
International Journal of Computer Applications (0975 – 8887)

Volume 154 – No.8, November 2016

33

Formal based Verification to Build Safer Cars

Deva Phanindra Kumar
Analog Devices, Inc

RMZ Infinity
Bangalore

Shweta Pujar
Analog Devices, Inc

RMZ Infinity
Bangalore

Ranganayakulu Sri
Analog Devices, Inc

RMZ Infinity
Bangalore

ABSTRACT

Functional safety features are an essential part of automotive

system-on-chip development. ISO26262 standard dictates

ASIC development process in safety applications like airbag

control, electronic stability control. This paper focuses on

verification requirements and fault injection simulation

requirement of ISO26262 standard. Verification of such

ASICs requires much more than traditional UVM-SV

functional verification. Prior to this effort, safety verification

techniques involved injecting faults using tools like Certitude,

Yogitech and validating safety mechanisms through

functional simulations. In this paper, formal tool’s ability to

perform exhaustive breadth-first search to verify the

functional safety features and thereby reducing time to

market.

General Terms

Digital systems, automotive system on chip design

verification, ISO26262.

Keywords

Formal verification, automotive, functional safety, ASIL.

1. INTRODUCTION

1.1 Functional Safety
The objective of automotive functional safety is to prevent

risk of physical injury or death to people or damage to the

property or to the environment. These functional safety

systems in an automobile can be predominantly classified into

active safety systems or passive safety systems. Active safety

systems like electronic stability control, roll stability control

prevents accidents from happening. Passive safety systems

reacts after an accident to minimize damage like air bags. As

one can see, any malfunction in these safety mechanisms like

accidental deployment of an airbag can cause tremendous

harm. Furthermore advancements in technologies like MEMS

have resulted conversion of pure mechanical based safety

systems to electronically controlled systems, hence posing

new challenges to functional safety. Most of the modern

automobiles are equipped with embedded electronic systems

which include Electronic Controller Units (ECUs), electronic

sensors, MEMS sensors, bus systems and software code. Due

to the complex application in electrical, electronics and

programmable electronics, the need to carry out detailed

safety analyses which focuses on the potential risk of

malfunction is crucial for automotive systems.

ISO 26262 standard is a functional safety standard for

automotive applications. This standard evolved from IEC

61508 which caters to industrial safety applications. Both

these standards span over entire life cycle of product

development namely requirement specification, design,

implementation, integration, verification, validation and

configuration. ISO26262 standard describes methods to

classify risk and specifies requirements on how to avoid,

detect and control systematic design faults, in ASIC

development. And also, how to detect random hardware faults

that may occur in field due to ageing, temperature, voltage

variations. This paper focuses on how to meet verification

requirements of ISO26262 standard.

1.2 ISO26262 Verification Requirements

and Challenges
Functional safety features called safety mechanisms (SM) are

incorporated in automotive systems in compliance with ISO

26262 standard [1], [2]. These safety mechanisms are

determined based on Automotive Safety Integrity Levels,

ASILs of a product. ASIL requirement can range from ‘A’ to

‘D’. ‘A’ being least stringent ASIL and ‘D’ being most

stringent [3]. These safety mechanisms are expected to catch

random hardware failures that may occur in field and report

the health of sensor to the ECU. For example, if power on

reset did not happen as expected device will be in

undetermined state.

Module design and
Implementation

Module verification

Integration
Verification

Safety Measure
specification and
implmentation

Safety measure
Verification

Architecture Design

Module design and
Implementation

Safety Measure
specification and
implmentation

Safety measure
Verification

Integration
Verification

Module verification

Figure 1. V-model for functional safety verification

This condition needs to be recognized and should be notified

to ECU through a health flag. ISO26262 standard

recommends v-model for verification as depicted in figure 1

ISO26262 standard recommends similar V-model in entire

product life cycle. However for the purpose of this paper V-

model between design and verification is sufficient. First two

items is similar to regular functional verification that is done

in any product development. These two steps are needed to

identify any systematic failures (bugs) in the product.

Systematic failures doesn’t depend on external factors and is

repeatable in all devices. Third item in the diagram safety

measure verification is required only in functional safety

product.

The rigor of safety verification is dependent primarily on the

ASIL (Automotive Safety Integrity Level) level. ASIL level

for an automotive system is determined at the beginning of the

development process. It is calculated on the basis of 3 factors:

severity of failure, probability of exposure and possible

controllability by a driver if a critical event occurs. The ASIL

International Journal of Computer Applications (0975 – 8887)

Volume 154 – No.8, November 2016

34

levels range from ‘A’ to ‘D’ with ‘D’ having highest severity

and lowest controllability. Functional Safety verification for

ASIL ‘C’ & ‘D’ systems mandates and ASIL ‘A’ & ‘B’

recommends fault insertion simulation. In Fault insertion

simulations, design is modified to represent a random field

failure and effectiveness of safety mechanism in identifying

this field failure is verified. These faults are classified into

safe faults, meaning this fault will not lead to a critical event

or a safety hazard and dangerous fault, meaning this fault will

lead to a safety hazard. Furthermore dangerous faults are

classified into detected faults and undetected faults. Detected

faults are the faults that are detected by safety mechanisms

and reported to ECU through a health flag. For an ASIL ‘D’

device 99% (Diagnostic Coverage) of dangerous faults needs

to be detected.

Furthermore fault detection time (FDT) is an important spec

to verify. For example, in case of an accident head of a driver

may hit steering wheel in approximately 300ms (time is only

for representation and will vary with automobile model). Air

bag deployment may take 100ms (time only for representation

not actual number). Any dangerous fault in the system needs

to be detected well within 100ms and backup safety

mechanisms if any has to kick-in. Hence fault detection time

is a crucial specification that needs to be verified.

Safety verification flow is shown in figure 2. Once the

functional verification of safety mechanisms is complete fault

injection simulations can start. Based on results from fault

injection simulations, faults are classified into safe-

undetected, safe-detected, dangerous-detected and dangerous-

undetected [4], [5]. Diagnostic coverage number will be

calculated based on fault classification. If the diagnostic

coverage meets ASIL requirement safety verification is

complete. If it doesn’t then new safety mechanisms may need

to be added or existing safety mechanisms may need to be

modified and whole cycle needs to be repeated. This is a time

consuming step in functional safety verification as well as in

overall product development. Furthermore, fault injection

simulations are time taking , long running simulations as most

of the faults needs to be inserted after system reaches steady

state.

Functional
verification of safety

mechanisms

Fault injection
simulations

Classification of
faults and
computing

diagnostic coverage

Does it meet
ASIL requirments

Safety verification
complete

Add or modify
Safety Mechanisms

Start Safety
Verification

Yes

No

Figure 2. Functional safety verification flow

A typical sensor or a device contains thousands of nodes at

which faults can occur. Simulating all the faults is

cumbersome and time taking. Inserting five faults and

subsequent testing in simulation based safety verification

method requires approximately four hours. The reliability of a

car is dependent on the safety features that are implemented

and tested. Functional safety verification typically takes few

months to complete.

This paper has proposed to use formal verification to verify

the safety features in a quicker and efficient manner. This

method will help reduce the complete safety verification effort

by approximately 25% and the execution time to few weeks.

1.3 Formal Approach for Safety

Verification
Formal verification offers exhaustive breadth-first state space

exploration. Simple assertions can be written to verify the

functional safety features. These assertions and the legal pin

constraints are dependent on the project whereas the rest of

the fault injection is automated. The formal tool from Cadence

IEV has been used for the purpose of this paper. The IEV

formal environment is easy to setup and IEV is able to prove

assertions in minutes using underlying formal algorithms in

comparison to simulation based method which takes hours.

Same results can be reproduced with different vendor tools

like VC formal, Questa formal, and Jasper.

International Journal of Computer Applications (0975 – 8887)

Volume 154 – No.8, November 2016

35

As discussed earlier most of the faults needs to be inserted

once design attains a stable state. Hence, a hybrid approach

was used. Where in a functional simulation was run on the

Design under test till design attains a stable state and at the

end of the simulation state information is dumped. The formal

run was preloaded with the stable state generated from the

functional simulation run. To limit state space for formal tool

and guide tool to valid scenarios constraints were written such

as the active-low reset being held high throughout the

simulation. The fault is injected as a constraint either on a pin

at the top level or as interactive constraint to an internal

module signal.

To automate the flow and reduce effort in fault injections, a

Perl script is used to grep for all pins, signals or outputs in the

RTL where faults can occur. The script then generates the

constraints on the pins or signals for fault injection in a format

that the formal tool can understand. Once the constraints are

generated, they are provided as inputs to the tool and the

result of whether the fault is detected or not is collected and

presented to the user. Assertions are written to ensure health

flag for the fault being injected is flagged after the expected

interval of time determined by fault detection time. Thus the

faults are classified into detected and undetected faults. Faults

can be classified as dangerous or safe based on design

judgement or all faults can be assumed as dangerous for worst

case analysis. These numbers will be used to calculate

diagnostic coverage. The above procedure is explained in

more detail with an example in implementation section.

2. DESIGN DESCRIPTION
The Design under test (DUT) used for this work was a MEMS

gyroscope for roll over and roll stability applications. It is

similar to ADXRS810 mentioned in reference [7]. The DUT

uses an internal continuous self-test architecture to check

electro- mechanical system, PLL flag to check if internal PLL

achieved lock, Checksum to check integrity of non-volatile

memory, POR flag to check power-on-reset failure and many

more. Details of failure will be available in FAULT registers

in memory map. To reduce fault detection time in overall

architecture summary of status is sent in every SPI

communication through status vector bits (ST) indicating

either device ok/device not ok/safety critical data/non safety

critical data. In the formal verification environment faults are

injected and assertions are written to ensure the fault is

detected in the health flag register. In this design, close to

2000 fault nodes has been identified and verified. For the

purpose of illustrating on how formal fault injection

verification works power-on-reset failure has been used in the

next section.

3. IMPLEMENTATION
Let us look at an implementation for a power-on-reset (POR)

fault. If POR fails design will start in an unpredictable state.

This is a dangerous fault and if undetected may cause

hazardous event. Safety mechanism to detect such event is

shown in representative RTL below. POR check is

accomplished by getting a known value from non-volatile

memory to volatile memory on power-on-reset. This value is

compared with known value in non-volatile memory every

clock-cycle. If the value doesn’t match health flag is

triggered. This safety mechanism can catch absence of power-

on-reset and glitch in power supply which caused improper

power-on-reset. Fault detection time for this failure is 10

clock cycles, i.e. within 10 cycles of the fault occurrence, the

fail must be detected. The health flag is a sticky flag i.e.

health flag will continue to show fault even if fault was

transitory in nature until fault is read through SPI. The SPI

read clears faults which are allowed to recur. This flag along

with few other sticky flags are logically ORed to form status

vector, the value of which determines if device is ok or in

error state. The system can take further action based on the

value of status vector. The implementation of por fail in

digital logic is as follows:

wire [23:0] porid=24'hFACADE;

reg [23:0] por_reg;

always @(posedge clk or negedge porb)begin

 if(!porb)begin

 por_reg <= 24'hFACADE;

 end

else

 begin

 por_reg <= por_reg;

 end

end

always @(*)begin

 por_fail =~(por_reg==porid);

end

24’hFACADE is the predetermined value expected in the

flops of interest. Since the fault detection time is determined

from spec, constraints can be written accordingly. In this case,

por_fail flag has been constrained to one (or) por_reg to an

unexpected value as below in the tcl script:

constraint _add _pin {top.dut.digital_core.por_fail==1}

 (OR)

constraint_add_pin {top.dut.digital_core.por_reg[23]==0}

System clock is setup, the device is constrained to be out of

reset as this functionality is tested only when device is out of

reset. The spi communication was turned off by constraining

the chip select. DFT related functionality in the design has

been disabled by constraining scan_mode to 0.

clock _add sys_clk -initial 0

constraint _add _pin porb 1

constraint _add _pin cs_n 1

constraint _add _pin scan_mode 0

Once the necessary constraints are applied, they must be

reviewed to ensure design has not been over constrained. This

is followed by writing the actual assertion required to test the

fault.

property status_flag;

@(posedge sys_clk) ##[0:10] (Health0[3]);

endproperty

a01 : assert property (status_flag);

In the above system verilog assertion Health0[3] is expected

to flag within 10 cycles of injecting the fault. The formal tool

tries to find scenarios to disprove the above assertion i.e. it

tries to find cases where the expression @(posedge sys_clk)

International Journal of Computer Applications (0975 – 8887)

Volume 154 – No.8, November 2016

36

##[0:10] (Health0[3]) results in zero. After a formal run

completes the assertion can be in either pass, fail or explored

state. If the formal tool proves the assertion it means that for

the given set of constraints there are no scenarios where the

status vector does not flag within 10 cycles of inserting the

fault. As formal verification is not stimulus dependent and

proves assertion pass or fail through binary arithmetic, results

from this method is more fool proof the simulation methods.

One must ensure the pass is not vacuous pass, i.e. the initial

conditions for the assertions are not met hence resulting in a

false pass. A failed assertion indicates there is at least a

scenario where the property is not satisfied. Explored

assertions are those where all scenarios are not covered yet,

but for the ones tested there is no fail. Similarly, assertions are

written for each fault.

3.1 Formal Tool
Formal tool used for the project is Incisive Enterprise Verifier

(IEV) from Cadence, shown in Figure 3. IEV provides

integration of formal analysis and simulation engines hence

Figure 3. Incisive Enterprise Verifier (IEV)

making it an ideal option for functional safety testing.

The DUT needs to be in known good state before the start of

the formal run to avoid spurious fails hence the simulation

engine of IEV can be used to simulate the DUT to known

good state followed by the formal verification run for the

assertions of interest. A simple tcl script containing

constraints and commands can be used to provide inputs to

IEV. The underlying formal algorithms scale to large and

complex designs.

3.2 Challenges
1. Formal tool cannot proceed when the assertions involve a

zero delay loop. In such cases cutpoints are created,

basically cutting the logic leading upto the signal (for

which the cutpoint is created) and creating a pin which

toggles.

2. Formal tools in general are not scalable due to state space

explosion. Some of the assertions for health flags which

trigger at say 1000 cycles after injecting a fault require

the tool to go deep into the design. Such assertions might

not result in either a pass or a fail even after running for

an hour. Black boxing the memory modules and using a

powerful formal engine can help reduce convergence

issues to a certain extent.

3. Formal tools do not support checks for safety

mechanisms that are implemented in software. Formal

will not replace functional simulation based approach. It

will aid us to validate as many faults as possible very

quickly and early in the design phase. For the remaining

faults functional verification methods has to be used.

4. RESULTS
Certain assertions were proven within few minutes, whereas

few assertions which required the formal tool to go deeper

into the hierarchy were inconclusive. Such faults can be

proven using tools like Certitude [6]. The result of the formal

run is as follows:

International Journal of Computer Applications (0975 – 8887)

Volume 154 – No.8, November 2016

37

Table 1

Fault Node Detected Detected Cycles Undetected Proved Undetected Explored Explored

crash_csp  10 x x x

Ntouch  100 x x x

Por_fail  10 x x x

smu_data_rdy x x x x 

Faults are detected when their corresponding assertions pass

for the given number of cycles. In the above mentioned

example if the health assertion passes, the fault is detected and

the detected cycles is 10, else if it fails the fault is undetected

proven. Cases which are challenging for the formal tool, for

example when the spec mandates that the fault be detected in

5000 cycles, the user can chose to define the effort to say few

minutes, such faults will be undetected explored. Explored

faults are those for which the assertions result in neither a pass

nor fail.

In cases of undetected explored and explored one needs to run

Certitude simulations. Approximately 60% of faults can be

verified by formal verification when the safety mechanisms

are implemented in RTL. Remaining 40% needs to be

validated with other methods like using Certitude.

Figure 4 shows witness waveform that can be generated from

formal tool which aids in further debug if required.

Figure 4. Witness waveform for debug

5. CONCLUSION
1. Formal verification for FuSa aims to prove the assertions

for faults that are not too deep in design quickly and

early in the design phase, while the harder faults can be

simulated using simulation based safety verification

techniques hence saving time and effort.

2. Formal tool is better at pointing out safety holes in the

design compared to other methods like Certitude. Both

simulation methods that are currently used have are

dependency on stimulus and state of the system. Formal

by nature will go beyond these to find safety holes.

3. In an industry where time to market is crucial and

verification takes up almost 60% of the design cycle,

formal verification can help build confidence in the

safety verification process for automotive chips in a fast

and efficient manner.

Future scope of this work is to create a formal app that can

read design and generate constraints automatically. This will

further reduce the amount of effort and time required in

functional safety verification.

6. ACKNOWLEDGMENTS
Authors would like to thank Raigir, Kamalaker for his

guidance, support and encouragement.

7. REFERENCES
[1] Ismail, Azianti, Qiang, Liu, 2014, ISO 26262 automotive

functional safety: issues and challenges, International

Journal of Reliability and Applications.

[2] Born, Marc, Favaro, John, Kath,Olaf , 2010, Application

of ISO DIS 26262 in practice. In workshop on Critical

Automotive Applications: Robustness & Safety.

[3] Alexandersson, Sabine, 2008, Functional safety and

EMC for the automotive industry.

[4] Janos, Olah, Majzik, Istvan, 2009, A Model Based

Framework for Specifying and Executing Fault Injection

Experiments.

[5] Hsueh, Mei-Chen, Tsai, Timothy, Iyer, Ravishankar.k,

2014, Fault injection techniques and tools.

[6] Devaphanindra Kumar, Ranganayakulu Sri SNUG 2012,

Bangalore, Certitude for functional safety

[7] ADXRS810 High Performance, SPI Digital Output,

Angular rate sensor datasheet

IJCATM : www.ijcaonline.org

