based on

some criterion [7]. Test case prioritization technique reorders

the test cases based on some criterion in such a way that most

important test cases are executed within time and resources

[8].

International Journal of Computer Applications (0975 – 8887)

Volume 154 – No.8, November 2016

44

Fig 1: Techniques of Regression Testing

Test case selection and minimization techniques reduce the

number of test cases of regression test suite, while test case

prioritization does not alter the number of test cases. Test

cases are assigned high, medium and low priorities on the

basis of given criterion. Prioritization criteria may be based on

test case history [9], coverage [10], fault severity [11],

customer requirements [12] or costs [13]. The work proposes

a technique which prioritizes the test cases based on

maximum fault coverage by using genetic algorithms.

3. LITERATURE REVIEW
An extensive review has been carried out in order to find the

gap in the existing literature. The review has been carried out

on the guidelines of Kitchenham [14]. Some of the works has

been summarized in this section.

Zing Li, et. al. presented five search algorithms for test case

prioritization of regression suite [15]. Two metaheuristic

search techniques and three greedy algorithm techniques were

studied. Techniques included hill climbing, Genetic

Algorithm, greedy, additional greedy and 2-optimal greedy

algorithms. The work carried out an empirical study to

compare 5 algorithms on 6 programs ranging from 374-11148

lines of code. Results showed that additional greedy and 2-

optimal algorithm have best overall results. In one of the

works, cuckoo search was used for test case selection and

prioritization [16]. Cuckoo search is a single parameter

optimization problem which is inspired by the obligate brood

parasitism of cuckoo species. The work prioritized test cases

on criteria of number of faults covered in minimum time.

Elbaum et. al. [17] proposed various test case prioritization

techniques to improve the rate of fault detection.14 test casse

prioritization techniques were classified into three groups i.e

control techniques, statement level techniques and function

level techniques. The work resulted that fine granuality

techniques are better than course granularity techniques.

Cagatay Catal discussed various critical issues for regression

testing [18]. The work introduced ten best practices for test

case prioritization and their role in successful software testing.

Yoo and Harman classified test case prioritization techniques

into 9 groups [7]. They were coverage based, distribution

based human based, probabilistic approach, history based,

requirement based, model based, cost aware approach and

others.

Genetic algorithms were used by Konsaard and Ramingwong

to carry out the task of test case prioritization [19]. The work

reordered test cases according to criteria of maximum code

coverage. The work compared performance of proposed

technique with five other approaches on the basis of average

percentage of condition covered and execution time. In the

work by Harsh Bhasin and Manoj, a Genetic Algorithm based

prioritization technique was proposed [3]. The technique used

coupling number calculator to assign fitness value to test

cases. Test cases prioritized using this technique resulted in

high fault detection rate in comparison to others.

4. GENETIC ALGORITHM
Genetic algorithm (GA) is heuristic search algorithm inspired

by Charles Darwin theory of natural evolution. GA is an

intelligent search technique and is used to solve optimization

problems [20]. It performs random searches through a pool of

solution and aims to find best alternative according to some

given criterion. Basic steps of a GA are as follows.

Step 1: Selection of initial population- The first step is to

select a finite set of individuals (chromosomes) for a given

problem. These individuals represent feasible solution. This

leads to the generation of initial population.

Step 2: Evaluation of each individual- Each member of the

population is evaluated according to some objective function.

The objective function (also known as fitness function)

assigns a fitness value to each individual member of

population based on some given criterion.

Step 3: Generate new population- A new population of

solution is generated by applying GA operators. These are

reproduction, crossover and mutation [21].

 Reproduction operator- Chromosomes are selected

from initial population and are entered to mating

process by using reproduction operator. The

selection methods are Roulette wheel selection,

Rank selection, Tournament selection and

Boltzmann selection [21].

 Crossover operator- crossover operator takes

selected chromosomes as inputs and generates new

offspring. It mimics the biological recombination of

chromosomes. For two given chromosomes X={x1,

x2…… xn} and Y={y1, y2……yn} and a crossover

point say k, crossover operator generates two new

chromosomes X1={x1……xk ,yk+1…….yn} and

Y1={y1……yk , xk+1…….xn}. Crossover operator

is classified as simple crossover, double crossover

and N-point crossover [21].

 Mutation operator- Mutation operator changes the

genetic makeup of offspring. It randomly replaces

some of the bits of child chromosome. Different

techniques of mutation operator are flipping,

interchanging and reversing [21].

Step 4: Stopping criteria- Duplicates are removed from the

new generation of chromosomes. If optimized solution is

obtained stop, else go to step 2. Stopping conditions for GA

are maximum generations, Elapsed time and unchanged

fitness [21].

5. PROPOSED WORK
The work proposes use of genetic algorithm in regression

testing. Test cases in regression test case suit become

colossal. Re-executing all the test cases is not possible within

limited time and resources. In such scenarios, test cases need

to be prioritized. Test cases of regression test suite are

intelligently reordered so that only important test cases are re-

executed without affecting the overall quality of testing. This

can be useful if the testing has to be stopped prematurely due

to restricted cost and resources. The work prioritizes test cases

using genetic algorithm on the basis of rate of fault detection.

Fault detection depicts how quickly a test case can detect

maximum number of faults within testing process assuming

that all the faults are of equal severity. This helps in providing

Regression
Testing

Test Case
Selection

Test Case
Minimization

Test Case
Prioritization

International Journal of Computer Applications (0975 – 8887)

Volume 154 – No.8, November 2016

45

a feedback in an early stage thereby assisting the developers

to fix them on time. Steps of proposed work are as follows.

Test cases for each module are generated. The task can be

automated using test generation tools. This forms the initial

population of solution. Each test case is then assigned a

fitness value on the basis of number of fault coverage criteria.

The test case which covers more faults is assigned a greater

fitness value than the test case which covers less number of

faults. On the basis of fitness value, best test cases are

selected to form a test suite in such a way that execution of

suite leads to total fault coverage in a module. In order to

create new generation of prioritized test cases genetic

operators are applied. Crossover operator applied to test suits

generates randomness in solution. In order to add variation in

new generation, mutation operator is applied. Duplicate test

cases are removed and prioritized test cases are obtained. The

process is summarized in figure.

Fig 2: Steps of proposed work

6. CONCLUSION
Modification of software requires re-execution of all the test

cases to validate that changes in one module have not

modified correct functionality of others. Due to limited

resources, all the test cases cannot be re-executed within the

development period. Prioritization of test cases is required

in order to maintain quality of regression testing. Test cases

need to be prioritized in such a way that important test cases

are executed before completion of software. This results in

cost effective regression testing within limited time and

resources. The work prioritizes test cases on the basis of high

fault coverage rate. The paper presents use of genetic

algorithm that optimizes the task of regression test case

prioritization. The technique would be helpful to both

researchers and practitioners if the testing has to be stopped

prematurely due to lack of resources.

7. REFERENCES
[1] Chauhan, N. 2010. Software Testing principles and

practices. Oxford University Press.

[2] Rothermel, G., et. al. 2001. Prioritizing Test Cases for

Regression Testing. IEEE Transactions on Software

Engineering. vol. 27, no. 10, pp. 929-948, DOI

10.1109/32.962562.

[3] Bhasin, H., Manoj. 2012. Regression Testing Using

Coupling and Genetic Algorithms. International Journal

of Computer Science and Information Technologies. Vol.

3(1).

[4] IEEE std. definition of Regression Testing.

[5] Rajal, J. S., Sharma, S. 2015. A Review on Various

Techniques for Regression Testing and Test Case

Prioritization. International Journal of Computer

Applications. Volume 116, No. 16.

[6] Pressman, R.S. 2010. Software engineering: a

practitioner's approach. McGraw-Hill Higher Education.

[7] Yoo, S., Harman, M. 2012. Regression testing

minimization, selection and prioritization: a survey.

Software Testing, Verification & Reliability. John Wiley

and Sons Ltd. Volume 22 Issue 2, Pp. 67-120.

[8] Srivastava, P., R. 2008. Test Case Prioritization. Journal

of Theoretical and Applied Information Technology.pp

178-181

[9] Engström, E., et. al. 2011. Improving Regression Testing

Transparency and Efficiency with History-Based

Prioritization -- An Industrial Case Study. Software

Testing, Verification and Validation (ICST). IEEE

Fourth International Conference on 21-25 March 2011

Page(s):367 - 376 Berlin,IEEE,

DOI:10.1109/ICST.2011.27.

[10] David Leon and Andy Podgurski. 2003. A Comparison

of Coverage-Based and Distribution-Based Techniques

for Filtering and Prioritizing Test Cases. In Proceedings

of the 14th International Symposium on Software

Reliability Engineering (ISSRE ‘03). IEEE Computer

Society, Washington, DC, USA, 442

[11] Sejun Kim and Jongmoon Baik. 2010. An Effective Fault

Aware Test Case Prioritization by Incorporating a Fault

Localization Technique. In Proceedings of the 2010

ACM-IEEE International Symposium on Empirical

Software Engineering and Measurement (ESEM ‘10).

ACM, New York, NY, USA, Article 5, 10 pages

[12] R. Kavitha, V.R. Kavitha, N. Suresh Kumar. 2010.

Requirement Based Test Case Prioritization. In

Proceedings of International Conference on

Communication Control and Computing Technologies,

826–829.

[13] Ramasamy, K., Mary, S.A., 2008.Incorporating varying

requirement priorities and costs in test case prioritization

for new and regression testing IEEE, Computing,

Communication and Networking.

[14] Kitchenham, B.A. et. al. 2010. Systematic literature

reviews in software engineering .A tertiary study,

Information & Software Technology .INFSOF , vol. 52,

no. 8, pp. 792-805, 2010

step 1

•Generate test cases for each

module(initial population)

step 2

•Assign fitness number to each test case

based on fault coverage criteria

step 3

•Select best test cases leading to total

fault coverage and create test suits

step 4
•Apply crossover operator

step 5
•Apply mutation operator

step 6
•Remove duplicate test cases

step 7
•prioritized test cases

http://dx.doi.org/10.1109/32.962562
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Ramasamy,%20K..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Mary,%20S.A..QT.&newsearch=true

International Journal of Computer Applications (0975 – 8887)

Volume 154 – No.8, November 2016

46

[15] Li. Z., et. al. 2007. Search Algorithms for Regression

Test Case Prioritization. Software Engineering, IEEE

transactions vol 33 issue 4.

[16] Nagar, R., et. al. 2015. Test case selection and

prioritization using cuckoos search algorithm.

International conference on Furistic Trends on

Computational Analysis and Knowledge Management.

IEEE.

[17] Elbaum, S., et. al. 2000. Prioritizing test cases for

Regression testing. Presented in international symposium

of software testing and analysis. 102-112.

[18] Catal, C. 2012. The Ten Best Practices for Test Case

Prioritization. ICIST. Springer. pp 452-459.

[19] Konsaard, P., Ramingwong, L. 2015. Total coverage

based regression test case prioritization using genetic

algorithm. 12th International conference on Electrical

Engineering/Electronics, Computer, Telecommunications

and Information Technology. IEEE.

[20] Klir, G. J., Yaun, B. 1995. Fuzzy sets and Fuzzy logic

theory and applications. Appendix B- Genetic

Algorithms- An overview. Pearson Education Inc.

[21] Shivanandam, S. N., Deepa, S. N. 2012. Principles of

Soft Computing. Second edition. Wiley India.

IJCATM : www.ijcaonline.org

