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ABSTRACT 

The motivation behind this paper is to focus on the solution of 

Fully Rough Three Level Large Scale Integer Linear 

Programming (FRTLLSILP) problem, in which all decision 

parameters and decision variables in the objective functions 

and the constraints are rough intervals, and have block angular 

structure of the constraints. The optimal values of decision 

rough variables are rough integer intervals. The proposed 

model is based on interval method and slice-sum method in an 

interactive model to find a compromised solution for the 

problem under consideration. Furthermore, the concepts of 

satisfactoriness are advanced as the upper level decision-

makers' preferences until the preferred solution is obtained.  
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1. INTRODUCTION 
Rough Set Theory (RST) was initiated by Pawlak [1] in 1982 

as a method for ambiguity management. RST approach has 

fundamental importance in the fields of pattern recognition, 

data mining, artificial intelligence, image processing, machine 

learning and medical applications [2]. 

Multiple Level Programming (MLP) problems are usually 

faced with the much hierarchical structure of large 

organizations with numerous Decision Makers (DMs) over a 

solitary feasible region such as government offices, 

manufacturing plants, logistic companies, and other numerous 

fields. Solution procedures of MLP assign each decision 

maker a unique objective, a set of decision variables and a set 

of general constraints that affect all decision makers. Each 

DM independently investigates itself interest but is affected 

by the actions of other DMs [3, 4, 5]. 

The vast majority of the optimization problems emerged in 

real-world applications incorporates vast numbers of variables 

and constraints, which are called Large-Scale Programming 

Problems (LSPP) [6]. One prominent structure of the LSPP is 

the block angular structure. In this structure, an LSPP is 

separated into smaller sub-problems which appear together, 

sharing common resources in the upper-most interconnected 

constraints [7, 8].  

Integer Programming (IP) problems are optimization 

problems that minimize or maximize the objective function 

taking into consideration the limits of constraints and integer 

variables. More widely application of integer programming 

can be used to appropriately describe the decision problems 

on the management and effective use of resources in 

engineering technology, business management and other 

numerous fields [9]. 

Due to the confusion of the decision, the interactive approach, 

in which the decision information can be determined to 

guarantee a sane decision from the decision makers, will be 

used. The clue of this approach provides a learning process, 

whereby DM can figure out how to perceive a preferred 

solution. This approach utilizes the concepts of 

satisfactoriness at each level [10, 11]. 

Youness [12] presented a non-linear programming problem 

with a rough set of constraints. Also defined a convex rough 

set, a local rough optimal solution, a global rough optimal 

solution and a roughness measure of optimality. Osman et al. 

[13] introduced a new formulation and classification of the 

Rough Programming Problems (RPPs). Also, discussed new 

concepts like rough feasibility, rough optimality, rough 

optimal value and rough optimal set. 

Hamazehee et al. [14] introduced a new class of Linear 

Programming (LP) problems in which some or all of the 

coefficients are rough intervals and showed that each one of 

them can be transformed into two LP problems with interval 

coefficients. Also, discussed new concepts such as surely 

optimal range, possibly optimal range, completely satisfactory 

solutions, rather satisfactory solutions, and rough optimal 

range. 

Ammar and Khalifa [15] applied a new method named, 

separation method for solving Rough Interval Multi Objective 

Transportation Problems (RIMOTP), where transportation 

cost, supply and demand are rough intervals. Also, discussed 

the separation method as an important tool for the decision 

makers when they are handling various types of logistic 

problems having rough interval parameters of transportation 

problems. 

Osman et al. [16] presented a solution approach for RIMOTP. 

The concept of solving conventional interval programming 

combined with fuzzy programming is used to build the 

solution approach for RIMOTP. Pandian et al. [17] considered 

that transportation problem has all or some parameters as 

rough integer intervals. Also, proposed a new method named, 

a slice-sum method to solve Rough Integer Interval 

Transportation Problem (RIITP), where transportation cost, 

supply and demand are rough integer intervals. 

To solve FRTLLSILP problem, in which all decision 

parameters and decision variables in the objective functions 

and the constraints are rough intervals, directly using the 

problem base form without transformation is very complex 

and cannot be solved before. Currently, the challenging task 
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for academic research is to overcome fully rough nature in the 

proposed problem using interval method [14] and slice sum 

method [17]. 

This paper is organized as follows: Section 2 formulates the 

model of FRTLLSILP problem. Preliminaries for 

transforming rough intervals parameters and rough intervals 

variables to crisp nature are obtained in Section 3. Section 4 

discusses the methods for transforming rough intervals 

parameters and rough intervals variables to crisp nature. 

Section 5 presents a fully rough programming through 

constraint method. In Section 6 an interactive model for the 

TLLSILP problem is presented. An algorithm for solving the 

proposed problem is suggested in Section 7. In addition, a 

numerical example is provided in Section 8 to clarify the 

results. Finally, conclusion and future works are reported in 

Section 9. 

2. PROBLEM FORMULATION 
A Fully Rough Three Level Large Scale Integer Linear 

Programming (FRTLLSILP) problem may be formulated as 

follows: 

[First Level] 

Max 
 𝑥𝑖1 

 F1  =      a𝑖𝑗
2 , a𝑖𝑗

3  ,  a𝑖𝑗
1 , a𝑖𝑗

4   

𝑛

𝑖=1

⊗  𝑥𝑖𝑗  

𝑚

𝑗=1

,                1  

Where  𝑥𝑖2  , … ,  𝑥𝑖𝑚  solves 

[Second Level] 

max 
 𝑥𝑖2 

 𝐹2  =      𝑏𝑖𝑗
2 , 𝑏𝑖𝑗

3  ,  𝑏𝑖𝑗
1 , 𝑏𝑖𝑗

4   

𝑛

𝑖=1

⊗  𝑥𝑖𝑗  

𝑚

𝑗=1

,                2  

Where  𝑥𝑖3  , … ,  𝑥𝑖𝑚   solves 

[Third Level] 

max 
 𝑥𝑖3 

 𝐹3  =      𝑐𝑖𝑗
2 , 𝑐𝑖𝑗

3  ,  𝑐𝑖𝑗
1 , 𝑐𝑖𝑗

4   

𝑛

𝑖=1

⊗  𝑥𝑖𝑗  

𝑚

𝑗=1

,                 3  

Where  𝑥𝑖4  , … ,  𝑥𝑖𝑚   solves 

Subject to 

𝐺 =      𝑎0𝑖𝑗
2 , 𝑎0𝑖𝑗

3  ,  𝑎0𝑖𝑗
1 , 𝑎0𝑖𝑗

4   ⊗

𝑛

𝑖=1

 𝑥𝑖𝑗  

𝑚

𝑗=1

≤   𝑏0
2, 𝑏0

3 ,  𝑏𝑜
1, 𝑏0

4  ,                                4  

   𝑑𝑖1
2 , 𝑑𝑖1

3  ,  𝑑𝑖1
1 , 𝑑𝑖1

4   ⊗  𝑥𝑖1  

𝑛

𝑖=1

≤   𝑏1
2, 𝑏1

3 ,  𝑏1
1, 𝑏1

4  , 

   𝑑𝑖2
2 , 𝑑𝑖2

3  ,  𝑑𝑖2
1 , 𝑑𝑖2

4   ⊗  𝑥𝑖2  

𝑛

𝑖=1

≤   𝑏2
2, 𝑏2

3 ,  𝑏2
1, 𝑏2

4  , 

⋮ 

   𝑑𝑖𝑚
2 , 𝑑𝑖𝑚

3  ,  𝑑𝑖𝑚
1 , 𝑑𝑖𝑚

4   ⊗  𝑥𝑖𝑚  

𝑛

𝑖=1

≤   𝑏𝑚
2 , 𝑏𝑚

3  ,  𝑏𝑚
1 , 𝑏𝑚

4   , 

 𝑥𝑖𝑗  ≥ 0 and rough integer intervals variables  𝑗 = 1,2 

 , … ,𝑚, 𝑖 = 1,2, … , 𝑛 .    

In the above Problem (1) – (4),  𝑥𝑖𝑗  ∈ 𝑅𝑛∗𝑚 , 𝑗 =

1,2, …𝑚, 𝑖 = 1,2, … , 𝑛 is matrix of rough intervals 

variables,   𝑎𝑖𝑗
2 , 𝑎𝑖𝑗

3  ,  𝑎𝑖𝑗
1 , 𝑎𝑖𝑗

4   ,   𝑏𝑖𝑗
2 , 𝑏𝑖𝑗

3  ,  𝑏𝑖𝑗
1 , 𝑏𝑖𝑗

4   and 

  𝑐𝑖𝑗
2 , 𝑐𝑖𝑗

3  ,  𝑐𝑖𝑗
1 , 𝑐𝑖𝑗

4    are matrix of rough intervals coefficients 

of the objective function for the three levels, G is the large 

scale linear constraint where,   𝑏0
2, 𝑏0

3 ,  𝑏𝑜
1, 𝑏0

4  , …, 

   𝑏𝑚
2 , 𝑏𝑚

3  ,  𝑏𝑚
1 , 𝑏𝑚

4     𝑎𝑟𝑒  𝑚 + 1  vector of rough intervals 

and   𝑎0𝑖𝑗
2 , 𝑎0𝑖𝑗

3  ,  𝑎0𝑖𝑗
1 , 𝑎0𝑖𝑗

4   ,   𝑑𝑖𝑗
2 , 𝑑𝑖𝑗

3  ,  𝑑𝑖𝑗
1 , 𝑑𝑖𝑗

4   , 𝑗 = 1,2 

, … ,𝑚, 𝑖 = 1,2, … , 𝑛 are rough intervals of constants.  

Therefore 
)3,2,1(,:  kRRF mn

k  be the first level, the 

second level, and the third level objective function, 

respectively. Moreover, the First Level Decision Maker 

(FLDM) has  𝑥𝑖1   indicating the first decision level integer 

choice, the Second Level Decision Maker (SLDM) and the 

Third Level Decision Maker (TLDM) have  𝑥𝑖2   and 

 𝑥𝑖3  , 𝑖 = 1,2, … , 𝑛  indicating the second and the third 

decision level integer choice, respectively. 

Definition 1. [6] 

For any   𝑥𝑖1  ∈ 𝐺1 =   𝑥𝑖1    𝑥𝑖𝑗  ∈ 𝐺  , 𝑗 = 1,2, … ,𝑚, 𝑖 =

1,2, … , 𝑛 given by the FLDM and   𝑥𝑖2  ∈ 𝐺2 =

  𝑥𝑖2    𝑥𝑖𝑗  ∈ 𝐺  , 𝑗 = 1,2,… ,𝑚, 𝑖 = 1,2,… , 𝑛 given by the 

SLDM, if the decision-making variable   𝑥𝑖3  ∈ 𝐺3 =

  𝑥𝑖3    𝑥𝑖𝑗  ∈ 𝐺  , 𝑗 = 1,2,… ,𝑚, 𝑖 = 1,2,… , 𝑛 is the optimal 

solution of the TLDM, then   𝑥𝑖𝑗   , 𝑗 = 1,2,… ,𝑚, 𝑖 =

1,2, … , 𝑛 is a feasible solution of FRTLLSILP problem.  

Definition 2. [6] 

If  𝑥𝑖𝑗
∗  ∈ 𝑅𝑛∗𝑚 , 𝑗 = 1,2,… ,𝑚, 𝑖 = 1,2,… , 𝑛 is a feasible 

solution of the FRTLLSILP problem; no other feasible 

solution  𝑥𝑖𝑗  ∈ 𝐺, 𝑗 = 1,2, … ,𝑚, 𝑖 = 1,2, … , 𝑛 exists, such 

that   𝑥𝑖𝑗
∗   ≤ 𝐹  𝑥𝑖𝑗   , 𝑗 = 1,2, … ,𝑚, 𝑖 = 1,2, … , 𝑛 ; so  𝑥𝑖𝑗

∗   

is the optimal solution of the FRTLLSILP problem. 

3. BASIC PRELIMINARIES 
Conversion of the proposed problem decision parameters and 

decision variables into upper and lower approximation is 

usually hard work for many cases, but transformation process 

needs the following definitions to be known: 

Definition 3. [14] 

Rough Interval (RI) can be considered as a qualitative value 

from vague concept defined on a variable 𝑥 in 𝑅. 

Definition 4. [14] 

The qualitative value 𝐴 is called a rough interval when one 

can assign two closed intervals 𝐴∗ and 𝐴∗  on 𝑅 to it where  

𝐴∗ ⊆ 𝐴∗ . 

Definition 5. [14] 

𝐴∗ and 𝐴∗ are called the lower approximation interval (LAI) 

and the upper approximation interval (UAI) of A, 

respectively. Further, A is denoted by 𝐴 =  (𝐴∗ and 𝐴∗ ). 

Definition 6. [14] 

Consider all of the corresponding linear programming with 

interval coefficients (LPIC) and LP of Problem (1)-(4): 
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1. The interval  𝑓𝑘
2, 𝑓𝑘

3   𝑓𝑘
1, 𝑓𝑘

4  , 𝑘 = 1,2,3 is called 

the surely (possibly) optimal range of Problem (1) –

(4), if the optimal range of each LPIC is a superset 

(subset) of   𝑓𝑘
2 , 𝑓𝑘

3   𝑓𝑘
1, 𝑓𝑘

4  , 𝑘 = 1,2,3. 

2. Let  𝑓𝑘
2, 𝑓𝑘

3   𝑓𝑘
1, 𝑓𝑘

4  , 𝑘 = 1,2,3 be surely 

(possibly) optimal range of Problem (1)-(4), then 

the rough interval   𝑓𝑘
2 , 𝑓𝑘

3 ,  𝑓𝑘
1, 𝑓𝑘

4  , 𝑘 = 1,2,3 is 

called the rough optimal range of Problem (1) - (4). 

3. The optimal solution of each corresponding LP of 

Problem (1) - (4) which its optimal value belongs to 

 𝑓𝑘
2 , 𝑓𝑘

3   𝑓𝑘
1, 𝑓𝑘

4  , 𝑘 = 1,2,3 is called a completely 

satisfactory (rather) solution of Problem (1)-(4). 

Let D denote the set of all rough intervals on the real line R. 

That is, 

𝐷 =    𝑏, 𝑐 ,  𝑎, 𝑑  , 𝑎 ≤ 𝑏 ≤ 𝑐 ≤ 𝑑 and 𝑎, 𝑏, 𝑐, 𝑑 are in R ,    

𝐴 =   𝑎2 , 𝑎3  ,  𝑎1 , 𝑎4    and 𝐵 =   𝑏2 , 𝑏3  ,  𝑏1 , 𝑏4    

be in 𝐷.         

Definition 7. [17] 

𝐴⊕𝐵 =   𝑎2 + 𝑏2 , 𝑎3 + 𝑏3  ,  𝑎1 + 𝑏1 , 𝑎4 + 𝑏4   . 
Definition 8. [17] 

𝐾𝐴 =   𝐾𝑎2 , 𝐾𝑎3  ,  𝐾𝑎1 , 𝐾𝑎4   , 

 if 𝑘 is a positive real number. 

Definition 9. [17] 

𝐴⊗𝐵 =   𝑎2 𝑏2 , 𝑎3 𝑏3  ,  𝑎1 𝑏1 , 𝑎4 𝑏4   , if 𝐴, 𝐵 ≥ 0. 

Definition 10. [17] 

𝐴 is said to be a rough positive integer, if 𝑎𝑖 , 𝑖 = 1,2,3,4  

are positive integers. 

Definition 11. [17] 

𝐴 ≥ 𝐵, if 𝑎𝑖 ≥ 𝑏𝑖 , 𝑖 = 1,2,3,4.                                                

𝐴 ≤ 𝐵, if 𝑎𝑖 ≤ 𝑏𝑖 , 𝑖 = 1,2,3,4.   

𝐴 = 𝐵, if 𝑎𝑖 = 𝑏𝑖 , 𝑖 = 1,2,3,4.    

4. METHODS FOR TRANSFORMING 

ROUGH INTERVALS PARAMETERS 

AND ROUGH INTERVALS 

VARIABLES TO CRISP NATURE 
Interval method [14] and slice sum method [17] can be used 

to overcome the complexity of rough intervals decision 
parameters and rough intervals decision variables.  

4.1 Interval Method for Transforming 

Rough Intervals Parameters to Crisp 

Nature 
Interval method [14] constructs two LP problems with interval 

coefficients. One of these problems is an LP where all of its 

coefficients are upper approximations of rough intervals and 

the other is an LP where all of its coefficients are lower 

approximations of rough intervals. 

Let  𝐹𝑘  =   𝑓𝑘
2 , 𝑓𝑘

3 ,  𝑓𝑘
1, 𝑓𝑘

4  , 𝑘 = 1,2,3. Then,  

[First Level] 

max 
 𝑥𝑖1 

  𝑓1
2, 𝑓1

3 ,  𝑓1
1, 𝑓1

4                                                                (5)

=      𝑎𝑖𝑗
2 , 𝑎𝑖𝑗

3  ,  𝑎𝑖𝑗
1 , 𝑎𝑖𝑗

4   

𝑛

𝑖=1

𝑚

𝑗=1

⊗  𝑥𝑖𝑗  ,  

Where  𝑥𝑖2  , … ,  𝑥𝑖𝑚  solves 

[Second Level] 

max
 𝑥𝑖2 

  𝑓2
2, 𝑓2

3 ,  𝑓2
1, 𝑓2

4                                                                  6 

=      𝑏𝑖𝑗
2 , 𝑏𝑖𝑗

3  ,  𝑏𝑖𝑗
1 , 𝑏𝑖𝑗

4   

𝑛

𝑖=1

⊗  𝑥𝑖𝑗  

𝑚

𝑗=1

,  

Where  𝑥𝑖3  , … ,  𝑥𝑖𝑚   solves 

[Third Level] 

max 
 𝑥𝑖3 

  𝑓3
2, 𝑓3

3 ,  𝑓3
1, 𝑓3

4                                                                 7 

=     𝑐𝑖𝑗
2 , 𝑐𝑖𝑗

3  ,  𝑐𝑖𝑗
1 , 𝑐𝑖𝑗

4   

𝑛

𝑖=1

 

𝑚

𝑗=1

⊗  𝑥𝑖𝑗  , 

Where  𝑥𝑖4  , … ,  𝑥𝑖𝑚   solves 

Subject to 

𝐺 =      𝑎0𝑖𝑗
2 , 𝑎0𝑖𝑗

3  ,  𝑎0𝑖𝑗
1 , 𝑎0𝑖𝑗

4   ⊗

𝑛

𝑖=1

 𝑥𝑖𝑗                       

𝑚

𝑗=1

 8 

≤   𝑏0
2, 𝑏0

3 ,  𝑏𝑜
1, 𝑏0

4  ,                                

   𝑑𝑖1
2 , 𝑑𝑖1

3  ,  𝑑𝑖1
1 , 𝑑𝑖1

4   ⊗  𝑥𝑖1  

𝑛

𝑖=1

≤   𝑏1
2, 𝑏1

3 ,  𝑏1
1, 𝑏1

4  , 

   𝑑𝑖2
2 , 𝑑𝑖2

3  ,  𝑑𝑖2
1 , 𝑑𝑖2

4   ⊗  𝑥𝑖2  

𝑛

𝑖=1

≤   𝑏2
2, 𝑏2

3 ,  𝑏2
1, 𝑏2

4  , 

  ⋮ 

   𝑑𝑖𝑚
2 , 𝑑𝑖𝑚

3  ,  𝑑𝑖𝑚
1 , 𝑑𝑖𝑚

4   ⊗  𝑥𝑖𝑚  

𝑛

𝑖=1

≤   𝑏𝑚
2 , 𝑏𝑚

3  ,  𝑏𝑚
1 , 𝑏𝑚

4   , 

 𝑥𝑖𝑗  ≥ 0 and rough integer intervals variables  𝑗 = 1,2 

 , … ,𝑚, 𝑖 = 1,2, … , 𝑛 .  

Now, the equivalent problem of the FLDM, SLDM and 

TLDM using interval method [14] can be obtained by getting 

the surely optimal range of Problems (5) - (8), which resulted 

in the following two Large Scale Integer Linear Programming 

(LSILP) problems with rough integer intervals variables for 

each DM. 
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Table (1): Lower Approximations of Rough Intervals 

Coefficients of the FLDM, SLDM and TLDM 

Lower Approximation 

Lower Bound (LALB) 

Lower Approximation 

Upper Bound (LAUB) 

𝑓𝐾
2 =  max  𝑎𝑖𝑗

2

𝑛

𝑖=1

 𝑥𝑖𝑗  

𝑚

𝑗=1

, 

𝑘 = 1,2,3,                           (9) 

subject to 

  𝑎0𝑖𝑗
3

𝑛

𝑖=1

 𝑥𝑖𝑗  

𝑚

𝑗=1

≤ 𝑏0
2 ,   

 𝑑𝑖1
3  𝑥𝑖1  ≤ 𝑏1

2,

𝑛

𝑖=1

             

 𝑑𝑖2
3  𝑥𝑖2  ≤ 𝑏2

2,

𝑛

𝑖=1

            

 𝑑𝑖𝑚
3  𝑥𝑖𝑚  ≤ 𝑏𝑚

2 ,

𝑛

𝑖=1

                

 𝑥𝑖𝑗  ≥ 0, 𝑗 = 1,2, … ,𝑚, 𝑖 =

1,2, … , 𝑛,    and rough 
integer intervals 

variables. 

𝑓𝐾
3 =  max  𝑎𝑖𝑗

3

𝑛

𝑖=1

 𝑥𝑖𝑗  

𝑚

𝑗=1

, 

𝑘 = 1,2,3,                         (10) 

subject to 

  𝑎0𝑖𝑗
2

𝑛

𝑖=1

 𝑥𝑖𝑗  

𝑚

𝑗=1

≤ 𝑏0
3 ,   

 𝑑𝑖1
2  𝑥𝑖1  ≤ 𝑏1

3,

𝑛

𝑖=1

               

 𝑑𝑖2
2  𝑥𝑖2  ≤ 𝑏2

3,

𝑛

𝑖=1

             

 𝑑𝑖𝑚
2  𝑥𝑖𝑚  ≤ 𝑏𝑚

3 ,

𝑛

𝑖=1

            

 𝑥𝑖𝑗  ≥ 0, 𝑗 = 1,2, … ,𝑚, 𝑖 =

1,2, … , 𝑛,    and rough 
integer intervals 
variables. 

While the possibly optimal range of the FLDM, SLDM and 

TLDM using interval method [14] can be obtained by getting 

the possibly optimal range of Problems (5) - (8), which 

resulted in the following two LSILP problems with rough 

integer intervals variables for each DM. 

Table (2): Upper Approximations of Rough Intervals 

Coefficients of the FLDM, SLDM and TLDM 

Upper Approximation 

Lower Bound (UALB) 

Upper Approximation 

Upper Bound (UAUB) 

𝑓𝑘
1 =  max  𝑎𝑖𝑗

1

𝑛

𝑖=1

 𝑥𝑖𝑗  

𝑚

𝑗=1

, 

𝑘 = 1,2,3,                         (11) 
subject to 

𝑓𝑘
4 =  max  𝑎𝑖𝑗

4

𝑛

𝑖=1

 𝑥𝑖𝑗  

𝑚

𝑗=1

, 

𝑘 = 1,2,3,                         (12) 
subject to 

  𝑎0𝑖𝑗
4

𝑛

𝑖=1

 𝑥𝑖𝑗  

𝑚

𝑗=1

≤ 𝑏0
1,    

 𝑑𝑖1
4  𝑥𝑖1  ≤ 𝑏1

1,

𝑛

𝑖=1

 

 𝑑𝑖2
4  𝑥𝑖2  ≤ 𝑏2

1,

𝑛

𝑖=1

 

 𝑑𝑖𝑚
4  𝑥𝑖𝑚  ≤ 𝑏𝑚

1  ,

𝑛

𝑖=1

 

 𝑥𝑖𝑗  ≥ 0, 𝑗 = 1,2, … ,𝑚, 𝑖 =

1,2, … , 𝑛,    and rough 
integer intervals 
variables. 

  𝑎0𝑖𝑗
1

𝑛

𝑖=1

 𝑥𝑖𝑗  

𝑚

𝑗=1

≤ 𝑏0
4 , 

 𝑑𝑖1
1  𝑥𝑖1  ≤ 𝑏1

4,

𝑛

𝑖=1

 

 𝑑𝑖2
1  𝑥𝑖2  ≤ 𝑏2

4,

𝑛

𝑖=1

 

 𝑑𝑖𝑚
1  𝑥𝑖𝑚  ≤ 𝑏𝑚

4  ,

𝑛

𝑖=1

 

 𝑥𝑖𝑗  ≥ 0, 𝑗 = 1,2, … ,𝑚, 𝑖 =

1,2, … , 𝑛,    and rough 
integer intervals 
variables. 

 
 

So, the problem of FRTLLSILP (5) - (8) can be converted into 

twelve LSILP problems with rough integer intervals variables.  

4.2 Slice Sum Method for Transforming 

Rough Intervals Variables to Crisp 

Nature 
Slice Sum method [17] is a method for solving fully rough 

intervals problems, in which all decision parameters and 

decision variables in the objective functions and the 

constraints are rough intervals and the optimal values of 

decision rough variables and rough objective function are 

rough intervals.  

Let  𝑥𝑖𝑗  =   𝑥𝑖𝑗
2 , 𝑥𝑖𝑗

3  ,  𝑥𝑖𝑗
1 , 𝑥𝑖𝑗

4    , 𝑗 = 1,2, … ,𝑚, 𝑖 = 1,2, …𝑛   

and  𝐹𝑘  =   𝑓𝑘
2, 𝑓𝑘

3 ,  𝑓𝑘
1, 𝑓𝑘

4  , 𝑘 = 1,2,3.   

[First Level] 
max 
 𝑥𝑖1 

  𝑓1
2, 𝑓1

3 ,  𝑓1
1, 𝑓1

4  =                                                       (13) 

     𝑎𝑖𝑗
2 , 𝑎𝑖𝑗

3  ,  𝑎𝑖𝑗
1 , 𝑎𝑖𝑗

4   

𝑛

𝑖=1

⊗   𝑥𝑖𝑗
2 , 𝑥𝑖𝑗

3  ,  𝑥𝑖𝑗
1 , 𝑥𝑖𝑗

4   

𝑚

𝑗=1

,       

Where  𝑥𝑖2  , … ,  𝑥𝑖𝑚  solves 
[Second Level] 
max 
 𝑥𝑖2 

  𝑓2
2, 𝑓2

3 ,  𝑓2
1, 𝑓2

4  =                                                        (14) 

    𝑏𝑖𝑗
2 , 𝑏𝑖𝑗

3  ,  𝑏𝑖𝑗
1 , 𝑏𝑖𝑗

4   

𝑛

𝑖=1

⊗   𝑥𝑖𝑗
2 , 𝑥𝑖𝑗

3  ,  𝑥𝑖𝑗
1 , 𝑥𝑖𝑗

4   

𝑚

𝑗=1

, 

Where  𝑥𝑖3  , … ,  𝑥𝑖𝑚   solves 
[Third Level] 
max 
 𝑥𝑖3 

  𝑓3
2, 𝑓3

3 ,  𝑓3
1, 𝑓3

4  =                                                        (15) 

     𝑐𝑖𝑗
2 , 𝑐𝑖𝑗

3  ,  𝑐𝑖𝑗
1 , 𝑐𝑖𝑗

4   

𝑛

𝑖=1

⊗   𝑥𝑖𝑗
2 , 𝑥𝑖𝑗

3  ,  𝑥𝑖𝑗
1 , 𝑥𝑖𝑗

4   

𝑚

𝑗=1

,       

Where  𝑥𝑖4  , … ,  𝑥𝑖𝑚   solves 
Subject to 

𝐺 =      𝑎0𝑖𝑗
2 , 𝑎0𝑖𝑗

3  ,  𝑎0𝑖𝑗
1 , 𝑎0𝑖𝑗

4   ⊗

𝑛

𝑖=1

  𝑥𝑖𝑗
2 , 𝑥𝑖𝑗

3  ,  𝑥𝑖𝑗
1 , 𝑥𝑖𝑗

4   

𝑚

𝑗=1

≤   𝑏0
2, 𝑏0

3 ,  𝑏𝑜
1, 𝑏0

4  ,                               16  

   𝑑𝑖1
2 , 𝑑𝑖1

3  ,  𝑑𝑖1
1 , 𝑑𝑖1

4   ⊗   𝑥𝑖1
2 , 𝑥𝑖1

3  ,  𝑥𝑖1
1 , 𝑥𝑖1

4   

𝑛

𝑖=1

≤   𝑏1
2, 𝑏1

3 ,  𝑏1
1, 𝑏1

4  , 

   𝑑𝑖2
2 , 𝑑𝑖2

3  ,  𝑑𝑖2
1 , 𝑑𝑖2

4   ⊗   𝑥𝑖2
2 , 𝑥𝑖2

3  ,  𝑥𝑖2
1 , 𝑥𝑖2

4   

𝑛

𝑖=1

≤   𝑏2
2, 𝑏2

3 ,  𝑏2
1, 𝑏2

4  , 
⋮          

   𝑑𝑖𝑚
2 , 𝑑𝑖𝑚

3  ,  𝑑𝑖𝑚
1 , 𝑑𝑖𝑚

4   ⊗   𝑥𝑖𝑚
2 , 𝑥𝑖𝑚

3  ,  𝑥𝑖𝑚
1 , 𝑥𝑖𝑚

4   

𝑛

𝑖=1

≤   𝑏𝑚
2 , 𝑏𝑚

3  ,  𝑏𝑚
1 , 𝑏𝑚

4   ,  
  𝑥𝑖𝑗  ≥ 0 and rough integer intervals variables , 𝑗 =

1,2, … ,𝑚, 𝑖 = 1,2, … , 𝑛 .            

The (UAUB)F problem with rough integer intervals variables 

of the FLDM in Problem (12) can be sliced into the following 

four LSILP problems using slice sum method [17].  
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Table (3): The Four LSILP Problems of (UAUB)
F
 of the 

FLDM  

Upper Approximation 

Upper Bound (UAUB)
UUF 

Lower Approximation 

Lower Bound (LALB)
UUF 

𝑓1
4𝑈𝑈 =  max  𝑎𝑖𝑗

4

𝑛

𝑖=1

𝑥𝑖𝑗
4

𝑚

𝑗=1

, 

subject to                        
(17) 

  𝑎0𝑖𝑗
1

𝑛

𝑖=1

𝑥𝑖𝑗
4

𝑚

𝑗=1

≤ 𝑏0
4 ,         

 𝑑𝑖1
1 𝑥𝑖1

4 ≤ 𝑏1
4,

𝑛

𝑖=1

          

 𝑑𝑖2
1 𝑥𝑖2

4 ≤ 𝑏2
4,

𝑛

𝑖=1

       

 𝑑𝑖𝑚
1 𝑥𝑖𝑚

4 ≤ 𝑏𝑚
4 ,

𝑛

𝑖=1

  

𝑥𝑖𝑗
4 ≥ 0, 𝑗 = 1,2,… ,𝑚, 𝑖

= 1,2,… , 𝑛.             

𝑓1
4𝐿𝐿 =  max  𝑎𝑖𝑗

4

𝑛

𝑖=1

𝑥𝑖𝑗
2

𝑚

𝑗=1

,   

subject to                       
(19) 

  𝑎0𝑖𝑗
1

𝑛

𝑖=1

𝑥𝑖𝑗
2

𝑚

𝑗=1

≤ 𝑏0
4 ,      

 𝑑𝑖1
1 𝑥𝑖1

2 ≤ 𝑏1
4,

𝑛

𝑖=1

       

 𝑑𝑖2
1 𝑥𝑖2

2 ≤ 𝑏2
4,

𝑛

𝑖=1

   

 𝑑𝑖𝑚
1 𝑥𝑖𝑚

2 ≤ 𝑏𝑚
4 ,

𝑛

𝑖=1

      

𝑥𝑖𝑗
2 ≥ 0, 𝑗 = 1,2,… ,𝑚, 𝑖

= 1,2,… , 𝑛.             
Lower Approximation 

Upper Bound (LAUB)
UUF 

Upper Approximation 

Lower Bound (UALB)
UUF 

𝑓1
4𝐿𝑈 =  max  𝑎𝑖𝑗

4

𝑛

𝑖=1

𝑥𝑖𝑗
3

𝑚

𝑗=1

,   

subject to                        
(18) 

  𝑎0𝑖𝑗
1

𝑛

𝑖=1

𝑥𝑖𝑗
3

𝑚

𝑗=1

≤ 𝑏0
4 ,          

 𝑑𝑖1
1 𝑥𝑖1

3 ≤ 𝑏1
4,

𝑛

𝑖=1

    

 𝑑𝑖2
1 𝑥𝑖2

3 ≤ 𝑏2
4,

𝑛

𝑖=1

       

 𝑑𝑖𝑚
1 𝑥𝑖𝑚

3 ≤ 𝑏𝑚
4 ,

𝑛

𝑖=1

                 

𝑥𝑖𝑗
3 ≥ 0, 𝑗 = 1,2,… ,𝑚, 𝑖

= 1,2,… , 𝑛.             

𝑓1
4𝑈𝐿 =  max  𝑎𝑖𝑗

4

𝑛

𝑖=1

𝑥𝑖𝑗
1

𝑚

𝑗=1

,   

subject to                        
(20) 

  𝑎0𝑖𝑗
1

𝑛

𝑖=1

𝑥𝑖𝑗
1

𝑚

𝑗=1

≤ 𝑏0
4 ,         

 𝑑𝑖1
1 𝑥𝑖1

1 ≤ 𝑏1
4,

𝑛

𝑖=1

      

 𝑑𝑖2
1 𝑥𝑖2

1 ≤ 𝑏2
4,

𝑛

𝑖=1

          

 𝑑𝑖𝑚
1 𝑥𝑖𝑚

1 ≤ 𝑏𝑚
4 ,

𝑛

𝑖=1

          

𝑥𝑖𝑗
1 ≥ 0, 𝑗 = 1,2,… ,𝑚, 𝑖

= 1,2,… , 𝑛.             

Solving Problems (17) – (20), leads to 𝑥𝑖𝑗
4 = 𝑥𝑖𝑗

3 = 𝑥𝑖𝑗
2 =

𝑥𝑖𝑗
1 = 𝑥𝑖𝑗

𝑈𝑈 , 𝑗 = 1,2,… ,𝑚, 𝑖 = 1,2,… , 𝑛. So, the four LSILP 

problems of (UAUB) F of the FLDM can be simplified to the 

following LSILP problem: 

𝑓1
4 =  max  𝑎𝑖𝑗

4

𝑛

𝑖=1

𝑥𝑖𝑗
𝑈𝑈

𝑚

𝑗=1

,                                                       (21) 

subject to 

  𝑎0𝑖𝑗
1

𝑛

𝑖=1

𝑥𝑖𝑗
𝑈𝑈

𝑚

𝑗=1

≤ 𝑏0
4 ,                                          

 𝑑𝑖1
1 𝑥𝑖1

𝑈𝑈 ≤ 𝑏1
4 ,

𝑛

𝑖=1

                                

 𝑑𝑖2
1 𝑥𝑖2

𝑈𝑈 ≤ 𝑏2
4 ,

𝑛

𝑖=1

                                    

 𝑑𝑖𝑚
1 𝑥𝑖𝑚

𝑈𝑈 ≤ 𝑏𝑚
4 ,

𝑛

𝑖=1

                                 

𝑥𝑖𝑗
𝑈𝑈 ≥ 0 , 𝑗 = 1,2, … ,𝑚, 𝑖 = 1,2, … , 𝑛.             

And (UAUB)F, (LAUB)F, (LALB)F and (UALB)F problems 

with rough integer intervals variables of the FLDM in 

Problems (9) – (12) can be reformulated into the following 

four LSILP problems: 

Table (4): The Four LSILP Problems of (UAUB)
F
, 

(LAUB)
F
, (LALB)

F
 and (UALB)

F
 of the FLDM  

Upper Approximation 

Upper Bound (UAUB)
F
 

Lower Approximation 

Lower Bound (LALB)
F 

𝑓1
4 =  max  𝑎𝑖𝑗

4

𝑛

𝑖=1

𝑥𝑖𝑗
𝑈𝑈

𝑚

𝑗=1

,  

subject to                         (22) 

𝐺𝑈𝑈 = 

   𝑎0𝑖𝑗
1

𝑛

𝑖=1

𝑥𝑖𝑗
𝑈𝑈

𝑚

𝑗=1

≤ 𝑏0
4 ,     

 𝑑𝑖1
1 𝑥𝑖1

𝑈𝑈 ≤ 𝑏1
4 ,

𝑛

𝑖=1

                  

 𝑑𝑖2
1 𝑥𝑖2

𝑈𝑈 ≤ 𝑏2
4 ,

𝑛

𝑖=1

                 

 𝑑𝑖𝑚
1 𝑥𝑖𝑚

𝑈𝑈 ≤ 𝑏𝑚
4 ,

𝑛

𝑖=1

          

 𝑥𝑖𝑗
𝑈𝑈 ≥ 0, 𝑗 = 1,2, … ,𝑚, 𝑖

= 1,2,… , 𝑛 .             

𝑓1
2 =  max  𝑎𝑖𝑗

2

𝑛

𝑖=1

𝑥𝑖𝑗
𝐿𝐿

𝑚

𝑗=1

,  

subject to                         (24) 

𝐺𝐿𝐿 =    

   𝑎0𝑖𝑗
3

𝑛

𝑖=1

𝑥𝑖𝑗
𝐿𝐿

𝑚

𝑗=1

≤ 𝑏0
2  , 

 𝑑𝑖1
3 𝑥𝑖1

𝐿𝐿 ≤ 𝑏1
2 ,

𝑛

𝑖=1

        

 𝑑𝑖2
3 𝑥𝑖2

𝐿𝐿 ≤ 𝑏2
2 ,

𝑛

𝑖=1

          

 𝑑𝑖𝑚
3 𝑥𝑖𝑚

𝐿𝐿 ≤ 𝑏𝑚
2 ,

𝑛

𝑖=1

    

𝑥𝑖𝑗
𝐿𝐿 ≤ 𝑥𝑖𝑗

𝐿𝑈 ,                

 𝑥𝑖𝑗
𝐿𝐿 ≥ 0, 𝑗 = 1,2, … ,𝑚, 𝑖

= 1,2,… , 𝑛 .             

Lower Approximation 

Upper Bound (LAUB)
F 

Upper Approximation 

Lower Bound (UALB)
F 

𝑓1
3 =  max  𝑎𝑖𝑗

3

𝑛

𝑖=1

𝑥𝑖𝑗
𝐿𝑈

𝑚

𝑗=1

,  

subject to                         (23) 

𝐺𝐿𝑈 = 

   𝑎0𝑖𝑗
2

𝑛

𝑖=1

𝑥𝑖𝑗
𝐿𝑈

𝑚

𝑗=1

≤ 𝑏0
3 ,  

 𝑑𝑖1
2 𝑥𝑖1

𝐿𝑈 ≤ 𝑏1
3,

𝑛

𝑖=1

           

 𝑑𝑖2
2 𝑥𝑖2

𝐿𝑈 ≤ 𝑏2
3,

𝑛

𝑖=1

       

 𝑑𝑖𝑚
2 𝑥𝑖𝑚

𝐿𝑈 ≤ 𝑏𝑚
3  ,

𝑛

𝑖=1

   

𝑥𝑖𝑗
𝐿𝑈 ≤ 𝑥𝑖𝑗

𝑈𝑈 ,         
 𝑥𝑖𝑗
𝐿𝑈 ≥ 0, 𝑗 = 1,2, … ,𝑚, 𝑖

= 1,2,… , 𝑛 .             

𝑓1
1 =  max  𝑎𝑖𝑗

1

𝑛

𝑖=1

𝑥𝑖𝑗
𝑈𝐿

𝑚

𝑗=1

 

subject to                         (25) 

𝐺𝑈𝐿 =  

   𝑎0𝑖𝑗
4

𝑛

𝑖=1

𝑥𝑖𝑗
𝑈𝐿

𝑚

𝑗=1

≤ 𝑏0
1 ,  

 𝑑𝑖1
4 𝑥𝑖1

𝑈𝐿 ≤ 𝑏1
1,

𝑛

𝑖=1

     

 𝑑𝑖2
4 𝑥𝑖2

𝑈𝐿 ≤ 𝑏2
1,

𝑛

𝑖=1

         

 𝑑𝑖𝑚
4 𝑥𝑖𝑚

𝑈𝐿 ≤ 𝑏𝑚
1 ,

𝑛

𝑖=1

 

𝑥𝑖𝑗
𝑈𝐿 ≤ 𝑥𝑖𝑗

𝐿𝐿 ,          
 𝑥𝑖𝑗
𝑈𝐿 ≥ 0, 𝑗 = 1,2, … ,𝑚, 𝑖

= 1,2,… , 𝑛 .            

 
These steps will be repeated for SLDM and TLDM, so the 

problem of FRTLLSILP (5)-(8) converted into twelve LSILP 

problems.  

Theorem 1 

If 𝑥𝑖𝑗
𝑈𝑈 , 𝑗 = 1,2,…𝑚, 𝑖 = 1,2, … , 𝑛  is an optimal solution for 

the UAUB problem of the problem, 𝑥𝑖𝑗
𝐿𝑈 , 𝑗 = 1,2, …𝑚, 𝑖 =

1,2, … , 𝑛  is an optimal solution for the LAUB problem of the 
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problem, 𝑥𝑖𝑗
𝐿𝐿 , 𝑗 = 1,2, …𝑚, 𝑖 = 1,2, … , 𝑛  is an optimal 

solution for the LALB problem of the problem, 𝑥𝑖𝑗
𝑈𝐿 , 𝑗 =

1,2, …𝑚, 𝑖 = 1,2, … , n   is an optimal solution for the UALB 

problem of the problem, then the set of rough intervals   

  𝑥𝑖𝑗
𝐿𝐿 , 𝑥𝑖𝑗

𝐿𝑈  ,  𝑥𝑖𝑗
𝑈𝐿 , 𝑥𝑖𝑗

𝑈𝑈    is an optimal solution for 

FRTLLSILP problem such that  𝑥𝑖𝑗
𝑈𝐿 ≤ 𝑥𝑖𝑗

𝐿𝐿 ≤ 𝑥𝑖𝑗
𝐿𝑈 ≤ 𝑥𝑖𝑗

𝑈𝑈 𝑗 =

1,2, …𝑚, 𝑖 = 1,2, … , 𝑛. 

To prove theorem 1 above, the reader is referred to [17]. 

5. FULLY ROUGH PROGRAMMING 

THROUGH CONSTRAINT METHOD 
First, the optimal solution that is satisfactory to the FLDM is 

acquired using the decomposition algorithm [8] to break the 

large scale problem into n sub-problems that can be solved 

directly. If the solution of the problem is not integer optimal 

solution, then branch and bound method [9] is used to find 

integer optimal solution. 

At that point, constraint method [6] can be used by embedding 

the FLDM decision variables to the SLDM in order to get the 

optimal solution using the decomposition algorithm [8]. The 

SLDM defines his/her problem in point of view of the FLDM 

by setting   𝑥𝑖1   =    𝑥𝑖1
𝐿𝐿𝐹 , 𝑥𝑖1

𝐿𝑈𝐹  ,  𝑥𝑖1
𝑈𝐿𝐹 , 𝑥𝑖1

𝑈𝑈𝐹    , 𝑖 =

1,2, … , 𝑛 to the SLDM constraints, so the SLDM can be 

reformulated as follow: 

Table (5): The Four LSILP Problems of (UAUB)
S
, 

(LAUB)
S
, (LALB)

S
 and (UALB)

S
 of the SLDM  

Upper Approximation 

Upper Bound (UAUB)
S 

Lower Approximation 

Lower Bound (LALB)
S 

𝑓2
4 =  max  𝑎𝑖𝑗

4

𝑛

𝑖=1

𝑥𝑖𝑗
𝑈𝑈

𝑚

𝑗=1

,     

subject to                           (26) 

𝑥 ∈ 𝐺𝑈𝑈 , 
𝑥𝑖1
𝑈𝑈 = 𝑥𝑖1

𝑈𝑈𝐹 , 𝑖 = 1,2, … . , 𝑛. 

𝑓2
2 = max   𝑎𝑖𝑗

2

𝑛

𝑖=1

𝑥𝑖𝑗
𝐿𝐿

𝑚

𝑗=1

,      

subject to                           (28) 

𝑥 ∈ 𝐺𝐿𝐿 , 
𝑥𝑖1
𝐿𝐿 = 𝑥𝑖1

𝐿𝐿𝐹 , 𝑖 = 1,2,… . , 𝑛. 

Lower Approximation 

Upper Bound (LAUB)
S 

Upper Approximation 

Lower Bound (UALB)
S 

𝑓2
3 = max   𝑎𝑖𝑗

3

𝑛

𝑖=1

𝑥𝑖𝑗
𝐿𝑈

𝑚

𝑗=1

,    

subject to                           (27) 

𝑥 ∈ 𝐺𝐿𝑈 , 
𝑥𝑖1
𝐿𝑈 = 𝑥𝑖1

𝐿𝑈𝐹 , 𝑖 = 1,2,… . , 𝑛. 

𝑓2
1 =  max  𝑎𝑖𝑗

1

𝑛

𝑖=1

𝑥𝑖𝑗
𝑈𝐿

𝑚

𝑗=1

,     

subject to                           (29) 

𝑥 ∈ 𝐺𝑈𝐿 , 
𝑥𝑖1
𝑈𝐿 = 𝑥𝑖1

𝑈𝐿𝐹 , 𝑖 = 1,2, … . , 𝑛. 

At last, by embedding the FLDM and the SLDM decision 

variables to the TLDM constraints. The TLDM defines his/her 

problem in point of view of the FLDM and the SLDM by 

setting:   𝑥𝑖1   =    𝑥𝑖1
𝐿𝐿𝐹 , 𝑥𝑖1

𝐿𝑈𝐹  ,  𝑥𝑖1
𝑈𝐿𝐹 , 𝑥𝑖1

𝑈𝑈𝐹    ,    𝑥𝑖2   =

   𝑥𝑖2
𝐿𝐿𝑆 , 𝑥𝑖2

𝐿𝑈𝑆  ,  𝑥𝑖2
𝑈𝐿𝑆 , 𝑥𝑖2

𝑈𝑈𝑆    , 𝑖 = 1,2, … , 𝑛. 

So, the TLDM can be reformulated as follow: 

 

 

 

 

 

 

Table (6): The Four LSILP Problems of (UAUB)
T
, 

(LAUB)
T
, (LALB)

T
 and (UALB)

T
 of the TLDM 

Upper Approximation Upper 

Bound (UAUB)
T 

Lower Approximation 

Lower Bound (LALB)
T 

𝑓3
4 =  max  𝑎𝑖𝑗

4

𝑛

𝑖=1

𝑥𝑖𝑗
𝑈𝑈

𝑚

𝑗=1

,       

subject to                             (30) 

𝑥 ∈ 𝐺𝑈𝑈 , 
𝑥𝑖1
𝑈𝑈 = 𝑥𝑖1

𝑈𝑈𝐹 , 𝑥𝑖2
𝑈𝑈 = 𝑥𝑖2

𝑈𝑈𝑆 , 𝑖
= 1,2,… . , 𝑛. 

𝑓3
2 = max   𝑎𝑖𝑗

2

𝑛

𝑖=1

𝑥𝑖𝑗
𝐿𝐿

𝑚

𝑗=1

,        

subject to                             (32) 

𝑥 ∈ 𝐺𝐿𝐿 , 
𝑥𝑖1
𝐿𝐿 = 𝑥𝑖1

𝐿𝐿𝐹 , 𝑥𝑖2
𝐿𝐿 = 𝑥𝑖2

𝐿𝐿𝑆 , 𝑖
= 1,2,… . , 𝑛. 

Lower Approximation 

Upper Bound (LAUB)
T 

Upper Approximation 

Lower Bound (UALB)
T 

𝑓3
3 =  max  𝑎𝑖𝑗

3

𝑛

𝑖=1

𝑥𝑖𝑗
𝐿𝑈

𝑚

𝑗=1

,        

subject to                             (31) 

𝑥 ∈ 𝐺𝐿𝑈 , 
𝑥𝑖1
𝐿𝑈 = 𝑥𝑖1

𝐿𝑈𝐹 , 𝑥𝑖2
𝐿𝑈 = 𝑥𝑖2

𝐿𝑈𝑆 𝑖
= 1,2,… . , 𝑛. 

𝑓3
1 = max   𝑎𝑖𝑗

1

𝑛

𝑖=1

𝑥𝑖𝑗
𝑈𝐿

𝑚

𝑗=1

,       

subject to                             (33) 

𝑥 ∈ 𝐺𝑈𝐿 , 
𝑥𝑖1
𝑈𝐿 = 𝑥𝑖1

𝑈𝐿𝐹 , 𝑥𝑖2
𝑈𝐿 = 𝑥𝑖2

𝑈𝐿𝑆 , 𝑖
= 1,2,… . , 𝑛. 

Finally, the solution ( 𝑥𝑖1
𝐹  ,  𝑥𝑖2

𝑆  ,  𝑥𝑖3
𝑇  , … ,  𝑥𝑚𝑖

𝑇  ) is the 

solution for the TLDM and the compromised solution to 

FRTLLSILP problem. 

6. AN INTERACTIVE MODEL FOR 

THE TLLSILP 
To solve the TLLSILP by adopting the three-planner 

stackelberg game [10], the FLDM gives the satisfactory 

solutions that are reasonable in rank order to the SLDM, and 

after that the SLDM takes the satisfactory solutions of the 

FLDM to get the solutions, and to gradually get the preferred 

solution of the FLDM. The satisfactory solutions of the 

FLDM and the SLDM are conveyed to the TLDM who will 

get the solutions, and to gradually get the preferred solution of 

the SLDM. Finally, the FLDM and the SLDM decide the 

preferred solution of the TLLSILP according to the following 

satisfactoriness test functions: 

Firstly, the FLDM decides whether the proposed solution 

  𝑥𝑖1
𝐹  ,  𝑥𝑖2

𝑆  , … ,  𝑥𝑖𝑚
𝑆   , 𝑖 = 1,2, … , 𝑛 is a preferred solution 

and acceptable to him/her or it may be changed, by the 

following FLDM satisfactoriness test function: 

 𝐹1  𝑥𝑖1
𝐹  , 𝑥𝑖2

𝐹  ,…, 𝑥𝑖𝑚
𝐹   − 𝐹1  𝑥𝑖1

𝐹  , 𝑥𝑖2
𝑆  ,…, 𝑥𝑖𝑚

𝑆     2
  𝐹1  𝑥𝑖1

𝐹  , 𝑥𝑖2
𝑆  ,…, 𝑥𝑖𝑚

𝑆     
2

 < 𝛿𝐹 ,   

, 𝑖 = 1,2,… , 𝑛.                                                                              (34)                     

let  𝐹1  =   𝑓1
2, 𝑓1

3 ,  𝑓1
1, 𝑓1

4  . So, the FLDM satisfactoriness 

test function can be reformulated as the following: 

 𝑓1
4  𝑥𝑖1

𝑈𝑈𝐹  , 𝑥𝑖2
𝑈𝑈𝐹  ,…, 𝑥𝑖𝑚

𝑈𝑈𝐹   − 𝑓1
4  𝑥𝑖1

𝑈𝑈𝐹  , 𝑥𝑖2
𝑈𝑈𝑆  ,…, 𝑥𝑖𝑚

𝑈𝑈𝑆     2
  𝑓1

4  𝑥𝑖1
𝑈𝑈𝐹  , 𝑥𝑖2

𝑈𝑈𝑆  ,…, 𝑥𝑖𝑚
𝑈𝑈𝑆     

2

 < 𝛿𝐹 ,           

𝑖 = 1,2,… , 𝑛.                                                                                (35)     

 𝑓1
3  𝑥𝑖1

𝐿𝑈𝐹  , 𝑥𝑖2
𝐿𝑈𝐹  ,…, 𝑥𝑖𝑚

𝐿𝑈𝐹   − 𝑓1
3  𝑥𝑖1

𝐿𝑈𝐹  , 𝑥𝑖2
𝐿𝑈𝑆  ,…, 𝑥𝑖𝑚

𝐿𝑈𝑆     2
  𝑓1

3  𝑥𝑖1
𝐿𝑈𝐹  , 𝑥𝑖2

𝐿𝑈𝑆  ,…, 𝑥𝑖𝑚
𝐿𝑈𝑆     

2

 < 𝛿𝐹 ,          

𝑖 = 1,2,… , 𝑛.                                                                                (36)            

 𝑓1
2  𝑥𝑖1

𝐿𝐿𝐹  , 𝑥𝑖2
𝐿𝐿𝐹  ,…, 𝑥𝑖𝑚

𝐿𝐿𝐹   − 𝑓1
2  𝑥𝑖1

𝐿𝐿𝐹  , 𝑥𝑖2
𝐿𝐿𝑆  ,…, 𝑥𝑖𝑚

𝐿𝐿𝑆     2
  𝑓1

2  𝑥𝑖1
𝐿𝐿𝐹  , 𝑥𝑖2

𝐿𝐿𝑆  ,…, 𝑥𝑖𝑚
𝐿𝐿𝑆     

2

 < 𝛿𝐹 ,     

𝑖 = 1,2,… , 𝑛.                                                                                (37)                    
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 𝑓1
1  𝑥𝑖1

𝑈𝐿𝐹  , 𝑥𝑖2
𝑈𝐿𝐹  ,…, 𝑥𝑖𝑚

𝑈𝐿𝐹   − 𝑓1
1  𝑥𝑖1

𝑈𝐿𝐹  , 𝑥𝑖2
𝑈𝐿𝑆  ,…, 𝑥𝑖𝑚

𝑈𝐿𝑆     
2

  𝑓1
1  𝑥𝑖1

𝑈𝐿𝐹  , 𝑥𝑖2
𝑈𝐿𝑆  ,…, 𝑥𝑖𝑚

𝑈𝐿𝑆     
2

 < 𝛿𝐹 ,    

, 𝑖 = 1,2, … , 𝑛.                                                                              (38)                

So   𝑥𝑖1
𝐹  ,  𝑥𝑖2

𝑆  , … ,  𝑥𝑖𝑚
𝑆   , 𝑖 = 1,2,… , 𝑛 is a preferred solution 

to the FLDM, where δF  is a fairly small positive constant 

given by the FLDM. 

Secondly, the SLDM decides whether the proposed solution 

  𝑥𝑖1
𝐹  ,  𝑥𝑖2

𝑆  ,  𝑥𝑖3
𝑇  , … ,  𝑥𝑖𝑚

𝑇   , 𝑖 = 1,2,… , 𝑛 is a preferred 

solution and acceptable to him/her or it may be changed, by 

the following SLDM satisfactoriness test function:                                           

  
 𝐹2  𝑥𝑖1

𝐹  , 𝑥𝑖2
𝑆  ,…, 𝑥𝑖𝑚

𝑆   − 𝐹2  𝑥𝑖1
𝐹  , 𝑥𝑖2

𝑆  , 𝑥𝑖3
𝑇  ,…, 𝑥𝑖𝑚

𝑇     2
 𝐹2  𝑥𝑖1

𝐹  , 𝑥𝑖2
𝑆  , 𝑥𝑖3

𝑇  ,…, 𝑥𝑖𝑚
𝑇    

 < 𝛿𝑆 , 

𝑖 = 1,2, … , 𝑛.                                                                                (39) 

let  𝐹2  =   𝑓2
2, 𝑓2

3 ,  𝑓2
1, 𝑓2

4  . So, the SLDM satisfactoriness 

test function can be reformulated as follow: 

 𝑓2
4  𝑥𝑖1

𝑈𝑈𝐹  , 𝑥𝑖2
𝑈𝑈𝑆  ,…, 𝑥𝑖𝑚

𝑈𝑈𝑆   − 𝑓2
4  𝑥𝑖1

𝑈𝑈𝐹  , 𝑥𝑖2
𝑈𝑈𝑆  , 𝑥𝑖3

𝑈𝑈𝑇  ,…, 𝑥𝑖𝑚
𝑈𝑈𝑇     2

 𝑓2
4  𝑥𝑖1

𝑈𝑈𝐹  , 𝑥𝑖2
𝑈𝑈𝑆  , 𝑥𝑖3

𝑈𝑈𝑇  ,…, 𝑥𝑖𝑚
𝑈𝑈𝑇    

 <

𝛿𝑆 , 𝑖 = 1,2,… , 𝑛.                                                                         (40)                  

 𝑓2
3  𝑥𝑖1

𝐿𝑈𝐹  , 𝑥𝑖2
𝐿𝑈𝑆  ,…, 𝑥𝑖𝑚

𝐿𝑈𝑆   − 𝑓2
3  𝑥𝑖1

𝐿𝑈𝐹  , 𝑥𝑖2
𝐿𝑈𝑆  , 𝑥𝑖3

𝐿𝑈𝑇  ,…, 𝑥𝑖𝑚
𝐿𝑈𝑇     

2
 𝑓2

3  𝑥𝑖1
𝐿𝑈𝐹  , 𝑥𝑖2

𝐿𝑈𝑆  , 𝑥𝑖3
𝐿𝑈𝑇  ,…, 𝑥𝑖𝑚

𝐿𝑈𝑇    
 < 𝛿𝑆  

, 𝑖 = 1,2, … , 𝑛.                                                                              (41) 

 𝑓2
2  𝑥𝑖1

𝐿𝐿𝐹  , 𝑥𝑖2
𝐿𝐿𝑆  ,…, 𝑥𝑖𝑚

𝐿𝐿𝑆   − 𝑓2
2  𝑥𝑖1

𝐿𝐿𝐹  , 𝑥𝑖2
𝐿𝐿𝑆  , 𝑥𝑖3

𝐿𝐿𝑇  ,…, 𝑥𝑖𝑚
𝐿𝐿𝑇     2

 𝑓2
2  𝑥𝑖1

𝐿𝐿𝐹  , 𝑥𝑖2
𝐿𝐿𝑆  , 𝑥𝑖3

𝐿𝐿𝑇  ,…, 𝑥𝑖𝑚
𝐿𝐿𝑇    

 < 𝛿𝑆   

,𝑖 = 1,2, … , 𝑛.                                                                              (42)                  

 𝑓2
1  𝑥𝑖1

𝑈𝐿𝐹  , 𝑥𝑖2
𝑈𝐿𝑆  ,…, 𝑥𝑖𝑚

𝑈𝐿𝑆   − 𝑓2
1  𝑥𝑖1

𝑈𝐿𝐹  , 𝑥𝑖2
𝑈𝐿𝑆  , 𝑥𝑖3

𝑈𝐿𝑇  ,…, 𝑥𝑖𝑚
𝑈𝐿𝑇     

2
 𝑓2

1  𝑥𝑖1
𝑈𝐿𝐹  , 𝑥𝑖2

𝑈𝐿𝑆  , 𝑥𝑖3
𝑈𝐿𝑇  ,…, 𝑥𝑖𝑚

𝑈𝐿𝑇    
 < 𝛿𝑆 

, 𝑖 = 1,2, … , 𝑛.                                                                              (43) 

So,   𝑥𝑖1
𝐹  ,  𝑥𝑖2

𝑆  ,  𝑥𝑖3
𝑇  , … ,  𝑥𝑖𝑚

𝑇   , 𝑖 = 1,2, … , 𝑛 is a preferred 

solution to the SLDM, where δS  is a fairly small positive 

constant given by the SLDM. As a result, 

  𝑥𝑖1
𝐹  ,  𝑥𝑖2

𝑆  ,  𝑥𝑖3
𝑇  , … ,  𝑥𝑖𝑚

𝑇   , 𝑖 = 1,2,… , 𝑛 is a preferred 

solution to the TLLSILP problem. 

7. AN ALGORITHM FOR SOLVING 

FRTLLSILP PROBLEM 
A solution algorithm to solve FRTLLSILP problem, in which 

all decision parameters and decision variables in the objective 

functions and the constraints are rough intervals, and has 

block angular structure of the constraints, is described in a 

series of steps as follows: 

Step 1. Formulate the FLDM problem. 

Step 2. The FLDM uses interval method [14] to convert 

rough interval decision parameters of Problem (5) and 

(8) into crisp nature, which resulted in four LSILP 

problems with rough integer intervals variables 

(Problems (9) - (12)). 

Step 3. The FLDM uses slice sum method [17] to convert 

rough interval decision variables of Problems (9) - (12) 

into crisp nature, which resulted in four LSILP problems 

(Problems (22) - (25)). 

Step 4. Apply the decomposition algorithm [8] to solve 

the four LSILP problems by breaking the large scale 

problems into n sub-problems that can be solved directly, 

then the optimal solution is get. 

Step 5. If the solution of the problems is integer optimal 

solution, go to Step 7. Otherwise, go to Step 6. 

Step 6. Use branch and bound method [9] to find integer 

optimal solution. 

Step 7. If the SLDM gets the optimal solution, then go to 

Step 13. Otherwise, go to Step 8. 

Step 8. The FLDM estimates the value of δF
. 

Step 9. The SLDM defines his/her problem in point of 

view of the FLDM by setting   𝑥𝑖1  =  𝑥𝑖1
𝐹  , 𝑖 = 1,2,… 𝑛 

to the SLDM constraints. 

Step 10. Formulate the SLDM problem. 

Step 11. The SLDM uses interval method [14] to convert 

rough interval decision parameters of Problem (6) and 

(8) into crisp nature, which resulted in four LSILP 

problems with rough integer intervals variables 

(Problems (9) - (12)). 

Step 12. The SLDM uses slice sum method [17] to convert 

rough interval decision variables of Problems (9) - (12) 

into crisp nature, which resulted in four LSILP problems 

(Problems (26) - (29)), go to Step 4. 

Step 13. If 
 𝐹1  𝑥𝑖1

𝐹  , 𝑥𝑖2
𝐹  ,…, 𝑥𝑖𝑚

𝐹   − 𝐹1  𝑥𝑖1
𝐹  , 𝑥𝑖2

𝑆  ,…, 𝑥𝑖𝑚
𝑆     2

  𝐹1  𝑥𝑖1
𝐹  , 𝑥𝑖2

𝑆  ,…, 𝑥𝑖𝑚
𝑆     

2

 < 𝛿𝐹 

, 𝑖 = 1,2,… , 𝑛, then go to Step 14. Otherwise, go to Step 

8. 

Step 14. If the TLDM gets the optimal solution then go to 

Step 20. Otherwise, go to Step 15. 

Step 15. The SLDM estimates the value of δS
. 

Step 16. The TLDM defines his/her problem in point of 

view of FLDM and SLDM by setting  𝑥𝑖1  =

 𝑥𝑖1
𝐹  ,  𝑥𝑖2  =  𝑥𝑖2

𝑆  , 𝑖 = 1,2, … 𝑛 to the TLDM 

constraints. 

Step 17. Formulate the TLDM problem. 

Step 18. The TLDM uses interval method [14] to convert 

rough interval decision parameters of Problem (7) and 

(8) into crisp nature, which resulted in four LSILP 

problems with rough integer intervals variables 

(Problems (9) - (12)). 

Step 19. The TLDM uses slice sum method [17] to convert 

rough interval decision variables of Problems (9) - (12) 

into crisp nature, which resulted in four LSILP problems 

(Problems (30) - (33)), go to Step 4. 

Step 20. If 
 𝐹2  𝑥𝑖1

𝐹  , 𝑥𝑖2
𝑆  ,…, 𝑥𝑖𝑚

𝑆   − 𝐹2  𝑥𝑖1
𝐹  , 𝑥𝑖2

𝑆  , 𝑥𝑖3
𝑇  ,…, 𝑥𝑖𝑚

𝑇     2
 𝐹2  𝑥𝑖1

𝐹  , 𝑥𝑖2
𝑆  , 𝑥𝑖3

𝑇  ,…, 𝑥𝑖𝑚
𝑇    

 <

𝛿𝑆 , 𝑖 = 1,2,… , 𝑛, then go to Step 21. Otherwise, go to 

Step 15. 

Step 21.  ( 𝑥𝑖1
𝐹  ,  𝑥𝑖2

𝑆  ,  𝑥𝑖3
𝑇  , … ,  𝑥𝑖𝑚

𝑇  ), 𝑖 = 1,2,… , 𝑛 is the 

preferred solution for the FRTLLSILP, and then go to 

Step 22. 

Step 22. Stop. 
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8. NUMERICAL EXAMPLE 
To demonstrate the solution method for FRTLLSILP problem, 

let us consider the following numerical example: 

[FLDM]  

   
 

   

   
   
   
   

,

[1,3][1,2],

[1,4][2,3],

[4,18][8,16],

[12,28][16,24],

maxmax

5

4

2

1

,
1

, 2121



































x

x

x

x

F
xxxx  

Where
 
       6543 ,,, xxxx solve 

[SLDM]  

   
 

   

   
   
   
   
   

,

[1,3][1,2],

[1,4][1,3],

[6,36][12,24],

[1,3][1,2],

[1,4][2,3],

maxmax

6

4

3

2

1

,
2

, 4343









































x

x

x

x

x

F
xxxx                     

Where
 
   65 , xx solve 

[TLDM] 

   
 

   

   
   
   
    


































6

5

4

2

,
3

,

[8,16][10,14],

[8,20][12,15],

[1,3][1,2],

[1,4][2,3],

maxmax
6565

x

x

x

x

F
xxxx

 

Subject to 

       
       
       
 

,

[25,50][30,40],

[1,4][1,2],[1,5][2,3],

[1,5] [1,3],[1,4][1,3],

[1,4][2,3],[1,3][1,2],

65

43

21































xx

xx

xx

             
 

       
 

,
[5,20][8,15],

[1,3][1,2],[1,5][2,3], 21











 xx
 

       
 

,
[5,12][8,10],

[1,4][1,2],[1,5][1,3], 43











 xx
  

       
 

,
[4,18][5,15],

[1,4][2,3],[1,3][1,2], 65











 xx

  

 𝑥𝑗  ≥ 0 and rough integer intervals variables  𝑗 = 1,2 

, … ,6. 

FLDM problem using interval method [14] and slice-sum 

method [17] 

Let  𝐹1  =   𝑓1
2, 𝑓1

3 ,  𝑓1
1, 𝑓1

4  , then using interval method 

[14] , the FLDM problem is sliced into four Large Scale 

Integer Linear Programming (LSILP) problems with rough 

integer intervals variables named, Upper Approximation 

Upper Bound Large Scale Integer Linear Programming 

(UAUBLSILP)F, Lower Approximation Upper Bound Large 

Scale Integer Linear Programming (LAUBLSILP)F, Lower 

Approximation Lower Bound Large Scale Integer Linear 

Programming (LALBLSILP)F and Upper Approximation 

Lower Bound Large Scale Integer Linear Programming 

(UALBLSILP)F problems, which are given below: 

Table (7): Lower and Upper Approximations of 

Rough Intervals  

Lower approximations of rough intervals 

coefficients of the FLDM 

(LALBLSILP)
F 

(LAUBLSILP)
F 

   
   

,
2

816
max

54

212

1














xx

xx
f

Subject to 

   
   
   

,

3023

33

32

65

43

21























xx

xx

xx

    ,823 21  xx
   

 
 

    ,823 43  xx
 

    ,532 65  xx
  

 𝑥𝑗  ≥ 0 and rough integer 

intervals variables  𝑗 = 1,2 

, … ,6. 

   
   

,
23

1624
max

54

213

1














xx

xx
f

Subject to 

   
   
   

,

402

2

65

43

21























xx

xx

xx

    ,152 21  xx
   

   

    ,1043  xx
 

    ,152 65  xx
 

 𝑥𝑗  ≥ 0 and rough integer 

intervals variables  𝑗 = 1,2 

, … ,6. 

Upper approximations of rough intervals 

coefficients of the FLDM 

(UALBLSILP)
F 

(UAUBLSILP)
F 

   
   

,
412

max
54

211

1














xx

xx
f

Subject to 

   
   
   

,

2545

54

43

65

43

21























xx

xx

xx

    ,535 21  xx
 

    ,545 43  xx
 

    ,443 65  xx
 

 𝑥𝑗  ≥ 0 and rough integer 

intervals variables  𝑗 = 1,2 

, … ,6.
 

   
   













54

214

1
34

1882
ax 

xx

xx
mf

Subject to 

   
   
   

,

5065

43

21























xx

xx

xx

    ,2021  xx
   

   

    ,1243  xx
 

    ,1865  xx
 

 𝑥𝑗  ≥ 0 and rough integer 

intervals variables  𝑗 = 1,2 

, … ,6. 

Let 𝑥𝑗  =   𝑥𝑗
2, 𝑥𝑗

3 ,  𝑥𝑗
1, 𝑥𝑗

4  , 𝑗 = 1,2,… ,6 , then using slice 

sum method [17], the (UAUBLSILP)F problem with rough 

integer intervals variables of the FLDM is sliced into four 

LSILP problems named, (UAUBLSILP)UUF,  
(LAUBLSILP)UUF,  (LALBLSILP)UUF  and  
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(UALBLSILP)UUF problems, which are given below:  

Table (8): The Four LSILP Problems of (UAUBLSILP)
F
 

of the FLDM  

(UAUBLSILP)UUF (LALBLSILP)UUF 

,
34

1882
ax 

4

5

4

4

4

2

4

14

1

















xx

xx
mf UU

 Subject to 

,
504

6

4

5

4

4

4

3

4

2

4

1

















xxx

xxx

,204

2

4

1  xx

,124

4

4

3  xx  

,184

6

4

5  xx  

𝑥𝑗
4 ≥ 0, 𝑗 = 1,2, … ,6. 

,
34

1882
ax 

2

5

2

4

2

2

2

14

1

















xx

xx
mf LL

 Subject to 

,
502

6

2

5

2

4

2

3

2

2

2

1

















xxx

xxx

,202

2

2

1  xx

,122

4

2

3  xx

,182

6

2

5  xx  

𝑥𝑗
2 ≥ 0, 𝑗 = 1,2, … ,6.  

 

By solving the four LSILP problems of (UAUBLSILP)F of 

the FLDM in Table (8), it is resulted that  𝑥𝑗
4 = 𝑥𝑗

3 = 𝑥𝑗
2 =

𝑥𝑗
1 = 𝑥𝑗

𝑈𝑈 , 𝑗 = 1,2, . . ,6.  So, the four LSILP problems with 

rough integer intervals variables of the FLDM in Table (7) 

can be simplified into the following: 

 

 

 

 

 

 

 

 

 

 

Table (9): The Four LSILP Problems of (UAUBLSILP)
F
, 

(LAUBLSILP)
F
, (LALBLSILP)

F
 and (UALBLSILP)

F
 of 

the FLDM 

  (UAUBLSILP)
F 

(LALBLSILP)
F 

,
34

1882
ax 

14

214

1

















UUUU

UUUU

xx

xx
mf

 
Subject to 

,

5065

43

21























UUUU

UUUU

UUUU

xx

xx

xx

 

,2021  UUUU xx
   

  
 

,1243  UUUU xx
 

,1865  UUUU xx
 

𝑥𝑗
𝑈𝑈 ≥ 0, 𝑗 = 1,2, … ,6.

 

,
2

816
max

54

212

1

















LLLL

LLLL

xx

xx
f

Subject to

,

3023

33

32

65

43

21























LLLL

LLLL

LLLL

xx

xx

xx

,823 21  LLLL xx  

,823 43  LLLL xx
 

,532 65  LLLL xx  

𝑥𝑗
𝐿𝐿 ≤ 𝑥𝑗

𝐿𝑈 , 𝑥𝑗
𝐿𝐿 ≥ 0, 𝑗

= 1,2,… ,6.
 

(LAUBLSILP)
F
  (UALBLSILP)

F 

,
23

1624
max

54

213

1

















LULU

LULU

xx

xx
f

Subject to 

,

402

2

65

43

21























LULU

LULU

LULU

xx

xx

xx

,152 21  LULU xx
   

  
 

,1043  LULU xx
 

,152 65  LULU xx  

𝑥𝑗
𝐿𝑈 ≤ 𝑥𝑗

𝑈𝑈 , 𝑥𝑗
𝐿𝑈 ≥ 0, 𝑗

= 1,2,… ,6.
 

,
412

max

54

211

1

















ULUL

ULUL

xx

xx
f

 
Subject to 

,

2545

54

43

65

43

21























ULUL

ULUL

ULUL

xx

xx

xx

,535 21  ULUL xx
   

 
 

,545 43  ULUL xx
 

,443 65  ULUL xx
 

𝑥𝑗
𝑈𝐿 ≤ 𝑥𝑗

𝐿𝐿 , 𝑥𝑗
𝑈𝐿 ≥ 0, 𝑗

= 1,2,… ,6.
 

 

After that, apply the decomposition algorithm [8] on the four 

LSILP the problems of the FLDM on Table (9) to get the 

following results: 

𝑓1
4 = 668, where 𝑥1

𝑈𝑈 = 20,  𝑥2
𝑈𝑈 = 0,  𝑥3

𝑈𝑈 = 0,  𝑥4
𝑈𝑈

= 18,  𝑥5
𝑈𝑈 = 12,  𝑥6

𝑈𝑈 = 0, 

𝑓1
3 = 232.5, where  𝑥1

𝐿𝑈 = 7.5,  𝑥2
𝐿𝑈 = 0,  𝑥3

𝐿𝑈 = 0,  𝑥4
𝐿𝑈 =

10,  𝑥5
𝐿𝑈 = 11.25,  𝑥6

𝐿𝑈 = 0,  
𝑓1

2 = 53.1667, where 𝑥1
𝐿𝐿 = 2.666667,  𝑥2

𝐿𝐿 = 0,  𝑥3
𝐿𝐿

= 0,  𝑥4
𝐿𝐿 = 4,  𝑥5

𝐿𝐿 = 2.5,  𝑥6
𝐿𝐿 = 0, 

𝑓1
1 = 14.5833, where 𝑥1

𝑈𝐿 = 1,  𝑥2
𝑈𝐿 = 0,  𝑥3

𝑈𝐿 = 0,  𝑥4
𝑈𝐿

= 1.25,  𝑥5
𝑈𝐿 = 1.33,  𝑥6

𝑈𝐿 = 0. 

Finally, apply branch and bound algorithm [9] to get 

integer optimal solutions: 

𝑓1
4 = 668, where 𝑥1

𝑈𝑈 = 20,  𝑥2
𝑈𝑈 = 0,  𝑥3

𝑈𝑈 = 0,  𝑥4
𝑈𝑈

= 18,  𝑥5
𝑈𝑈 = 12,  𝑥6

𝑈𝑈 = 0, 

𝑓1
3 = 220, where 𝑥1

𝐿𝑈 = 7,  𝑥2
𝐿𝑈 = 0,  𝑥3

𝐿𝑈 = 0,  𝑥4
𝐿𝑈

= 10,  𝑥5
𝐿𝑈 = 11,  𝑥6

𝐿𝑈 = 0, 

(LAUBLSILP)UUF (UALBLSILP)UUF 

𝑥𝑗
3 ≥ 0, 𝑗 = 1,2, … ,6. 

,
34

1882 
ax

3

5

3

4

3

2

3

14

1

















xx

xx
mf LU

Subject to 

,
503

6

3

5

3

4

3

3

3

2

3

1

















xxx

xxx

 

,203

2

3

1  xx       

,123

4

3

3  xx  

,183

6

3

5  xx  
𝑥𝑗

1 ≥ 0, 𝑗 = 1,2, … ,6. 

,
34

1882
ax 

1

5

1

4

1

2

1

14

1

















xx

xx
mf UL

Subject to 

,
501

6

1

5

1

4

1

3

1

2

1

1

















xxx

xxx

,201

2

1

1  xx       

,121

4

1

3  xx  

,181

6

1

5  xx  
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𝑓1
2 = 42, where 𝑥1

𝐿𝐿 = 2,  𝑥2
𝐿𝐿 = 0,  𝑥3

𝐿𝐿 = 0,  𝑥4
𝐿𝐿 = 4,  𝑥5

𝐿𝐿

= 2,  𝑥6
𝐿𝐿 = 0, 

𝑓1
1 = 14, where 𝑥1

𝑈𝐿 = 1,  𝑥2
𝑈𝐿 = 0,  𝑥3

𝑈𝐿 = 0,  𝑥4
𝑈𝐿 = 1,  𝑥5

𝑈𝐿

= 1,  𝑥6
𝑈𝐿 = 0. 

So, the optimal solution of the FLDM problem is 

  𝟒𝟐, 𝟐𝟐𝟎 ,  𝟏𝟒, 𝟔𝟔𝟖   , where 

 𝑋1
𝐹 =   2,7 ,  1,20  ,  𝑋2

𝐹 =   0,0 ,  0,0  ,  𝑋3
𝐹 

=   0,0 ,  0,0  , 
 𝑋4

𝐹 =   4,10 ,  1,118  ,  𝑋5
𝐹 =   2,12 ,  1,12  ,  𝑋6

𝐹 

=   0,0 ,  0,0  . 
𝛿𝐹 = 0.3126   , where δFa fairly small positive is 
constant given by the FLDM. 

Now, using interval method [14] and slice-sum method 

[17] the SLDM problem is: 

Now set  𝑥1
𝐹 =   2,7 ,  1,20   and  𝑥2

𝐹 =   0,0 ,  0,0   to the 

SLDM constraints. Then, using interval method [14], the 

SLDM problem is sliced into four LSILP problems with 

rough integer intervals variables named, (UAUBLSILP)S, 

(LAUBLSILP)S, (LALBLSILP)S and (UALBLSILP)S 

problems which are given below: 

Let 𝐹2  =   𝑓2
2, 𝑓2

3 ,  𝑓2
1, 𝑓2

4  , then 

Table (10): Lower and Upper Approximations of Rough 

Intervals Coefficients of the SLDM 

Lower approximations of rough intervals 

coefficients of the SLDM 

(LALBLSILP)
S 

(LAUBLSILP)
S
  

 
   

,
124

max
64

32

2














xx

x
f

 
Subject to 

   
   

,
2623

33

65

43













xx

xx

 
  

    ,823 43  xx
 

    ,532 65  xx
 

        ,0,,, 6543 xxxx
 

and rough integer intervals 

variables. 

 
   

,
23

2421
max

64

33

2














xx

x
f

Subject to 

   
   

,33
2 65

43














xx

xx

 
  

    ,1043  xx
 

    ,152 65  xx
 

        ,0,,, 6543 xxxx
 

and rough integer intervals 

variables.                                            

upper approximations of rough intervals coefficients of 

the SLDM 

(UALBLSILP)
S 

(UAUBLSILP)
S 

 
   

,
61

max
64

31

2














xx

x
f

 
Subject to 

   
   

,
2245

54

65

43













xx

xx

 
   

,
34

3680
max

64

34

2














xx

x
f

 
Subject to 

   
   

,
3065

43













xx

xx

  

    ,545 43  xx
 

    ,443 65  xx
 

        ,0,,, 6543 xxxx
 

and rough integer intervals 

variables. 

    ,1243  xx
 

    ,1865  xx
 

        ,0,,, 6543 xxxx
 

and rough integer intervals 

variables. 

 

Let 𝑥𝑗  =   𝑥𝑗
2, 𝑥𝑗

3 ,  𝑥𝑗
1, 𝑥𝑗

4  , 𝑗 = 3,4,5,6 , then the SLDM 

do the same actions like the FLDM to get the following 

results:  

𝑓2
4 = 556, where 𝑥3

𝑈𝑈 = 12,  𝑥4
𝑈𝑈 = 0,  𝑥5

𝑈𝑈 = 0,  𝑥6
𝑈𝑈 = 18, 

𝑓2
3 = 276, where 𝑥3

𝐿𝑈 = 10,  𝑥4
𝐿𝑈 = 0,  𝑥5

𝐿𝑈 = 0,  𝑥6
𝐿𝑈 = 7.5, 

𝑓2
2 = 37.66667, where 𝑥3

𝐿𝐿 = 2.666667,  𝑥4
𝐿𝐿 = 0,  𝑥5

𝐿𝐿

= 0,  𝑥6
𝐿𝐿 = 1.666667, 

𝑓2
1 = 8, where 𝑥3

𝑈𝐿 = 1,  𝑥4
𝑈𝐿 = 0,  𝑥5

𝑈𝐿 = 0,  𝑥6
𝑈𝐿 = 1. 

Finally, apply branch and bound algorithm [9] to get 

integer optimal solutions: 

𝑓2
4 = 556, where 𝑥3

𝑈𝑈 = 12,  𝑥4
𝑈𝑈 = 0,  𝑥5

𝑈𝑈 = 0,  𝑥6
𝑈𝑈 = 18, 

𝑓2
3 = 275, where 𝑥3

𝐿𝑈 = 10,  𝑥4
𝐿𝑈 = 0,  𝑥5

𝐿𝑈 = 0,  𝑥6
𝐿𝑈 = 7, 

𝑓2
2 = 29, where 𝑥3

𝐿𝐿 = 2,  𝑥4
𝐿𝐿 = 0,  𝑥5

𝐿𝐿 = 0,  𝑥6
𝐿𝐿 = 1, 

𝑓2
1 = 8, where 𝑥3

𝑈𝐿 = 1,  𝑥4
𝑈𝐿 = 0,  𝑥5

𝑈𝐿 = 0,  𝑥6
𝑈𝐿 = 1.  

So, the optimal solution of the SLDM problem is 

  𝟐𝟗, 𝟐𝟕𝟓 ,  𝟖, 𝟓𝟓𝟔   , where 

 𝑥3
𝑆 =   2,10 ,  1,12  ,  𝑥4

𝑆 =   0,0 ,  0,0  ,  𝑥5
𝑆 =

  0,0 ,  0,0  ,  𝑥6
𝑆 =   1,7 ,  1,18  . 

Now, the FLDM decides whether the proposed solution 

( 𝑥1
𝐹 ,  𝑥2

𝐹 ,  𝑥3
𝑆 ,  𝑥4

𝑆 ,  𝑥5
𝑆 ,  66

𝑆 ) is a preferred solution and 

acceptable to him/her or not, upon the following, 

(UAUBLSILP)F,  (LAUBLSILP)F,  (LALBLSILP)F  and  
(UALBLSILP)F  problems for the FLDM satisfactoriness test 

function: 

 𝑓1
4(20,0,0,18,12,0) −  𝑓1

4(20,0,12,0,0,18)  2
  𝑓1

4(20,0,12,0,0,18)  2

= 0.192 

< 𝛿𝐹 ,   

 𝑓1
3(7,0,0,10,11,0) −  𝑓1

3(7,0,10,0,0,7)  2
  𝑓1

3(7,0,10,0,0,7)  2

= 0.309 < 𝛿𝐹 ,   

 𝑓1
2(2,0,0,4,2,0) −  𝑓1

2(2,0,2,0,0,1)  2
  𝑓1

2(2,0,2,0,0,1)  2

= 0.3125 < 𝛿𝐹  ,   

 𝑓1
1 1,0,0,1,1,0 −  𝑓1

1 1,0,1,0,0,1   2
  𝑓1

1 1,0,1,0,0,1   2

= 0.1666 < 𝛿𝐹 ,             

where 𝛿𝐹 = 0.3126. 

So ( 𝑥1
𝐹 ,  𝑥2

𝐹 ,  𝑥3
𝑆 ,  𝑥4

𝑆 ,  𝑥5
𝑆 ,  𝑥6

𝑆 ) is the preferred solution 

to the FLDM. 

𝛿𝑆 = 0.1429   , where δSa fairly small positive is constant 

given by the SLDM. 
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Now, using interval method [14] and slice-sum method 

[17] the TLDM problem is:  

Now set  𝑥1
𝐹 =   2,7 ,  1,20  ,  𝑥2

𝐹 =   0,0 ,  0,0  ,  𝑥3
𝑆 =

  2,10 ,  1,12  ,  𝑥4
𝑆 =   0,0 ,  0,0    to the TLDM 

constraints. Then, using interval method [14], the TLDM 

problem is sliced into four LSILP problems named, 

(UAUBLSILP)T, (LAUBLSILP)T, (LALBLSILP)T and 

(UALBLSILP)T problems which are given below:  

Let 𝐹3  =   𝑓3
2, 𝑓3

3 ,  𝑓3
1, 𝑓3

4  , then 

Table (11): Lower and Upper Approximations of Rough 

Intervals Coefficients of the TLDM 

Lower approximations of rough intervals 

coefficients of the TLDM 

(LALBLSILP)
T 

(LAUBLSILP)
T 

   ,1012max 65

2

3 xxf 

Subject to 

    ,2023 65  xx
 

   

    ,532 65  xx
 

    ,0, 65 xx
 

and rough integer intervals 

variables.                                                                               

   ,1415max 65

3

3 xxf 

Subject to 

    ,232 65  xx
  

  

    ,152 65  xx
 

    ,0, 65 xx
 

and rough integer intervals 

variables.                                                                                                                             

Upper approximations of rough intervals coefficients of 

the TLDM 

(UALBLSILP)
T 

(UAUBLSILP)
T 

   ,88max 65

1

3 xxf 

Subject to
 

    ,1845 65  xx
  

  

    ,443 65  xx
     

    ,0, 65 xx
 

and rough integer intervals 

variables.                                                                               

   ,1620max 65

4

3 xxf 

Subject to 

    ,1865  xx
 

    ,0, 65 xx
  

and rough integer intervals 

variables.                                                                                 

 
Let  𝑥𝑗  =   𝑥𝑗

2, 𝑥𝑗
3 ,  𝑥𝑗

1, 𝑥𝑗
4  , 𝑗 = 5,6  , then the TLDM do 

the same actions like the FLDM and the SLDM to get the 

following results:  

𝑓3
4 = 360, where 𝑥5

𝑈𝑈 = 18,  𝑥6
𝑈𝑈 = 0, 

𝑓3
3 = 172.5, where 𝑥5

𝐿𝑈 = 11.5,  𝑥6
𝐿𝑈 = 0, 

𝑓3
2 = 30, where 𝑥5

𝐿𝐿 = 2.5,  𝑥6
𝐿𝐿 = 0, 

𝑓3
1 = 10.66667, where 𝑥5

𝑈𝐿 = 1.333333,  𝑥6
𝑈𝐿 = 0.  

Finally, apply branch and bound algorithm [9] to get 

integer optimal solutions: 

𝑓3
4 = 360, where 𝑥5

𝑈𝑈 = 18,  𝑥6
𝑈𝑈 = 0, 

𝑓3
3 = 165, where 𝑥5

𝐿𝑈 = 11,  𝑥6
𝐿𝑈 = 0, 

𝑓3
2 = 24, where 𝑥5

𝐿𝐿 = 2,  𝑥6
𝐿𝐿 = 0, 

𝑓3
1 = 8, where 𝑥5

𝑈𝐿 = 1,  𝑥6
𝑈𝐿 = 0.  

So, the optimal solution of the TLDM problem is 

  𝟐𝟒, 𝟏𝟔𝟓 ,  𝟖, 𝟑𝟔𝟎   , where 

 𝑥5
𝑇 =   2,11 ,  1,18  ,  𝑥6

𝑇 =   0,0 ,  0,0  . 
Now, the SLDM decides whether the proposed solution 

( 𝑥1
𝐹 ,  𝑥2

𝐹 ,  𝑥3
𝑆 ,  𝑥4

𝑆 ,  𝑥5
𝑇 ,  𝑥6

𝑇 )  is a preferred solution and 

acceptable to him/her or not, upon the following, 

(UAUBLSILP)S,  (LAUBLSILP)S, (LALBLSILP)S  and  
(UALBLSILP)S  problems for the SLDM satisfactoriness test 

function: 

 𝑓2
4(20,0,12,0,0,18) −  𝑓2

4(20,0,12,0,18,0)  2
  𝑓2

4(20,0,12,0,18,0)  2

= 0.1054 

< 𝛿𝑆  , 

 𝑓2
3(7,0,10,0,0,7) −  𝑓2

3(7,0,1,0,11,0)  2
  𝑓2

3(7,0,1,0,11,0)  2

= 0.0536 < 𝛿𝑆 ,        

 𝑓2
2 2,0,2,0,0,1 −  𝑓2

2 2,0,2,0,2,0   2
  𝑓2

2 2,0,2,0,2,0   2

= 0.0357  < 𝛿𝑆 ,         

 
 𝑓2

1(1,0,1,0,0,1) −  𝑓2
1(1,0,1,0,1,0)  2

  𝑓2
1(1,0,1,0,1,0)  2

= 0.1428 < 𝛿𝑆 ,       

where 𝛿𝑆 = 0.1429 

So , ( 𝑥1
𝐹 ,  𝑥2

𝐹 ,  𝑥3
𝑆 ,  𝑥4

𝑆 ,  𝑥5
𝑇 ,  𝑥6

𝑇 )    is the preferred 

solution to the SLDM. 

Finally, the following results are the preferred solution: 

Table (12): Numerical Example Results 

Level 
The possibly 

optimal range 

The surely 

optimal range 

FLDM [13,614] [34, 190] 

SLDM [7,512] [28, 261] 

TLDM [8,360] [24,165] 

With the optimal integer intervals of the decision variables  

  𝑥1
𝐹 =   2,7 ,  1,20  ,  𝑥2

𝐹 =   0,0 ,  0,0  ,  𝑥3
𝑆 =

  2,10 ,  1,12  ,  𝑥4
𝑆 =   0,0 ,  0,0  ,  𝑥5

𝑇 =

  2,11 ,  1,18  ,  𝑥6
𝑇 =   0,0 ,  0,0  . 

9. CONCLUSION AND FUTURE 

POINTS 
This paper focused on the solution of FRTLLSILP problem, 

in which all decision parameters and a decision variable in the 

objective functions and the constraint are rough intervals, and 

has block angular structure of the constraints. The proposed 

model was based on interval method, slice-sum method, 

constraint method, decomposition algorithm, branch and 

bound method and used the concepts of satisfactoriness as the 

upper level decision-makers' preferences until the preferred 

solution was reached. Finally, an illustrative numerical 

example has been provided to clarify the suggested model. 

The solution algorithm has a few features: 

1. It combines interval method, slice-sum method, 

constraint method, decomposition algorithm and 

branch and bound in an interactive model to obtain 

a compromised solution for FRTLLSILP problem. 

2. The results are in the form of intervals and the 

interval method doesn’t ignore any part of solution 

area. 
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3. It used the concepts of satisfactoriness as the upper 

level decision-makers' preferences until the 

preferred solution was reached. 

4. It can be efficiently coded. 

However, there are many other aspects, which should by 

explored and studied in the area of fully rough large scale 

multi-level optimization such as fully rough multi-level large 

scale integer quadratic programming problem, fully rough 

multi-level large scale integer fractional programming 

problem and fully rough fully fuzzy multi-level large scale 

integer linear programming problem. 

10. REFERENCES 
[1] Z. Pawlak, "Rough Sets", International Journal of 

Computer and Information Sciences, 11 (1982) 341-356. 

[2] J. Nasiri and M. Mashinchi, "Rough Set and Data 

Analysis in Decision Tables", Journal of Uncertain 

Systems, 3(3) (2009) 232–240. 

[3] H. Zaher, N. Saeid and A. Serag, "Fuzzy Approach for 

Three Level Linear Programming Problems", 

International Journal of Computer Applications, 133 (16) 

(2016) 30-34.  

[4] S. Pramanik, D. Banerjee and B. C. Giri, "Chance 

Constrained Multi-Level Linear Programming Problem", 

International Journal of Computer Applications, 120 (18) 

(2015) 1-6. 

[5] K. Lachhwani, "On Solving Multi-Level Multi Objective 

Linear Programming Problems Through Fuzzy Goal 

Programming Approach", OPSEARCH, 51 (4) (2014) 

624–637. 

[6] T. I. Sultan, O. E. Emam and A. A. Abohany, "A 

Decomposition Algorithm for Solving a Three–level 

Large Scale Linear Programming Problem", Applied 

Mathematics and Information Science, 5 (2014) 2217-

2223. 

[7] M. A. Abo-Sinna and T. H. M. Abou-El-Enien, "An 

Interactive Algorithm for Large Scale Multiple Objective 

Programming Problems with Fuzzy Parameters Through 

Topsis Approach", Yugoslav Journal of Operations 

Research, 21 (2011) 253-273. 

[8] G. Dantzig and P. Wolfe, "The Decomposition 

Algorithm for Linear Programming", Econometric, 9(4) 

(1961) 767–778. 

[9] H. T. Taha, "Operation Research-An Introduction", 6th 

Edition, Mac Milan Publishing Co, New York, 1997.  

[10] O. E. Emam, "Interactive Approach to Bi-Level Integer 

Multi-Objective Fractional Programming Problem", 

Applied Mathematics and Computation, 223 (2013) 17–

24. 

[11] Y. Lai, "IMOST: Interactive Multiple Objective System 

Technique", Journal of the Operational Research Society, 

46 (1995) 958-976. 

[12] E. Youness, "Characterizing Solutions of Rough 

Programming Problems", European Journal of 

Operational Research, 168 (2006) 1019-1029. 

[13] M. S. Osman, E. F. Lashein, E.A. Youness, and T. E. M. 

Attya, "Mathematical Programming in Rough 

Environment", A Journal of Mathematical Programming 

and Operations Research, 60 (5) (2011) 603-611. 

[14] A. Hamazehee, M. A. Yaghoobi and M. Mashinchi, 

"Linear Programming with Rough Interval Coefficients", 

Journal of Intelligent and Fuzzy Systems, 26 (2014) 

1179-1189. 

[15] E. E. Ammar and A. M. Khalifa, "On Solving of Rough 

Interval Multiobjective Transportation Problems", 

Journal of Advances in Physics, 7 (2014) 1233-1244.  

[16] M. S. Osman, M. M. El-Sherbiny, H. A. Khalifa and H. 

H. Farag, "A Fuzzy Technique for Solving Rough 

Interval Multiobjective Transportation Problem", 

International Journal of Computer Applications, 147 (10) 

(2016) 49-57.  

[17] P. Pandian, G. Natarajan and A. Akilbasha, "Fully Rough 

Integer Interval Transportation Problems", International 

Journal of Pharmacy & Technology, 8 (2) (2016) 13866-

13876. 

 

IJCATM : www.ijcaonline.org 


