
International Journal of Computer Applications (0975 – 8887)

Volume 155 – No 14, December 2016

16

A Flexible and Efficient Algorithm for Generating Prime

Numbers using Biometric Identity (Bio-PNGA)

B. Indrani, PhD
Assistant Professor,

Department of Computer Science,
Directorate of Distance Education

Madurai Kamaraj University
Madurai-21

M. Karthigai Veni
Assistant Professor,

Department of Computer Applications,
Yadava College,

Govindarajan Campus,
Tiruppalai, Madurai-14

ABSTRACT

A biometric based security system provides best on both

authentication and confidentiality for public shared secret

information. Enormous numbers of papers have been

published by the researchers in this field. The generation of

prime numbers plays the most important role in the public-key

schemes, essentially as a major primitive needed for the

creation of key pairs or as a computation stage appearing

during various cryptographic setups. Most of the researchers

have been made strong mathematical studies on primality

testing and an observed progressive increase of cryptographic

usages, prime number generation algorithms. Still not quite

investigated and most of the real-life implementations are

providing poor performance. Most of the common prime

number generators typically output n-bit prime in heuristic

average complexity𝑂(𝑛4) or 𝑂(𝑛4 log𝑛).

In this paper, we have proposed A Flexible and Efficient

BioPNGA algorithm for generating the prime number for

Public Key Infrastructure (PKI) by using biometric identity

(example finger print, iris, face, DNA,… etc). The proposed

scheme capturers the biometric identity image from the

corresponding user and this image will be used as a seed value

for generating the prime number. The proposed scheme

generates set of prime numbers and these prime numbers can

be used in Public Key Authentication and Confidentiality for

the corresponding user. The proposed scheme requires

minimum computing cost for generating prime numbers and

any size of prime numbers can be created by using this

scheme. This scheme output n-bit prime number from

biometric identity matrix 𝑚 × 𝑛 in a heuristic average

complexity of 𝑂(𝑚 × 𝑛). This scheme is very suitable for

power constrained biometric based security schemes.

General Terms

Security, Algorithms

Keywords

Biometric Identity, Prime numbers, Public Key Infrastructure

(PKI).

1. INTRODUCTION
The prime numbers and the deterministic formulas used to

find them, have garnered considerable attention from

mathematicians, professionals and amateurs alike. A prime

number is a positive integer, excluding 1, whose only divisors

are 1 and itself. For example, 23 is a prime number as it can

only be divided by 1 and 23. A number that is not prime is

called a composite number. For over 150 years,

mathematicians have attempted to expose a deterministic

formula to identify prime numbers. If such a formula existed,

all numbers could be factored efficiently by using computers.

Paradoxically, much of electronic data today is encrypted by

taking advantage of the fact that it is difficult and time

consuming for a computer program to factor a large

composite number.

Traditional prime number generation algorithms

asymptotically require 𝑂(𝑛4) or 𝑂 𝑛4 log𝑛 bit operations

where n is the bit-length of the expected prime number. This

complexity may even become of the order of

𝑂 𝑛5 log𝑛 2 in the case of constrained primes, such as

safe or quasi-safe primes for instance. These asymptotic

behaviors, according to experience, seem impossible to

improve significantly

“Biometrics is the science of establishing the identity of an

individual based on physical, chemical or behavioral

attributes of the person” [15]. Due to the distinctive nature of

biometric traits [16] and the non-repudiation it offers [17],

biometry is frequently used to enhance the overall security of

the system in which it is implemented: the authentication

system or the biometric cryptosystem. Biometric

authentication is the process of validating the uniqueness of

individuals according to their physiological or behavioral

qualities [18]. Physiological qualities, such as a fingerprint, an

iris or a face, refer to something that an individual is.

Behavioral qualities, such as speech, signature and keystroke

dynamics refer to something that an individual can do. Biggio

[19] proposed a generic modular biometric authentication

system and the steps as explained as follows. A user who

wants to access some resources provides his identity. The

sensor acquires the biometric sample of the user. Features are

extracted from the sample and a similarity score is calculated

between the provided biometric sample and the one stored in

the biometric template database corresponding to the provided

user identity. The similarity score is compared with the

threshold and the user is identified as a genuine user or a fake.

According to this decision, the user is allows to access the

resources.

There are several advantages of biometric authentication

compare to traditional authentication methods, such as

difficulties in stealing, sharing and reproduction of biometric

samples, tolerance to brute force attacks, and non-repudiation

[20].

There are two types of biometric systems: A unimodal, which

employs a single biometric sample acquired from the user,

and a multimodal, which employs two or more biometric

samples, e.g. an iris and a fingerprint. Multimodal systems

overcome some drawbacks of unimodal systems, such as large

false rejection rates (FRR) and unacceptable false acceptance

rates (FAR). Additional information provided to the classifier

increases the recognition accuracy and decreases error rates,

International Journal of Computer Applications (0975 – 8887)

Volume 155 – No 14, December 2016

17

while the identity proof is strengthened as data is acquired

from different sources [21]. When compared to unimodal,

multimodal systems are less prone to spoof attacks [22] and

carefully crafted attacks targeted towards modular biometric

authentication systems (replaying old data, feature extractor

overriding, stored template modification, communication

channel interception and providing synthetic vectors to the

matching module) [23, 24].

The basis of multimodal biometric authentication systems is

the information fusion. The decision level fusion [25] is the

initial approach to information fusion in multimodal biometric

authentication systems. This approach is based on majority

vote scheme that is used to combine classification results from

different modalities and make the final decision [26]. At the

matching score level [27], the system calculates similarity

scores between the sample and the corresponding template for

each modality and combines them to verify the identity of an

individual. At the feature level, feature vectors extracted from

different modalities are integrated into a new vector that

represents the identity of the individual [28].

2. RELATED WORK
There are several ways in which we could assess the quality

of a random prime generation algorithm, based on its speed

(time complexity), its accuracy (the probability that it outputs

numbers that are in fact composite), its statistical properties

(the regularity of the output distribution), and the number of

bits of randomness it consumes to produce a prime number (as

good randomness is crucial to key generation and not easy to

come by [8]).

Many cryptographers have proposed faster prime generation

algorithms [6, 7, 10, 11] or algorithms providing a proof that

the generated numbers are indeed prime numbers [12, 13, 14].

A number of these works also prove lower bounds on the

entropy of the distribution of prime numbers they generate,

usual based on very strong conjectures on the regularity of

prime numbers, such as the prime r-tuple conjecture of Hardy-

Littlewood [9]. However, such bounds on the entropy do not

ensure that the resulting distribution is statistically close to the

uniform distribution: for example, they do not preclude the

existence of efficient distinguishers from the uniform

distribution, which can indeed be shown to exist in most cases

a) Primality and Compositeness Tests

A lot of studies on primality testing have been carried out for

years, and can be found in the literature devoted to the subject

[30]. Computationally, we may distinguish true primes and

probable primes: the difference being the way these are

generated. A probable prime is usually obtained through a

compositeness test. Such a test declares that a number is

composite with probability 1 or prime with some probability <

1. Hence repeatedly running the test gives more and more

confidence in the generated (probable) prime. Typical

examples of compositeness tests include Fermat test, Solovay-

Strassen test [32], and Miller-Rabin test [31]. There also exist

(true) primality tests, which declare a number prime with

probability. Typical examples of exist primality tests includes

Pocklington's test [33] and its elliptic curve analogue [34], the

Jacobi sum test [35]. However, these tests are generally more

expensive or intricate

1. Prime sieves

A prime sieve or prime number sieve is a fast type of

algorithm for finding primes. There are many prime sieves.

The simple sieve of Eratosthenes (250s BCE), the sieve of

Sundaram (1934), the still faster but more complicated sieve

of Atkin (2004), and various wheel sieves are most common.

A prime sieve works by creating a list of all integers up to a

desired limit and progressively removing composite numbers.

This is the most efficient way to obtain a large range of

primes. To find individual primes, direct primality tests are

more efficient. Furthermore, based on the sieve formalisms,

some integer sequences (sequence A240673 in OEIS) are

constructed which they also could be used for generating

primes in certain intervals

2. Sieve of Eratosthenes

To find all the prime numbers less than or equal to a given

integer n by Eratosthenes' method:

1. Create a list of consecutive integers from 2 through

n: (2, 3, 4, ..., n).

2. Initially, let p equal 2, the smallest prime number.

3. Enumerate the multiples of p by counting to n from

2p in increments of p, and mark them in the list

(these will be 2p, 3p, 4p, ... ; the p itself should not

be marked).

4. Find the first number greater than p in the list that is

not marked. If there was no such number, stop.

Otherwise, let p now equal this new number (which

is the next prime), and repeat from step 3.

When the algorithm terminates, the numbers remaining not

marked in the list are all the primes below n.

The main idea here is that every value given to p will be

prime, because we have already marked all the multiples of

the numbers less than p. Note that some of the numbers being

marked may have already been marked earlier (e.g., 15 will be

marked both for 3 and 5)

3. Sieve of Sundaram

The sieve of Sundaram is a simple deterministic algorithm for

finding all prime numbers up to a specified integer. It was

discovered by Indian mathematician S. P. Sundaram in 1934

a. Algorithm

Start with a list of the integers from 1 to n. From this list,

remove all numbers of the form i + j + 2ij where:

1. 𝑖, 𝑗 ∈ 𝑁, 1 ≤ 𝑖 ≤ 𝑗

2. 𝑖 + 𝑗 + 2𝑖𝑗 ≤ 𝑛

The remaining numbers are doubled and incremented by one,

giving a list of the odd prime numbers (i.e., all primes except

2) below 2n + 2. The sieve of Sundaram sieves out the

composite numbers just as sieve of Eratosthenes does, but

even numbers are not considered; the work of "crossing out"

the multiples of 2 is done by the final double-and-increment

step. Whenever Eratosthenes' method would cross out k

different multiples of a prime2𝑖 + 1 , Sundaram's method

crosses out𝑖 + 𝑗(2𝑖 + 1) for1 ≤ 𝑗 ≤ 𝑘 2

4. Sieve of Atkin

Algorithm

In the algorithm:

 All remainders are modulo-sixty remainders (divide

the number by 60 and return the remainder).

 All numbers, including x and y, are positive

integers.

International Journal of Computer Applications (0975 – 8887)

Volume 155 – No 14, December 2016

18

 Flipping an entry in the sieve list means to change

the marking (prime or nonprime) to the opposite

marking.

 This results in numbers with an odd number of

solutions to the corresponding equation being

potentially prime (prime if they are also square

free), and numbers with an even number of

solutions being composite.

b) Primality test

A primality test is an algorithm for determining whether an

input number is prime. Amongst other fields of mathematics,

it is used for cryptography. Unlike integer factorization,

primality tests do not generally give prime factors, only

stating whether the input number is a prime or not.

Factorization is thought to be a computationally difficult

problem, whereas primality testing is comparatively easy. The

running time is polynomial in the size of the input numbers.

Some primality tests prove that a number is prime, while

others like Miller–Rabin prove that a number is composite.

Therefore, the latter might be called compositeness tests

instead of primality tests

1) Simple methods

The simplest primality test is trial division: Given an input

number n, check whether any prime integer m from 2 to 𝑛

evenly divides n (the division leaves no remainder). If n is

divisible by any m then n is composite, otherwise it is prime.

For example, we can do a trial division to test the primality of

100. Let's look at all the divisors of 100:

2, 4, 5, 10, 20, 25, 50

Here we see that the largest factor is 100/2 = 50. This is true

for all n: all divisors are less than or equal to n/2. If we take a

closer look at the divisors, we will see that some of them are

redundant. If we write the list differently:

100 = 2 × 50 = 4 × 25 = 5 × 20 = 10 × 10

= 20 × 5 = 25 × 4 = 50 × 2

Once we reach 10, which is √100, the divisors just flip around

and repeat. Therefore, we can further eliminate testing

divisors greater than √n. We can also eliminate all the even

numbers greater than 2, since if an even number can divide n,

so can 2

2) Heuristic tests

The Fermat test and the Fibonacci test are simple examples,

and they are very effective when combined. John Selfridge

has conjectured that if p is an odd number, and p ≡ ±2 (mod

5), then p will be prime if both of the following hold:

 2p-1 ≡ 1 (mod p)

 fp+1 ≡ 0 (mod p),

where fk is the kth Fibonacci number. The first condition is the

Fermat primality test using base 2. The Baillie-PSW primality

test is another excellent heuristic, using the Lucas sequence in

place of the Fibonacci sequence

3) Probabilistic tests

Probabilistic tests are more exact than heuristics in that they

provide provable bounds on the probability of being fooled by

a composite number. Many popular primality tests are

probabilistic tests. These tests use, apart from the tested

number n, some other numbers a which are chosen at random

from some sample space, the usual randomized primality tests

never report a prime number as composite, but it is possible

for a composite number to be reported as prime.

The probability of error can be reduced by repeating the test

with several independently chosen values of a; for two

commonly used tests, for any composite n at least half the a's

detect n's compositeness. So k repetitions reduce the error

probability to at most 2−k, which can be made arbitrarily small

by increasing k.

The basic structure of randomized primality tests is as

follows:

1. Randomly pick a number a.

2. Check some equality (corresponding to the chosen

test) involving a and the given number n. If the

equality fails to hold true, then n is a composite

number, a is known as a witness for the

compositeness, and the test stops.

3. Repeat from step 1 until the required accuracy is

achieved.

After one or more iterations, if n is not found to be a

composite number, then it can be declared probably prime.

4) Fermat primality test

The simplest probabilistic primality test is the Fermat

primality test (a compositeness test). It works as follows:

Given an integer n, choose some integer a coprime to n and

calculate an − 1 modulo n. If the result is different from 1, then

n is composite. If it is 1, then n may or may not be prime.

If an−1 (modulo n) is 1 but n is not prime, then n is called a

pseudoprime to base a. In practice, we observe that, if an−1

(modulo n) is 1, then n is usually prime. But here is a

counterexample: if n = 341 and a = 2, then

2340 ≡ 1(𝑚𝑜𝑑 341)

even though 341 = 11·31 is composite. In fact, 341 is the

smallest pseudoprime base 2 [36].

There are only 21853 pseudoprimes base 2 that are less than

2.5×1010 [36]. This means that, for n up to 2.5×1010, if 2n−1

(modulo n) equals 1, then n is prime, unless n is one of these

21853 pseudoprimes.

5) Miller-Rabin and Solovay-Strassen primality test

The Miller–Rabin primality test and Solovay–Strassen

primality test are more sophisticated variants which detect all

composites. These are also compositeness tests. The Miller–

Rabin primality test works as follows: Given an integer n,

choose some positive integer a < n. Let 2sd = n − 1 where d is

odd. If

𝑎𝑑 ≢ 1(𝑚𝑜𝑑 𝑛)

and

𝑎2𝑟𝑑 ≢ −1 (𝑚𝑜𝑑 𝑛) for all 0 ≤ 𝑟 ≤ 𝑠 − 1

then n is composite and a is a witness for the compositeness.

Otherwise, n may or may not be prime. The Miller-Rabin test

is a strong pseudoprime test [36].

The Solovay–Strassen primality test uses another equality:

Given an odd number n, choose some integer a < n, if

𝑎
(𝑛−1)

2 ≢
𝑎

𝑛
 (𝑚𝑜𝑑 𝑛), where

𝑎

𝑛
 is the Jacobi symbol,

International Journal of Computer Applications (0975 – 8887)

Volume 155 – No 14, December 2016

19

then n is composite and a is a witness for the compositeness.

Otherwise, n may or may not be prime. The Solovay-Strassen

test is an Euler pseudoprime test [36].

For each individual value of a, the Solovay-Strassen test is

weaker than the Miller-Rabin test. For example, if n = 1905

and a = 2, then the Miller-Rabin test shows that n is

composite, but the Solovay-Strassen test does not. This is

because 1905 is an Euler pseudoprime base 2 but not a strong

pseudoprime base 2.

6) Frobenius primality test

The Miller-Rabin and the Solovay-Strassen primality tests are

simple and are much faster than other general primality tests.

One method of improving efficiency further in some cases is

the Frobenius pseudoprimality test; a round of this test takes

about three times as long as a round of Miller–Rabin, but

achieves a probability bound comparable to seven rounds of

Miller–Rabin.

The Frobenius test is a generalization of the Lucas

pseudoprime test. One can also combine a Miller-Rabin type

test with a Lucas pseudoprime test to get a primality test that

has no known counterexamples. That is, this combined test

has no known composite n for which the test reports that n is

probably prime. One such test is the Baillie-PSW primality

test, several variations of which are described in [37].

7) Other tests

Leonard Adleman and Ming-Deh Huang presented an

errorless (but expected polynomial-time) variant of the elliptic

curve primality test. Unlike the other probabilistic tests, this

algorithm produces a primality certificate, and thus can be

used to prove that a number is prime [39]. The algorithm is

prohibitively slow in practice.

If quantum computers were available, primality could be

tested asymptotically faster than by using classical computers.

A combination of Shor's algorithm, an integer factorization

method, with the Pocklington primality test could solve the

problem in 𝑂(𝑙𝑜𝑔3𝑛 log log𝑛 𝑙𝑜𝑔 𝑙𝑜𝑔 log𝑛)[38].

3. PROPOSED BIOPNGA SCHEME
Traditional prime number generation algorithms

asymptotically require 𝑂(𝑛4) or 𝑂(𝑛4 log𝑛) bit operations

where n is the bit-length of the expected prime number. This

complexity may even become of the order of 𝑂(𝑛4 (log𝑛)2)

in the case of constrained primes, such as safe or quasi-safe

primes for instance. These asymptotic behaviors (assuming

that multiplications modulo q are in 𝑂(𝑞)2. Theoretically,

one could decrease this complexity by using multiplication

algorithms such as Karatsuba in 𝑂(𝑞 log 2 3) or Schonhage-

Strassen in 𝑂(𝑞 log 𝑞 log log 𝑞)), according to researchers

view, seem impossible to improve significantly. In this paper,

we have proposed a technique to generate a set of prime

numbers from a biometric identity of individual users, which

substantially reduce the computational cost and improve the

security level of prime numbers generation.

The proposed techniques will work very efficiently for

implementations on cryptographic smart cards for on-board

RSA [10] (or other schemes) key generation. This technique

may apply for any kind of biometric based security systems.

Our motivation here is to help transferring this task from

terminals to smart-cards themselves in the near future for

more confidence, security, and compliance with network-

scaled distributed protocols that include smart-cards, such as

electronic cash or mobile commerce. This concept is new to

the research world and this will provide more security for

selecting the prime numbers in PKI.

Biometric Based Prime Number Generation Algorithm

(BioPNGA)

The proposed scheme has two phases:

1. In the first phase, user biometric identity is acquired

from the user and the image is converted into gray

scale image. The user can select a area from image

based on the size of prime number. The selected

area converted into binary matrix will be in 0‟s and

1‟s.

2. In second phase, the selected size of image value or

size is taken from the binary image file (binary

image matrix). The positive number is calculated by

using this binary value from every row wise. This

positive number is pass to the Primality Test phase

for checking the Prime number. For example if we

want to find a prime number with the size of 32 bits

then we have to take a 32x32 bit matrix from the

binary matrix.

The proposed architecture is given below,

Figure 1: Proposed BioNPGA Architecture

International Journal of Computer Applications (0975 – 8887)

Volume 155 – No 14, December 2016

20

a. Biometric Identity Acquiring Phase

In this phase, we have three sub-modules and module working

principles are given below,

1) Biometric Identity capturing module

In this module, the new user or the register user 𝑈𝐴can enroll

their biometric identity 𝐵𝐼𝐴. This 𝐵𝐼𝐴 is used as a seed value

for creating the Prime number

2) Image Preprocessing and region selection module

In this module, two main steps are carried out. First one is to

apply the preprocessing on acquired biometric image from the

user. In this step, first we apply the Image Filtering methods

on acquired image and apply the Noise removal techniques.

The preprocessed image is feed into the second step called

region selection. In the region selection, a small portion of

preprocessed image is taken as a seed value for generating

Prime number. The selected region 𝐵𝐼𝐴[𝑙,𝑘] from 𝐵𝐼𝐴.

Figure 2: Biometric 𝑩𝑰𝑨 for user 𝑼𝑨

(a) Preprocessed Image

𝑩𝑰𝑨

(b) Selected Portion of Image 𝐵𝐼𝐴[𝑙,𝑘]

for Positive number calculation𝑃𝑁𝑙

(c) Binary matrix for the selected

portion of Image𝐵𝑖𝑛𝑎𝑟𝑦𝑀𝑎𝑥𝑖,𝑗

Figure 3: Biometric Identity Acquiring Phase

3) Number Generation Module

In this module, we have convert selected region image into

binary value or binary matrix, for example 32x32, 64x64,

128x128, 256x256, likewise. Based on the selected region

size the positive number will be generated. This number will

be passing to the next module for applying the Primality test

or Prime test

b. Primality Testing Phase

In this phase, apply the Primality Test for each positive

number 𝑃𝑁𝑖 from the row wise in the Binary

Matrix𝐵𝑖𝑛𝑎𝑟𝑦𝑀𝑎𝑥𝑖,𝑗 . The Binary Matrix 𝐵𝑖𝑛𝑎𝑟𝑦𝑀𝑎𝑥𝑖 ,𝑗 is

represented like in Figure 3 (c) and every row a positive

integer value is calculated for the corresponding binary value

from each row. The following algorithm illustrate the basic

steps in the proposed method

Algorithm for the Proposed Scheme

BioPNGAlgorithm(𝑩𝒊𝒏𝒂𝒓𝒚𝑴𝒂𝒙 ,𝑹𝒐𝒘,𝑪𝒐𝒍𝒖𝒎𝒏)

Begin

For i=1 to Row

Begin

 𝑵𝒊 = 𝑪𝒂𝒍𝒄𝒖𝒍𝒂𝒕𝒆 𝑩𝒊𝒏𝒂𝒓𝒚𝒕𝒐𝑫𝒆𝒄𝒊𝒎𝒂𝒍(𝑩𝒊𝒏𝒂𝒓𝒚𝑴𝒂𝒙 𝒊) //Calculate Decimal equivalent

 of Binary String

𝑩𝒊𝒏𝒂𝒓𝒚𝑴𝒂𝒙 𝒊
 If(PrimalityTest(𝑵𝒊)=TRUE) // Apply Primality Test on 𝑵𝒊

 Maintain it in a corresponding entry in Table

 Else

 Goto Next Entry

End

End

International Journal of Computer Applications (0975 – 8887)

Volume 155 – No 14, December 2016

21

4. IMPLEMENTATION AND RESULT

DISCUSSION
The proposed scheme is implemented by using MATLAB

version R2009a. The First phase of the proposed scheme is

implemented by using basic standard functions in MATLAB

for Image capturing, Image filtering, Noise removal, and other

preprocessing functions. This phase produces good result in

Image Quality. The preprocessed image is converted into

small cell like given in Figure 3 (a) based on the required size

of Prime number. For example, if a user needs 32 bits size

prime number then the preprocessed image is converted into

32x32 block of small images. The one small block selected by

the user and it is converted into binary matrix as shown in

Figure 3 (c). A common table is maintained for group the

binary number list, positive number list and prime number list

as shown in figure 4.

The traditional prime number generation algorithms

asymptotically require 𝑂(𝑛4) or 𝑂(𝑛4 log𝑛) bit operations

where n is the bit-length of the expected prime number. The

proposed Algorithm asymptotically require only 𝑂(𝑛) and

only primality checking needs additional computational cost.

The following table provides the time taken for compute the

prime list for different size of blocks. For the comparison, we

have considered the size of 32x32, 64x64, 128x128, and

256x256. The time taken for computing the prime numbers

from the given binary matrix is very minimum and it is very

easy way to generate the prime numbers for Public Key

Infrastructure (PKI). The proposed scheme requires minimum

time ≈ 10 𝑚𝑠 for 32 bit prime generation.

CASIA Fingerprint Image Database Version 5.0 (or CASIA-

FingerprintV5) contains 20,000 fingerprint images of 500

subjects. The fingerprint images of CASIA-FingerprintV5

were captured using URU4000 fingerprint sensor in one

session. The volunteers of CASIA-FingerprintV5 include

graduate students, workers, waiters, etc. Each volunteer

contributed 40 fingerprint images of his eight fingers (left and

right thumb/second/third/fourth finger), i.e. 5 images per

finger. The volunteers were asked to rotate their fingers with

various levels of pressure to generate significant intra-class

variations. All fingerprint images are 8 bit gray-level BMP

files and the image resolution is 328x356

The Finger Print image subset used in our experiments

consists of 250 image samples a resolution of 328x356 pixels.

The optimal number of cells used in the non-invertible

transform is selected as a compromise between the template

security to brute force attacks and Equal Error Rate (EER).

These parameters were found to provide high local entropy

and optimum encoding on CASIA Finger Print database [40].

Figure 4: Selected portion of 33x33 Binary Matrix 𝑩𝒊𝒏𝒂𝒓𝒚𝑴𝒂𝒙𝒊,𝒋 from Biometric Identity and the List of Prime Numbers

International Journal of Computer Applications (0975 – 8887)

Volume 155 – No 14, December 2016

22

Table 1: Time taken for Prime Number generation and Success rate to find minimum one prime number per block

Block Size in Bits
Time taken for Number

generation

Time taken for

Primality Test

Success rate to find minimum one prime

number per block

32x32 ≈ 10 𝑚𝑠 ≈ 6 𝑚𝑠 67%

64x64 ≈ 15 𝑚𝑠 ≈ 6 𝑚𝑠 86%

128x128 ≈ 27 𝑚𝑠 ≈ 14 𝑚𝑠 92%

256x256 ≈ 32 𝑚𝑠 ≈ 20 𝑚𝑠 93%

The proposed scheme some time fails to find the prime

number in a selected block for the biometric identity. The

failure situation or case is very minimum when high bit size is

used for prime number generation. The table 1 shows the

performance evaluation for our proposed scheme

5. CONCLUSION
The generation of prime numbers plays the most important

role in the public-key schemes, essentially as a major

primitive needed for the creation of key pairs or as a

computation stage appearing during various cryptographic

setups. In this paper, we have proposed an algorithm for

finding the prime number for Public Key Infrastructure (PKI)

by using biometric identity (example finger print, iris, face,

DNA,… etc). The proposed scheme requires minimum

computing cost for generating prime numbers and any size of

prime numbers can be created by using this scheme. This

scheme output n-bit prime number from biometric identity

matrix 𝑚 × 𝑛 in a heuristic average complexity of𝑂(𝑚 × 𝑛).

This scheme is very suitable for power constrained biometric

based security schemes

6. REFERENCES
[1] A.O.L. Atkin, D.J. Bernstein, Prime sieves using binary

quadratic forms, Math. Comp. 73 (2004), pp. 1023-1030.

[2] Carl Pomerance; John L. Selfridge; Samuel S. Wagstaff,

Jr. (July 1980). "The pseudoprimes to 25·109".

Mathematics of Computation, 35 (151), pp. 1003–1026.

[3] Robert Baillie; Samuel S. Wagstaff, Jr. (October 1980).

"Lucas Pseudoprimes" (PDF). Mathematics of

Computation 35 (152): 1391–1417

[4] Adleman, Leonard M.; Huang, Ming-Deh (1992).

Primality testing and Abelian varieties over finite field.

Lecture notes in mathematics 1512. Springer-Verlag.

ISBN 3-540-55308-8

[5] Chau, H. F.; Lo, H.-K. (1995). "Primality Test Via

Quantum Factorization". arXiv:quant-ph/9508005

[6] J. Brandt and I. Damgard. “On generation of probable

primes by incremental search”, In E. F. Brickell, editor,

CRYPTO, volume 740 of Lecture Notes in Computer

Science, pages 358–370. Springer, 1992.

[7] J. Brandt, I. Damgard, and P. Landrock. “Speeding up

prime number generation”, In H. Imai, R. L. Rivest, and

T. Matsumoto, editors, ASIACRYPT, volume 739 of

Lecture Notes in Computer Science, pp. 440–449.

Springer, 1991

[8] D. Eastlake 3rd, J. Schiller, and S. Crocker.

“Randomness Requirements for Security”, RFC 4086

(Best Current Practice), June 2005

[9] G. H. Hardy and J. E. Littlewood. “Some problems of

„partitio numerorum‟: III. on the expression of a number

as a sum of primes”, 44, pp. 1–70, 1922

[10] M. Joye and P. Paillier. “Fast generation of prime

numbers on portable devices: An update”, In L. Goubin

and M. Matsui, editors, CHES, volume 4249 of Lecture

Notes in Computer Science, pp. 160–173. Springer, 2006.

[11] M. Joye, P. Paillier, and S. Vaudenay. “Efficient

generation of prime numbers”, In Cetin Kaya Koc and C.

Paar, editors, CHES, volume 1965 of Lecture Notes in

Computer Science, pp. 340–354. Springer, 2000

[12] U. M. Maurer. “Fast generation of secure RSA-moduli

with almost maximal diversity”, In EUROCRYPT, pp.

636–647, 1989.

[13] U. M. Maurer. “Fast generation of prime numbers and

secure public-key cryptographic parameters”, J.

Cryptology, 8(3), pp.123–155, 1995

[14] P. Mihăilescu. “Fast generation of provable primes using

search in arithmetic progressions”, In Y. Desmedt,

editor, CRYPTO, volume 839 of Lecture Notes in

Computer Science, pp. 282–293. Springer, 1994.

[15] A. K. Jain, A. Ross: Introduction to Biometrics. In

“Handbook of Biometrics”, A. Jain et al. (Eds), Springer,

2008

[16] Y. C. Feng, P. C. Yuen, A. K. Jain: “A Hybrid Approach

for Face Template Protection”, In Proceedings of SPIE

Conference of Biometric Technology for Human

Identification, Orlando, USA, Vol. 6944, pp. 325, 2008

[17] P. Balakumar, R. Venkatesan: “A Survey on Biometrics-

based Cryptographic Key Generation Schemes”,

International Journal of Computer Science and

Information Technology & Security, Vol. 2, No. 1, pp.

80-85, 2012

[18] A. K. Jain, A. Ross, S. Prabhakar: “An Introduction to

Biometric Recognition”, IEEE Transactions on Circuits

and Systems for Video Technology, Vol. 14, pp. 4-20,

2004

[19] B. Biggio: “Adversarial Pattern Classification. Doctoral

dissertation”, University of Cagliari, Cagliari, Italy, 2010

[20] A. Jagadeesan, K. Duraiswamy: “Secured Cryptographic

Key Generation From Multimodal Biometrics: Feature

International Journal of Computer Applications (0975 – 8887)

Volume 155 – No 14, December 2016

23

Level Fusion of Fingerprint and Iris”, International

Journal of Computer Science and Information Security,

Vol. 7, No. 2, pp. 28-37, 2010

[21] L. Hong, A. K. Jain, S. Pankanti: “Can Multibiometrics

Improve Performance?”, In Proceedings of IEEE

Workshop on Automatic Identification Advanced

Technologies, pp. 59-64, NJ, USA, 1999

[22] A. K. Jain, A. Ross: Multi-Biometric Systems: “Special

Issue on Multimodal Interfaces that Flex, Adapt, and

Persist”, Communications of the ACM, Vol. 47, No. 1,

pp. 34-40, 2004

[23] A. K. Jain, K. Nandakumar, A. Nagar: “Biometric

Template Security”, EURASIP J. Adv. Signal Process,

2008:1-17, 2008

[24] J. Galbally, C. McCool, J. Fierrez, S. Marcel, J. Ortega-

Garcia. “On the Vulnerability of Face Verification

Systems to Hill-Climbing Attacks”, Pattern Recogn.,

43(3) pp. 1027-1038, 2010

[25] S. Prabhakar, A. Jain: “Decision-Level Fusion in

Fingerprint Verification”, Pattern Recognition, Vol. 35,

pp. 861-874, 2002

[26] Z. Wang, E. Wang, S. Wang, Q. Ding: “Multimodal

Biometric System Using Face-Iris Fusion Feature.

Journal of Computers”, Vol. 6, No. 5, pp. 931-938, 2011

[27] K. Toh, J. Kim, S. Lee: “Biometric Scores Fusion Based

on Total Error Rate Minimization”,. Pattern Recognition,

Vol. 41, pp. 1066-1082, 2008

[28] A. Ross, R. Govindarajan: Feature Level Fusion in

Biometric Systems. In proceedings of Biometric

Consortium Conference, September 2004

[29] S. Adamović, M. Milosavljević: Information Analysis of

Iris Biometrics for the Needs of Cryptology Key

Extraction. Serbian Journal of Electrical Engineering,

Vol. 10, No. 1, pp. 1-12, 2003

[30] C. Couvreur and J.-J. Quisquater. An introduction to fast

generation of large prime numbers. Philips Journal of

Research, vol. 37, pp. 231-264, 1982

[31] D.E. Knuth. The Art of Computer Programming -

Seminumerical Algorithms, vol. 2, Addison-Wesley, 2nd

ed., 1981

[32] R. Solovay and V. Strassen. A fast Monte-Carlo test for

primality. SIAM Journal on Computing, vol. 6, pp. 84-

85, 1977

[33] H.C. Pocklington. The determination of the prime or

composite nature of large numbers by Fermat's theorem.

Proc. of the Cambridge Philosophical Society, vol. 18,

pp. 29-30, 1914

[34] A.O.L. Atkin and F. Morain. Elliptic curves and

primality proving. Mathematics of Computation, vol. 61,

pp. 29-68, 1993

[35] W. Bosma and M.-P. van der Hulst. Faster primality

testing. In Advances in Cryptology-CRYPTO'89, vol.

435 of Lecture Notes in Computer Science, pp. 652-656,

Springer-Verlag, 1990

[36] Carl Pomerance; John L. Selfridge; Samuel S. Wagstaff,

Jr. (July 1980). "The pseudoprimes to 25·109".

Mathematics of Computation 35 (151): 1003–1026.

doi:10.1090/S0025-5718-1980-0572872-7

[37] Robert Baillie; Samuel S. Wagstaff, Jr. (October 1980).

"Lucas Pseudoprimes", Mathematics of Computation 35

(152): 1391–1417

[38] Chau, H. F.; Lo, H.-K. (1995). "Primality Test Via

Quantum Factorization". arXiv:quant-ph/9508005

[39] Adleman, Leonard M.; Huang, Ming-Deh (1992).

Primality testing and Abelian varieties over finite field.

Lecture notes in mathematics 1512. Springer-Verlag.

[40] http://biometrics.idealtest.org/dbDetailForUser.do?id=7

IJCATM : www.ijcaonline.org

