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ABSTRACT  
The season affecting the imaging of the hill station highly and 

all other reasons moreover time to time. The fog in image is 

significantly affecting weather issue. This paper compares the 

hybrid scattering model and multiscale fusion method. For the 

single scattering of light dominated pixels the single scattering 

physics model is used in the hybrid model and for the 

remaining pixels the multiple scattering physics model 

(MSPM) is used. The optical thickness is the basic parameter 

for this pixel identification. The fusion method is as an energy 

minimization based method that depends on spatial Markov 

model. The multiscale depth fusion method (ILMRF) embeds 

the fusion scheme into adaptive Markov regularization to 

achieve better estimation of depth map. The result of the 

multiscale fusion is better as compared to the hybrid 

methodology. 
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1. INTRODUCTION 
There are lot of factors that affect the indoor image but the 

outdoor image gets much more affect by the environmental 

factors. In 2009 Chen et al. [1] employed the very much 

interesting technique of dark channel prior an iterative 

algorithm for the adjustment of distorted color in the case of 

higher saturation. This method deals with the problem as 

defogging in term of similarity-to-atmospheric-light objects. 

In December 2009 Yao et al. [2] developed a method to 

compute the defogging ratio with edge intensity. The edge 

halation is restrained by virtual airlight defogging technique 

using the depth information of neighboring pixel’s [2]. It 

provides the halation restraining in the resultant image. For 

the real time imaging in 2010, Ji et al. [3] worked for the 

contiguous frame similarity histogram in video data. The 

equalization of histogram is improved to enrich the image 

quality. The algorithm based on median filter is applied to 

abolish the noise [3]. A fast approach for defogging is 

developed through a single image scene using a fast bilateral 

filtering method [4]. It uses a linear function containing 

various number of image pixels and allows a fast 

implementation. It provides good restoration for color fidelity 

and contrast. Yoon et al. [5] provides an adaptive selection of 

light of undesired cloud or fog in dark channel prior 

corresponding to the image edges and produce a map through 

the atmospheric light. It adaptively eliminates fog with the 

help of projected transmission map and uses the tone mapping 

with gradient of image. It eliminates the local color distortion 

problem [5]. Yu et al. [6] presents a method for defogging 

using a scene based single image of a model based on 

atmospheric scattering. It used the coarser estimate to refine 

an edge-preserving tactic. Yoon et al. [7] present a color 

correction based image defogging process in the HSV color 

space for video processing. It creates transmission map based 

image segmentation through multi-level set of intensity (V) 

values. It basically estimates the atmospheric light of 

intensity. The reparation of color distortion in successive 

frames is done using temporal alteration ratio of the HSV 

color channels. Gibson et al. [8] used the assets of color 

ellipsoids attached to depth cues in the image. The Gaussian 

mixture model is used to account for manifold blends that 

provide the intuition such as observations at depth 

discontinuity in single image defogging. Zhen et al. [9] 

combined the bilateral filter and the adaptive median filter for 

clear dark channel on image edges. The physical model of 

algorithm for foggy images is to estimate transmission. It 

provides the reliability for outdoor visual systems in foggy 

climate [9]. In 2013 Caraffa et al. [10] worked on the MRF 

model for single image defogging method on road side images 

using planar constraint [10]. In Sept. 2013, Mutimbu et al. 

[11] presented a method to improve albedo and the depth in a 

single image. It uses the atmospheric vision model scattering 

theory in dehazing and defogging. The relaxed factorial 

Markov random field (FMRF) of the albedo and the depth 

layers in image. It leads to construction of the layers in the 

FMRF. The sparse representation is used for the involvement 

of graph Hessian and Laplacian. It then implies the global 

minima for each layer via sparse Cholesky factorisation 

systems [11]. Veeramani et al. [12] restored the foggy motion-

blurred images using the depth cues derived from the fog 

itself. It elaborates road scene of foggy images that are 

segmented into road, right, left and sky planes, and all the 

planes deblurred individually. Wang et al. [13] proposed a 

multi values depth fusion (MDF) for recovery of fog using 

local Markov regularization via single foggy image. The fog 

priors are fused in the inhomogeneous Laplacian IL-MRF 

adaptively from multiscale filtering. The depth map 

estimation is a reiterative process with optimization of two 

variables in adaptive truncated Laplacian (ATL) potential: a 

base potential variable to regularize smoothness and a line 

field variable for adaptive control. In 2014 Kawarabuki et al. 

[14] presented the snowfall estimation from falling snow 

grains measurement quality that extracted the difference in 

present defogged image and image background produced by 

the median. It recognizes the degree of snowfall automatically 

even in the low visibility by fog. The basic image processing 

and the application to the image enhancement is studied by 

more literature [15-27] .  In 2015 Zhao et al. [15] removed the 

fog by Image defogging (IDF) method that influences from 

the fogs in an image to improve its quality. For the single 

scattering of light dominated pixels the single scattering 

physics model is used in the hybrid model and for the 

remaining pixels the multiple scattering physics model 

(MSPM) is used. The rest of the paper is organised as follows. 

The second section provides the methodology on hybrid 

image defogging algorithm and the Depth fusion based 
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defogging algorithm. The third section shows the result 

analysis and fourth section covering future scope with in 

conclusion. 

2. HYBRID IMAGE DEFOGGING 

ALGORITHM 
The hybrid algorithm is not the simplified combination of the 

methods it covers the main beneficial features from different 

techniques [13]. The Single foggy image, captures in either 

thin fog or heavy fog weather conditions, contains two types 

of pixels, i.e. single scattering dominating pixels and multiple 

scattering dominating pixels. Neither SSPM nor MSPM can 

simultaneously deal with two types of pixels. To address this 

issue, a hybrid image defogging method for single image 

(HIDF) is used. The HIDF combines both SSPM and MSPM 

together as a whole.  

))(1()()()( xtAttxJxI     (1) 

The first term is direct attenuation and the second term 

represents the air light.  
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where I denotes the observed image intensity, T = βd 

represents the radial optical thickness, μ the cosine of 

inclination from the radial direction, and Lm is mth order 

Legendre polynomial which explains the angular spread of the 

brightness. In particular, HIDF applies SSPM (1) for pixels 

where single scattering dominates; otherwise, HIDF employs 

MSPM (2). The first problem is how HIDF distinguishes these 

two types of pixels. 

 

Fig 1 flowchart of the hybrid method 

Figure 1 shows the flowchart of the hybrid methodology of 

the image defogging. Through feature analysis [28] of the two 

types of pixels, it utilizes the optical thickness of 

corresponding pixels. If the optical thickness is smaller than 

one, the threshold which determines whether the single 

scattering or the multiple scattering dominates, the pixels are 

dominated by single scattering, and the pixels are multiple 

scattering dominating otherwise. Based on this fact and 

according to parts-based methods [29][30][31], HIDF applies 

SSPM for pixels whose optical thickness is smaller than one, 

and HIDF utilizes MSPM otherwise. 

3. DEPTH FUSION METHOD 
Various filtering techniques are used in image processing for 

the removal of unwanted elements in the images. The selected 

form of the non-linear and its subordinates in the appropriate 

intense manner are used for the suitable fusion method [15]. 

The flowchart of the depth fusion based method is illustrated 

in figure 2 with a clear flowchart. The inhomogeneous 

Laplacian-Markov random field (ILMRF) applies the 

nonlinear filtering is usually applied to obtain a good bound 

on scene depth at each pixel from the corresponding observed 

RGB color values, because each pixel contains three 

measurements, the three channels of the observed foggy 

image that may contribute to the depth estimation. The 

nonlinear filtering is a function over I (x) defined as follows:  

p(x) = f (I (x))      (3) 

where f (·) can be a maximum or minimum operator and p(x) 

is called a prior map. The nonlinear operator can work on 

chromatic tristimulus and neighborhood pixels of I (x). [32] 

adopts a maximum way channel-wise and pixel-wise because 

the farthest possible depth at each pixel is lower than the 

foggy intensity: 

 

Fig 2 flowchart of the multiscale depth fusion method 

D(x) = (1/I0)(I (x) − A(x)) < I (x) − A(x) < I (x) < max c I c(x) 

= p(x), where c ∈ {R, G, B} denotes color channel. The prior 

map becomes an upper bound of the depth map. The dark 

channel observation [33] says that the minimum intensity of 

an outdoor haze-free image is low and tends to be zero. A 

minimum operator is employed to obtain the prior map 

channel-wise and block-wise: 
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3.1 Defog Algorithm  
A defog algorithm employing energy minimization to find the 

fused depth map and then restoring foggy images is presented 

in this section. 
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A. Energy Minimization 

The introduced ATL potential enables us to compute the 

regularized depth map D
~

 by minimizing the following 

function: 
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And b is a dummy variable representing both horizontal and 

vertical line fields. The minimization process has to 

simultaneously estimate both D and b, which is a very 

difficult task and computationally demanding. An important 

characteristic of the edge-preserving regularization is that the 

computation involves the minimization of nonconvex energy 

functions, in contrast to the minimization of a quadratic 

potential function that a simple gradient method can quickly 

find the minimum [34], [35]. Hence it needs costly 

optimization methods such as simulated annealing [36], [37] 

and Markov chain Monte Carlo [38], [39]. 

3.2 The Algorithm 
The MDF method automatically restores a foggy image is 

summarized as follows. First, it uses an existing nonlinear 

filtering method to estimate the depth maps with different 

scales.  

 
(a) 

 
 

 

Fig 3 defogging result by (a) Foggy Image of garden with 

house (b) Multiple Hybrid Scattering Model, (c) 

Multiscale Depth Fusion method 

The depth maps obtained this way are not sufficiently accurate 

to solve the defog problem and are called prior maps. It 

applies the prior maps to the proposed ILMRF and minimize 

the energy function (5) by the alternate optimization to get the 

regularized result that is the major contribution of this paper 

and is given in the second and third steps of the algorithm. 

Atmospheric luminance is then computed from the fused 

depth map combined with a smoothness constraint. Finally the 

inverse of the atmospheric scattering model is utilized to 

restore the scene reflectance. 

4. RESULT ANALYSIS 
The results of the methods are described through the 

following as in figure 3 and figure 4. The result obtained by 

the hybrid method has some halo effect around the clear 

object. This halo effect can be overcome in the depth fusion 

method. The significance of the depth fusion method is to 

improve the removal of fog from the highly affected fog 

region. The objects are showing the very clear effect in the 

image. The quantitative result analysis is done by using the 

structure similarity index (SSIM0 and the peak signal to noise 

ratio (PSNR) in the table 1.   

(b) 

(c) 
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Fig 4 defogging result by (a) Foggy Image of city (b) 

Multiple Hybrid Scattering Model, (c) Multiscale Depth 

Fusion method 

Table 1 SSIM and PSNR comparison for Multiple Hybrid 

Scattering Model and Multiscale Depth Fusion method 

Method 

 
Multiple Hybrid 

Scattering Model 

Multiscale Depth 

Fusion method 

Images SSIM PSNR SSIM PSNR 

House with 

Garden 

Image 

0.74 18.75 0.82 22.48 

City Image 0.72 17.42 0.76 21.57 

5. CONCLUSION 
This paper compares the hybrid scattering model and 

multiscale fusion method. For the single scattering of light 

dominated pixels the single scattering physics model is used 

in the hybrid model and for the remaining pixels the multiple 

scattering physics model (MSPM) is used. The optical 

thickness is the basic parameter for this pixel identification. 

The fusion method is as an energy minimization based method 

that depends on spatial Markov model. The multiscale depth 

fusion method (ILMRF) embeds the fusion scheme into 

adaptive Markov regularization to achieve better estimation of 

depth map. The result of the multiscale fusion is better as 

compared to the hybrid methodology. The future work may be 

the alternatives of the fusion and the hybridization. 
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