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ABSTRACT 

Functional safety features are an essential part of automotive 

system-on-chip development. ISO26262 standard dictates 

ASIC development process in safety applications like airbag 

control, electronic stability control. This paper focuses on 

verification requirements and fault injection simulation 

requirement of ISO26262 standard. Verification of such 

ASICs requires much more than traditional UVM-SV 

functional verification. Prior to this effort, safety verification 

techniques involved injecting faults using tools like Certitude, 

Yogitech and validating safety mechanisms through 

functional simulations. In this paper, formal tool’s ability to 

perform exhaustive breadth-first search to verify the 

functional safety features and thereby reducing time to 

market. 
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1. INTRODUCTION 

1.1 Functional Safety 
The objective of automotive functional safety is to prevent 

risk of physical injury or death to people or damage to the 

property or to the environment. These functional safety 

systems in an automobile can be predominantly classified into 

active safety systems or passive safety systems.  Active safety 

systems like electronic stability control, roll stability control 

prevents accidents from happening. Passive safety systems 

reacts after an accident to minimize damage like air bags. As 

one can see, any malfunction in these safety mechanisms like 

accidental deployment of an airbag can cause tremendous 

harm. Furthermore advancements in technologies like MEMS 

have resulted conversion of pure mechanical based safety 

systems to electronically controlled systems, hence posing 

new challenges to functional safety. Most of the modern 

automobiles are equipped with embedded electronic systems 

which include Electronic Controller Units (ECUs), electronic 

sensors, MEMS sensors, bus systems and software code. Due 

to the complex application in electrical, electronics and 

programmable electronics, the need to carry out detailed 

safety analyses which focuses on the potential risk of 

malfunction is crucial for automotive systems. 

ISO 26262 standard is a functional safety standard for 

automotive applications. This standard evolved from IEC 

61508 which caters to industrial safety applications. Both 

these standards span over entire life cycle of product 

development namely requirement specification, design, 

implementation, integration, verification, validation and 

configuration. ISO26262 standard describes methods to 

classify risk and specifies requirements on how to avoid, 

detect and control systematic design faults, in ASIC 

development. And also, how to detect random hardware faults 

that may occur in field due to ageing, temperature, voltage 

variations. This paper focuses on how to meet verification 

requirements of ISO26262 standard. 

1.2 ISO26262 Verification Requirements 

and Challenges 
Functional safety features called safety mechanisms (SM) are 

incorporated in automotive systems in compliance with ISO 

26262 standard [1], [2]. These safety mechanisms are 

determined based on Automotive Safety Integrity Levels, 

ASILs of a product. ASIL requirement can range from ‘A’ to 

‘D’. ‘A’ being least stringent ASIL and ‘D’ being most 

stringent [3]. These safety mechanisms are expected to catch 

random hardware failures that may occur in field and report 

the health of sensor to the ECU. For example, if power on 

reset did not happen as expected device will be in 

undetermined state. 
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Figure 1. V-model for functional safety verification 

This condition needs to be recognized and should be notified 

to ECU through a health flag. ISO26262 standard 

recommends v-model for verification as depicted in figure 1 

ISO26262 standard recommends similar V-model in entire 

product life cycle.  However for the purpose of this paper V-

model between design and verification is sufficient. First two 

items is similar to regular functional verification that is done 

in any product development. These two steps are needed to 

identify any systematic failures (bugs) in the product. 

Systematic failures doesn’t depend on external factors and is 

repeatable in all devices. Third item in the diagram safety 

measure verification is required only in functional safety 

product. 

The rigor of safety verification is dependent primarily on the 

ASIL (Automotive Safety Integrity Level) level. ASIL level 

for an automotive system is determined at the beginning of the 

development process. It is calculated on the basis of 3 factors: 

severity of failure, probability of exposure and possible 

controllability by a driver if a critical event occurs. The ASIL 
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levels range from ‘A’ to ‘D’ with ‘D’ having highest severity 

and lowest controllability. Functional Safety verification for 

ASIL ‘C’ & ‘D’ systems mandates and ASIL ‘A’ & ‘B’ 

recommends fault insertion simulation. In Fault insertion 

simulations, design is modified to represent a random field 

failure and effectiveness of safety mechanism in identifying 

this field failure is verified. These faults are classified into 

safe faults, meaning this fault will not lead to a critical event 

or a safety hazard and dangerous fault, meaning this fault will 

lead to a safety hazard. Furthermore dangerous faults are 

classified into detected faults and undetected faults. Detected 

faults are the faults that are detected by safety mechanisms 

and reported to ECU through a health flag. For an ASIL ‘D’ 

device 99% (Diagnostic Coverage) of dangerous faults needs 

to be detected. 

Furthermore fault detection time (FDT) is an important spec 

to verify. For example, in case of an accident head of a driver 

may hit steering wheel in approximately 300ms (time is only 

for representation and will vary with automobile model). Air 

bag deployment may take 100ms (time only for representation 

not actual number). Any dangerous fault in the system needs 

to be detected well within 100ms and backup safety 

mechanisms if any has to kick-in. Hence fault detection time 

is a crucial specification that needs to be verified.  

Safety verification flow is shown in figure 2. Once the 

functional verification of safety mechanisms is complete fault 

injection simulations can start. Based on results from fault 

injection simulations, faults are classified into safe-

undetected, safe-detected, dangerous-detected and dangerous-

undetected [4], [5]. Diagnostic coverage number will be 

calculated based on fault classification. If the diagnostic 

coverage meets ASIL requirement safety verification is 

complete. If it doesn’t then new safety mechanisms may need 

to be added or existing safety mechanisms may need to be 

modified and whole cycle needs to be repeated. This is a time 

consuming step in functional safety verification as well as in 

overall product development. Furthermore, fault injection 

simulations are time taking , long running simulations as most 

of the faults needs to be inserted after system reaches steady 

state. 
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Figure 2. Functional safety verification flow 

A typical sensor or a device contains thousands of nodes at 

which faults can occur. Simulating all the faults is 

cumbersome and time taking. Inserting five faults and 

subsequent testing in simulation based safety verification 

method requires approximately four hours. The reliability of a 

car is dependent on the safety features that are implemented 

and tested. Functional safety verification typically takes few 

months to complete.  

This paper has proposed to use formal verification to verify 

the safety features in a quicker and efficient manner. This 

method will help reduce the complete safety verification effort 

by approximately 25% and the execution time to few weeks. 

1.3 Formal  Approach for Safety 

Verification 
Formal verification offers exhaustive breadth-first state space 

exploration. Simple assertions can be written to verify the 

functional safety features. These assertions and the legal pin 

constraints are dependent on the project whereas the rest of 

the fault injection is automated. The formal tool from Cadence 

IEV has been used for the purpose of this paper. The IEV 

formal environment is easy to setup and IEV is able to prove 

assertions in minutes using underlying formal algorithms in 

comparison to simulation based method which takes hours. 

Same results can be reproduced with different vendor tools 

like VC formal, Questa formal, and Jasper. 
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As discussed earlier most of the faults needs to be inserted 

once design attains a stable state. Hence, a hybrid approach 

was used. Where in a functional simulation was run on the 

Design under test till design attains a stable state and at the 

end of the simulation state information is dumped. The formal 

run was preloaded with the stable state generated from the 

functional simulation run. To limit state space for formal tool 

and guide tool to valid scenarios constraints were written such 

as the active-low reset being held high throughout the 

simulation. The  fault is injected as a constraint either on a pin 

at the top level or as interactive constraint to an internal 

module signal.  

To automate the flow and reduce effort in fault injections, a 

Perl script is used to grep for all pins, signals or outputs in the 

RTL where faults can occur. The script then generates the 

constraints on the pins or signals for fault injection in a format 

that the formal tool can understand. Once the constraints are 

generated, they are provided as inputs to the tool and the 

result of whether the fault is detected or not is collected and 

presented to the user. Assertions are written to ensure health 

flag for the fault being injected is flagged after the expected 

interval of time determined by fault detection time.  Thus the 

faults are classified into detected and undetected faults. Faults 

can be classified as dangerous or safe based on design 

judgement or all faults can be assumed as dangerous for worst 

case analysis. These numbers will be used to calculate 

diagnostic coverage. The above procedure is explained in 

more detail with an example in implementation section. 

2. DESIGN DESCRIPTION 
The Design under test (DUT) used for this work was a MEMS 

gyroscope for roll over and roll stability applications. It is 

similar to ADXRS810 mentioned in reference [7]. The DUT 

uses an internal continuous self-test architecture to check 

electro- mechanical system, PLL flag to check if internal PLL 

achieved lock, Checksum to check integrity of non-volatile 

memory, POR flag to check power-on-reset failure and many 

more. Details of failure will be available in FAULT registers 

in memory map. To reduce fault detection time in overall 

architecture summary of status is sent in every SPI 

communication through status vector bits (ST)  indicating 

either device ok/device not ok/safety critical data/non safety 

critical data. In the formal verification environment faults are 

injected and assertions are written to ensure the fault is 

detected in the health flag register. In this design, close to 

2000 fault nodes has been identified and verified. For the 

purpose of illustrating on how formal fault injection 

verification works  power-on-reset failure has been used in the 

next section. 

3. IMPLEMENTATION 
Let us look at an implementation for a power-on-reset (POR) 

fault. If POR fails design will start in an unpredictable state. 

This is a dangerous fault and if undetected may cause 

hazardous event. Safety mechanism to detect such event is 

shown in representative RTL below. POR check is 

accomplished by getting a known value from non-volatile 

memory to volatile memory on power-on-reset. This value is 

compared with known value in non-volatile memory every 

clock-cycle. If the value doesn’t match health flag is 

triggered. This safety mechanism can catch absence of power-

on-reset and glitch in power supply which caused improper 

power-on-reset. Fault detection time for this failure is 10 

clock cycles, i.e. within 10 cycles of the fault occurrence, the 

fail must be detected. The health flag is a sticky flag i.e. 

health flag will continue to show fault even if fault was 

transitory in nature until fault is read through SPI. The SPI 

read clears faults which are allowed to recur. This flag along 

with few other sticky flags are logically ORed to form status 

vector, the value of which determines if device is ok or in 

error state. The system can take further action based on the 

value of status vector. The implementation of por fail in 

digital logic is as follows: 

wire [23:0] porid=24'hFACADE; 

reg [23:0] por_reg; 

always @(posedge clk or negedge porb)begin 

 if(!porb)begin 

  por_reg <=  24'hFACADE; 

   end 

else 

  begin 

  por_reg <=  por_reg; 

  end 

end 

always @(*)begin 

    por_fail    =~(por_reg==porid); 

end 

24’hFACADE is the predetermined value expected in the 

flops of interest. Since the fault detection time is determined 

from spec, constraints can be written accordingly. In this case,  

por_fail flag has been constrained to one (or) por_reg to an 

unexpected value as below in the tcl script: 

constraint _add _pin {top.dut.digital_core.por_fail==1} 

                           (OR) 

constraint_add_pin {top.dut.digital_core.por_reg[23]==0} 

System clock is setup, the device is constrained to be out of 

reset as this functionality is tested only when device is out of 

reset. The spi communication was turned off by constraining 

the chip select. DFT related functionality in the design has 

been disabled by constraining scan_mode to 0. 

clock _add sys_clk -initial 0 

constraint _add _pin porb 1 

constraint _add _pin cs_n 1 

constraint _add _pin scan_mode 0 

Once the necessary constraints are applied, they must be 

reviewed to ensure design has not been over constrained. This 

is followed by writing the actual assertion required to test the 

fault.  

property status_flag; 

@(posedge sys_clk)  ##[0:10] ( Health0[3] ); 

endproperty 

a01  : assert property (status_flag); 

In the above system verilog assertion Health0[3] is expected 

to flag within 10 cycles of injecting the fault. The formal tool 

tries to find scenarios to disprove the above assertion i.e. it 

tries to find cases where the expression @(posedge sys_clk)  
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##[0:10] ( Health0[3] ) results in  zero. After a formal run 

completes the assertion can be in either pass, fail or explored 

state. If the formal tool proves the assertion it means that for 

the given set of constraints there are no scenarios where the 

status vector does not flag within 10 cycles of inserting the 

fault. As formal verification is not stimulus dependent and 

proves assertion pass or fail through binary arithmetic, results 

from this method is more fool proof the simulation methods. 

One must ensure the pass is not vacuous pass, i.e. the initial 

conditions for the assertions are not met hence resulting in a 

false pass. A failed assertion indicates there is at least a 

scenario where the property is not satisfied. Explored 

assertions are those where all scenarios are not covered yet, 

but for the ones tested there is no fail. Similarly, assertions are 

written for each fault.  

3.1 Formal Tool 
Formal tool used for the project is Incisive Enterprise Verifier 

(IEV) from Cadence, shown in Figure 3. IEV provides 

integration of formal analysis and simulation engines hence 

 

 

Figure 3. Incisive Enterprise Verifier (IEV) 

making it an ideal option for functional safety testing.  

The DUT needs to be in known good state before the start of 

the formal run to avoid spurious fails hence the simulation 

engine of IEV can be used to simulate the DUT to known 

good state followed by the formal verification run for the 

assertions of interest. A simple tcl script containing 

constraints and commands can be used to provide inputs to 

IEV. The underlying formal algorithms scale to large and 

complex designs.  

3.2 Challenges 
1. Formal tool cannot proceed when the assertions involve a 

zero delay loop. In such cases cutpoints are created, 

basically cutting the logic leading upto the signal (for 

which the cutpoint is created) and creating a pin which 

toggles. 

2. Formal tools in general are not scalable due to state space 

explosion. Some of the assertions for health flags which 

trigger at say 1000 cycles after injecting a fault require 

the tool to go deep into the design. Such assertions might 

not result in either a pass or a fail even after running for 

an hour. Black boxing the memory modules and using a 

powerful formal engine can help reduce convergence 

issues to a certain extent. 

3. Formal tools do not support checks for safety 

mechanisms that are implemented in software. Formal 

will not replace functional simulation based approach. It 

will aid us to validate as many faults as possible very 

quickly and early in the design phase. For the remaining 

faults functional verification methods has to be used. 

4. RESULTS 
Certain assertions were proven within few minutes, whereas 

few assertions which required the formal tool to go deeper 

into the hierarchy were inconclusive. Such faults can be 

proven using tools like Certitude [6]. The result of the formal 

run is as follows: 
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Table 1 

Fault Node Detected Detected Cycles Undetected Proved Undetected Explored Explored 

crash_csp  10   x    x    x   

Ntouch  100   x    x    x   

Por_fail  10   x  x  x 

smu_data_rdy  x    x     x    x    

 
Faults are detected when their corresponding assertions pass 

for the given number of cycles. In the above mentioned 

example if the health assertion passes, the fault is detected and 

the detected cycles is 10, else if it fails the fault is undetected 

proven. Cases which are challenging for the formal tool, for 

example when the spec mandates that the fault be detected in 

5000 cycles, the user can chose to define the effort to say few 

minutes, such faults will be undetected explored. Explored 

faults are those for which the assertions result in neither a pass 

nor fail. 

In cases of undetected explored and explored one needs to run 

Certitude simulations. Approximately 60% of faults can be 

verified by formal verification when the safety mechanisms 

are implemented in RTL. Remaining 40% needs to be 

validated with other methods like using Certitude.  

Figure 4 shows witness waveform that can be generated from 

formal tool which aids in further debug if required. 

 

Figure 4. Witness waveform for debug 

5. CONCLUSION 
1. Formal verification for FuSa aims to prove the assertions 

for faults that are not too deep in design quickly and 

early in the design phase, while the harder faults can be 

simulated using simulation based safety verification 

techniques hence saving time and effort. 

2. Formal tool is better at pointing out safety holes in the 

design compared to other methods like Certitude.  Both 

simulation methods that are currently used have are 

dependency on stimulus and state of the system. Formal 

by nature will go beyond these to find safety holes.  

3. In an industry where time to market is crucial and 

verification takes up almost 60% of the design cycle, 

formal verification can help build confidence in the 

safety verification process for automotive chips in a fast 

and efficient manner. 

Future scope of this work is to create a formal app that can 

read design and generate constraints automatically. This will 

further reduce the amount of effort and time required in 

functional safety verification.  
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