
International Journal of Computer Applications (0975 – 8887)

Volume 155 – No 10, December 2016

22

Parallelizing Apriori Algorithm on GPU

K. Spandana
Assistant Professor

Dept. of CSE
CBIT

Gandipet, Hyderabad.

D. Sirisha
Application Developer

Oracle

S. Shahida
Tech. Associate
Bank of America

ABSTRACT
Parallel computing is a form of computation in which many

calculations are carried out simultaneously, operating on the

principle that large problems can often be divided into smaller

ones, which are then solved concurrently. Now Graphics

Processing Unit (GPU) has taken a major role in high

performance computing for generic applications. Compute

Unified Device Architecture (CUDA) programming model

provides the programmers adequate C-Language like API’s to

better exploit the power of GPU. Data Mining has significant

applications in various domains. Currently, these techniques

cannot meet the requirement of applications with large scale

databases in terms of computation and speed. Association

Rules Mining (ARM) is one of the most widely used

techniques in data mining and has tremendous applications.

Apriori is the most influential ARM algorithm. It has been

included in all the existing commercial and non-commercial

data mining. This paper provides a parallel Apriori algorithm

on GPU with CUDA and focuses on computation time

compared with execution time of serial program in CPU.

General Terms

Data Mining Algorithm parallelization

Keywords

Parallel Computing, GPGPU, GPU, CUDA, Data Mining,

Parallel Apriori Algorithm

1. INTRODUCTION
Data mining has become a hot research domain in recent years

as it is being used in almost all application. There are many

algorithms under this domain. However, these algorithms are

potentially unable to handle today's increasing data sets or

would take a tremendous amount of time. Therefore, users

have to turn to rely on parallel and distributed computing

techniques to accelerate the computation.

One of the parallel computing techniques is the General

Process Computing on Graphics Processing Unit (GPGPU).

This technique uses the power of GPU and CPU to perform

computations on applications traditionally handled only by

CPU.

A graphics processing unit (GPU) is a specialized electronic

circuit designed to rapidly manipulate and alter memory to

accelerate the creation of images in a frame buffer intended

for output to a display. It allows blocks of data to be processed

in parallel. Currently, high level languages have emerged to

support easy programming on GPUs. CUDA is a parallel

computing platform and programming model invented by

NVIDIA. It enables dramatic increases in computing

performance by harnessing the power of the graphics

processing unit (GPU). Low cost is another factor of GPU.

Therefore, recently, there has been a trend to accelerate

computational intensive applications on a GPU + CPU

heterogeneous system where the GPU acts as the computation

accelerator.

Apriori Algorithm is one of the techniques of Data Mining for

finding Frequent Itemsets useful in Business Analysis. This is

an efficient algorithm for mining Itemsets. But in reality, this

algorithm is computationally intensive due to multiple scans

of the database in order to find the frequent itemsets. It works

efficiently for small databases whereas for large databases,

due to its large size, its performance decreases. So to increase

its performance and to make it efficient even for the large

databases, the algorithm is parallelized on GPU using CUDA.

Comparison of the execution time of Parallel-Apriori with an

efficient serial Apriori program is used to show the speedup

on a real-world data set and even on synthetic data set.

2. LITERATURE REVIEW

2.1 Association Rule Mining
Association Rules:

Association Rules is used to find associations between sets of

attributes. Association Rules are interesting association

relationship among huge amounts of transactions. An

association rule is an expression of the form X => Y, where X

and Y are sets of items.

Goal is to find all association rules that satisfy user-specified

minimum support and minimum confidence threshold.

Given a set of records each of which contains some number of

items from a given collection, Association Rules produce

dependency rules which will predict occurrence of an item

based on occurrences of other items.

Association rule R: Itemset1 => Itemset2

Itemset1, 2 are disjoint and Itemset2 is non-empty i.e. if

transaction includes Itemset1 then it also has Itemset2

Rule Evaluation Metrics

• Support (s): Fraction of transactions that contain

both X and Y

• Confidence (c): Measures how often items in Y

appear in transactions that contain X

2.2 Apriori Algorithm
Apriori is a classic algorithm for learning association rules.

Apriori is designed to operate on databases containing

transactions (for example, collections of items bought by

customers, or details of a website frequentation). Other

algorithms are designed for finding association rules in data

having no transactions (Winepi and Minepi), or having no

timestamps (DNA sequencing).

The purpose of the Apriori Algorithm is to find associations

between different sets of data. It is sometimes referred to as

International Journal of Computer Applications (0975 – 8887)

Volume 155 – No 10, December 2016

23

"Market Basket Analysis". Each set of data has a number of

items and is called a transaction. The output of Apriori is set

of Rules that tell us how often items are contained in sets of

data. Apriori uses breadth-first search and a Hash tree

structure to count candidate item sets efficiently. It generates

candidate item sets of length from item sets of length k-1.

Then it prunes the candidates which have an infrequent sub

pattern. According to the downward closure lemma, the

candidate set contains all frequent k length item sets. After

that, it scans the transaction database to determine frequent

item sets among the candidates. Apriori, while historically

significant, suffers from a number of inefficiencies or trade-

offs, which have spawned other algorithms. Candidate

generation generates large numbers of subsets (the algorithm

attempts to load up the candidate set with as many as possible

before each scan). Bottom-up subset exploration (essentially a

breadth-first traversal of the subset lattice) finds any Maximal

subset S only after all 2|s|-1 of its proper subsets.

The whole point of the algorithm (and data mining, in general)

is extract useful information from large amounts of data.

For example, the information that a customer who purchases a

keyboard also tends to buy a mouse at the same time is

acquired from the association rule below:

Support

The percentage of task-relevant data transactions for which

the pattern is true is called support.

Confidence

The measure of certainty or trustworthiness associated with

each discovered pattern is called confidence.

The algorithm aims to find the rules which satisfy both a

minimum support threshold and a minimum confidence

threshold (Strong Rules).

Item: article in the basket.

Item set: a group of items purchased together in a single

transaction.

Let I = {i1, i2, . . . ,im} be a set of m distinct attributes, or

called items. Each transaction T in the database D has a

unique identifier, and contains a set of items, in the form of

_TID, i1, i2, . . . ,ip.

An itemset with k items is called a k-itemset. The support of a

k-itemset X is the fraction of the transactions in D containing

X. X is a frequent itemset if X’s support is greater than the

user-specified minimum support threshold ε.

The goal of frequent itemset mining is to find the complete set

of frequent itemsets in a database. The downward closure

property (any subset of a frequent itemset must also be

frequent) is successfully introduced to cut down the number of

candidates generated in each iteration. It performs a level-wise

search. In each iteration (line 2 to 10), firstly, a set of k-

candidates is generated by joining two frequent (k − 1)-

itemsets if they share a common (k − 2)-prefix. A pruning

procedure is invoked to eliminate any candidate which

contains an infrequent subset; secondly, the support of every

candidate itemset is counted by scanning the database. The

loop terminates when no more frequent itemsets are

discovered.

Existing Algorithm

Pseudo-code of main function

Input: Database, D, minimum support threshold, min_sup

Output: Frequent item sets, L

L1 = find_frequent_1-itemsets (D);

for (k = 2; Lk−1 _= ∅; k++){

 Ck= apriori_gen (Lk−1);

 for each transaction t ∈D{

 Ct = subset (Ck, t);

 for each candidate c ∈Ct

 c.count++;

 }

 Lk= {c ∈Ck; c.count≥ min_sup};

}

return L = UkLk;

Pseudo-code of sub-functions of Apriori

Procedure apriori_gen (Lk-1) //candidate generation

for each itemset l1 ∈Lk-1

for each itemset l2 ∈Lk-1

if((l1[1] = l2[1])∧· · ·∧(l1[k −1] < l2[k −1])){

 c= l1 _ _l2;

if has_infrequent_subset(c,Lk−1) then

 delete c;

else add c to Ck;

}

return Ck;

Procedure has_infrequent_subset(c; Lk−1)

for each (k −1)-subset s of c

if s ∈Lk−1 then

return TRUE;

return FALSE;

2.3 Graphics Processing Unit (GPU)
The GPU, as a specialized processor, addresses the demands

of real-time high-resolution 3D graphics compute-intensive

tasks. As of 2012, GPUs have evolved into highly

parallel multi-core systems allowing very efficient

manipulation of large blocks of data. This design is more

effective than general-purpose CPUs for algorithms where

processing of large blocks of data is done in parallel, such as,

push-reliable maximum flow algorithm

fast sort algorithms of large lists

two-dimensional fast wavelet transform

molecular dynamics simulations

http://en.wikipedia.org/wiki/Computer_processor
http://en.wikipedia.org/wiki/Real-time_computer_graphics
http://en.wikipedia.org/wiki/3D_graphics
http://en.wikipedia.org/wiki/Multi-core
http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Push-relabel_maximum_flow_algorithm
http://en.wikipedia.org/wiki/Sort_algorithm
http://en.wikipedia.org/wiki/List_(computing)
http://en.wikipedia.org/wiki/Fast_wavelet_transform
http://en.wikipedia.org/wiki/Molecular_dynamics

International Journal of Computer Applications (0975 – 8887)

Volume 155 – No 10, December 2016

24

GPGPU (General Purpose Graphics Processing Unit)

supported programming models better exploit the parallel

power of the many core GPU architectures. Present Data

mining tools are not able to meet the requirement of large-

scale databases in terms of speed and scalability. GPU

technology is the extensive scalable platform to deploy the

data mining algorithms. Due to the inherent parallelism of

GPU many core architecture, it has become possible to

program GPU processors directly, as massively parallel

processors. GPU computation is highly scalable, inexpensive

and high performance per dollar. Combining CPU with the

GPU massively parallelism helps to scale up the algorithms

for knowledge discovery by applying the data mining

algorithm on the entire dataset.

Fig. 1 CPU+GPU Parallel Architecture

Fig. 1 shows the architecture of GPU. The GPU architecture

has Streaming Multiprocessors, which has many blocks. Each

block has multiple threads. All these threads executes on

concurrent parallelism. The GPU implementation for Apriori

Algorithm to implement the scalability of the algorithm

explores the CUDA memory hierarchy, which helps to exploit

the parallelism on large datasets. The data access on device

memory, global memory, texture memory, and constant

memory varies the performance of the algorithm. Also,

CUDA environment gives flexibility to share combined

memory, offers very less communication overheads.

The maximum possible threads to be active for parallel

execution can be computed by occupancy formula as given

below.

 Occupancy  Blocks per SM x Threads per block

 Maximum threads per SM

Where,

SM is the acronym used for Streaming Multiprocessors in

GPU architecture.

CUDA threads are lightweight and fast switching, 1000s of

threads execute simultaneously. All threads execute the same

code, each thread has an ID, Threads are grouped into blocks,

Blocks are grouped into a grid and a kernel is executed as a

grid of blocks of threads.

2.4 GPU Accelerated Computing
GPU accelerated Computing is the use of a graphics

processing unit (GPU) together with a CPU to accelerate

scientific, analytics, engineering, consumer, and enterprise

applications. From the Fig.2, it is clearly understood that

GPU-accelerated computing offers unprecedented application

performance by offloading compute-intensive portions of the

application to the GPU, while the remainder of the code still

runs on the CPU. From a user's perspective, applications

simply run significantly faster.

Fig. 2 How GPU acceleration works

CUDA

Compute Unified Device Architecture (CUDA) is a parallel

computing platform and programming model created by

NVIDIA and implemented by the graphics processing units

(GPUs) that they produce. CUDA gives developers direct

access to the virtual instruction set and memory of the parallel

computational elements in CUDA GPUs.

Processing Flow in CUDA

From the Fig.3, the processing flow in CUDA is:

Fig. 3 Processing Flow on CUDA

CUDA Programming Model

At the software level, the CUDA model is a collection of

threads running in parallel. The unit of work issued by the

host computer to the GPU is called a kernel. CUDA program

is running in a thread-parallel fashion. Computation is

organized as a grid of thread blocks which consists of a set of

threads as shown in Fig. 4. At instruction level, 32

consecutive threads in a thread block make up of a minimum

unit of execution, which is called a thread warp. Each SM

executes one or more thread blocks concurrently. A block is a

batch of SIMD-parallel threads that runs on the same SM at a

given moment. For a given thread, its index determines the

portion of data to be processed.

Fig. 4 shows the CUDA programming model which has

threads divided in blocks. Threads in a single block

communicate through the shared memory. CUDA consists of

a set of C language extensions and a runtime library that

provides APIs to control the GPU. Thus, CUDA programming

http://en.wikipedia.org/wiki/Graphics_processing_unit
http://en.wikipedia.org/wiki/Instruction_set

International Journal of Computer Applications (0975 – 8887)

Volume 155 – No 10, December 2016

25

model allows the programmers to better exploit the parallel

power of the GPU for general-purpose computing.

Fig. 4 CUDA Programming Model

Programming in CUDA

With the CUDA architecture and tools, developers are

achieving dramatic speedups in fields such as medical

imaging and natural resource exploration, and cryptography.

One of the major benefits of CUDA as compared to other

GPU programming systems is its use of a C dialect, such that

the original function for the

CPU can often be transformed into a CUDA kernel with only

slight modifications. CUDA provides to developers C libraries

that expose all device functionalities needed to integrate

CUDA into C program.

The programmer, in order to write a CUDA program,

normally begins from a sequential version and proceeds

trough the following steps

Identify a kernel, and package it as a separate function.

Specify the grid of GPU threads that executes it, and partition

the kernel computation among these threads, by using

blockIdx and threadIdx inside the kernel function.

Manage data transfer between the host memory and the GPU

memories(global, constant and texture), before and after the

kernel invocation. This includes redirecting variable accesses

in the kernel to the corresponding copies allocated in the GPU

memories.

Perform memory optimizations in the kernel, such as utilizing

the shared memory and coalescing accesses to global memory.

Perform other optimizations in the kernel in order to achieve

an optimal balance between single-thread performance and the

level of parallelism.

3. PARALLEL APRIORI ALGORITHM

3.1 Data representation for Parallel Apriori

Algorithm
Apriori algorithm assumes that candidate sets to be in

memory, which can be expensive when the candidate set is

very large. Concerning speedup, memory optimized usage and

sensitivity of parameters, the data structure to accommodate

the complete transactional data, and search efficiency, the

researchers has suggested Trie, Hash Tree. However tree

structure is not convenient as compared to the transactional

data; as transactional dataset is always the best candidate to

parallelize the transactions.

Horizontal Representation

The most straight forward way to store transactions is to store

a list of items that comprise each transaction, shown in Fig. 5.

This is called the horizontal representation.

Fig. 5 Horizontal Representation

Vertical Representation

Stores the list of the transactions ids corresponding to items,

shown in Fig. 6. The vertical representation has been referred

by variants of Apriori algorithms. Experimental results show

that the vertical representations usually can speed up the

algorithm by one order of magnitude on most of the test

dataset. This approach is referred to as a “Tidset”.

Fig. 6 Vertical Representation

BitMap Representation

The transaction list can also be represented as a bit

corresponds to the transactions and item id, as shown in Fig.

7, which we can refer as a “bitset”. When the candidates are

represented as bitsets, it takes comparatively less memory

space than horizontal and vertical representations, as it takes

only Byte per item for representation. This could be best

effective if the matrix is dense.

Fig. 7 BitMap Representation

The bitset representation is more suitable for designing a

parallel set join operation, which is better suited for GPU.

International Journal of Computer Applications (0975 – 8887)

Volume 155 – No 10, December 2016

26

3.2 Proposed Algorithm
Input: Transaction Database, D; Min Support- Smin;

Output: Frequent Item sets, FI

Apriori (D,Smin){

 While (!EOF) do{

 DatasetBuff = ReadFile(row);

 Row++;

 FindMaxColmn();

 }

 Malloc (Matrix_Size)

 ConvertToBitMatrix();

 // Allocate memory space in GPU;

 Transform Smin and bitMatrix to GPU memory

}

GPU_Kernel {

ReadItemSet Cm, Cn

SupportCount = Sum(Cm &&Cn)

If SupportCount < Smin prune (Cm,Cn)

else

FI = AddCandidate()

}Return FI.

4. RESULTS

4.1 Graph Display
Based on the transaction count and item count in the input

files given by the user, the execution times of CPU, GPU and

CPU+GPU are compared and shown in the form of graphs.

The graph is drawn with size of the transaction database on X-

axis and execution time (in milliseconds) on Y-axis. Fig. 8

shows the graphs output in the form of bar graph and line

graph. Detailed description of graph is given from Fig. 8(a).

These graphs are drawn based on transaction databases of

sizes 100, 200, 400, 800 and 1000.

Fig. 8 Graph Display

Fig. 9 shows the execution times of CPU andCPU+GPU when

the algorithm is executed with 100,200, 400, 800, 1000

transactions respectively.

Fig. 9 Execution Time in ms

From the above output screenshots, it is clear that parallel

apriori algorithm which runs on GPU is much efficient than

that of serial apriori algorithm which runs only on CPU.

5. CONCLUSIONS AND FUTURE

ENHANCEMENTS
This paper focuses on parallelization of apriori algorithm on

the GPU with CUDA architecture. To exploit the new parallel

platform for data mining, we proposed optimized CUDA-

based parallel technique i.e. parallel apriori algorithm. This

algorithm shows a speedup over existing serial apriori

algorithm. As the size of dataset increases, speedup also

increases. GPU with CUDA parallel computing architecture

will provide compelling benefits for data mining applications.

In addition, its superior floating-point computation capability

and low cost will definitely appeal to medium-sized business

and individuals. Applications that used to rely on a cluster or a

supercomputer to process will be solved on a desktop.

The future work includes parallelizing other FIM

Algorithms(Frequent Itemset Mining) such as FPGrowth

algorithm and Eclat algorithm on GPU.

6. REFERENCES
[1] Parallel Optimized Algorithm for Apriori Association

Rule Mining on Graphics Processing Unit with Compute

Unified Device Architecture (CUDA) - By Abhaya

Kumar Sahoo , Amardeep Das , Mayank Tiwary -

Published in International Journal of Advanced Research

in Computer Science and Software Engineering

(IJARCSSE) Volume 3, Issue 10, pp 121-1219, October

2013.

[2] Scalable Frequent Itemset Mining using Heterogeneous

Computing: ParApriori Algorithm - By B. B. Meshram

and V. B. Nikam - Published in International Journal of

Distributed and Parallel Systems (IJDPS) Volume 5,

Issue No.5, pp 13-26, September 2014.

[3] Parallel and distributed association mining: a survey. -

By Zaki MJ - Published in IEEE Concurrency Volume 7,

Issue 4, pp 14-25, October 1999.

[4] Parallel Data Mining on Graphics Processors - By

Wenbin Fang, Ka Keung Lau, Mian Lu, Xiangye Xiao,

Chi Kit Lam, Philip YangYang,Bingsheng He,Qiong

Luo, Pedro V. Sander, and Ke Yang.

International Journal of Computer Applications (0975 – 8887)

Volume 155 – No 10, December 2016

27

[5] GPApriori: GPU-Accelerated Frequent Itemset Mining -

By Fan Zhang ,Yan Zhang,Jason Bakos - Published in

IEEE International Conference on Cluster

Computing,2011.

[6] High Speed Association Rule Mining using Apriori

Based Algorithm for GPU - By D.William

Albert,Dr.K.Fayaz and D.Veerabhadra Babu - Published

in International Journal of Multidisciplinary and Current

Research.

[7] Frequent Itemset Mining on Graphics Processors – By

Wenbin Fang, Mian Lu, Xiao, Bingsheng He, Qiong

Luo.

[8] Data mining: concepts and techniques, 2nd Edition.

Morgan Kaufmann, SanMateo - By Han J, Kamber M

(2005).

[9] Parallel Computing with CUDA - By Mark Harris

(NVIDIA Developer Technology).

[10] Parallel Computing with CUDA - By Mark Harris

(NVIDIA Developer Technology).

[11] Professional CUDA C Programming - By John

Cheng,Max Grossman,Ty McKercher.

[12] CUDA by Example : An Introduction to General-Purpose

GPU Programming - By Jason Sanders,Edward Kandrot.

[13] Parallel Programming with CUDA - By Ian Buck.

[14] Heterogeneous Parallel Programming (MOOC) - By

University of Illinois

https://www.coursera.org/course/hetero

[15] .Net Framework Programming

[16] Wikipedia, "Association Rule Learning",

http://en.wikipedia.org/wiki/Association_rule_learning

[17] Wikipedia, "Apriori Algorithm",

http://en.wikipedia.org/wiki/Apriori_algorithm

[18] Wikipedia, "Graphics Processing Unit",

http://en.wikipedia.org/wiki/Graphics_processing_unit

[19] Wikipedia, "Parallel Computing",

http://en.wikipedia.org/wiki/Parallel_computing

[20] Nvidia, "GEForce 210 Specifications",

http://www.geforce.com/hardware/desktop-gpus/

geforce-210/specifications

[21] NVIDIA Developer Zone

[22] http://www.nvidia.com/object/what-is-gpu-

computing.html

[23] CUDA Zone

[24] https://developer.nvidia.com/cuda-zone

[25] NVIDIA Parallel For All Blog

[26] http://devblogs.nvidia.com/parallelforall/

7. AUTHOR PROFILE
D. Sirisha working as an Application Developer in Oracle.

Completed B.E from CBIT, Hyderabad in Computer Science

Engineering. Area of interest is Data Mining and Web Logic.

S. Shahida working as a Technical Associate in Bank of

America. Completed B.E from CBIT, Hyderabad in Computer

Science and Engineering. Area of interest is Data Mining.

K. Spandana working as an Asst.Prof in CSE Department

CBIT.Completed B.tech from VREC , Nizamabad ,after that

qualified in GATE with good rank and completed M.Tech

from GVPCOE, Vishakapatnam. Attended many seminars and

workshops. Area of interest is Distributed Systems.

IJCATM : www.ijcaonline.org

https://www.coursera.org/course/hetero
http://en.wikipedia.org/wiki/Association_rule_learning
http://en.wikipedia.org/wiki/Apriori_algorithm
http://en.wikipedia.org/wiki/Graphics_processing_unit
http://en.wikipedia.org/wiki/Parallel_computing
http://www.nvidia.com/object/what-is-gpu-computing.html
http://www.nvidia.com/object/what-is-gpu-computing.html
file:///C:\Users\Gowtham\AppData\Roaming\Microsoft\Word\PPT
http://devblogs.nvidia.com/parallelforall/

