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ABSTRACT 

A biometric based security system provides best on both 

authentication and confidentiality for public shared secret 

information. Enormous numbers of papers have been 

published by the researchers in this field. The generation of 

prime numbers plays the most important role in the public-key 

schemes, essentially as a major primitive needed for the 

creation of key pairs or as a computation stage appearing 

during various cryptographic setups. Most of the researchers 

have been made strong mathematical studies on primality 

testing and an observed progressive increase of cryptographic 

usages, prime number generation algorithms. Still not quite 

investigated and most of the real-life implementations are 

providing poor performance. Most of the common prime 

number generators typically output n-bit prime in heuristic 

average complexity𝑂(𝑛4) or 𝑂(𝑛4 log𝑛 ). 

In this paper, we have proposed A Flexible and Efficient 

BioPNGA algorithm for generating the prime number for 

Public Key Infrastructure (PKI) by using biometric identity 

(example finger print, iris, face, DNA,… etc). The proposed 

scheme capturers the biometric identity image from the 

corresponding user and this image will be used as a seed value 

for generating the prime number. The proposed scheme 

generates set of prime numbers and these prime numbers can 

be used in Public Key Authentication and Confidentiality for 

the corresponding user. The proposed scheme requires 

minimum computing cost for generating prime numbers and 

any size of prime numbers can be created by using this 

scheme. This scheme output n-bit prime number from 

biometric identity matrix 𝑚 × 𝑛 in a heuristic average 

complexity of 𝑂(𝑚 × 𝑛). This scheme is very suitable for 

power constrained biometric based security schemes.   

General Terms 

Security, Algorithms 

Keywords 

Biometric Identity, Prime numbers, Public Key Infrastructure 
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1. INTRODUCTION 
The prime numbers and the deterministic formulas used to 

find them, have garnered considerable attention from 

mathematicians, professionals and amateurs alike. A prime 

number is a positive integer, excluding 1, whose only divisors 

are 1 and itself. For example, 23 is a prime number as it can 

only be divided by 1 and 23. A number that is not prime is 

called a composite number. For over 150 years, 

mathematicians have attempted to expose a deterministic 

formula to identify prime numbers. If such a formula existed, 

all numbers could be factored efficiently by using computers. 

Paradoxically, much of electronic data today is encrypted by 

taking advantage of the fact that it is difficult and time 

consuming for a computer program to factor a large 

composite number. 

Traditional prime number generation algorithms 

asymptotically require 𝑂(𝑛4) or 𝑂 𝑛4 log𝑛  bit operations 

where n is the bit-length of the expected prime number. This 

complexity may even become of the order of 

𝑂 𝑛5  log𝑛 2   in the case of constrained primes, such as 

safe or quasi-safe primes for instance. These asymptotic 

behaviors, according to experience, seem impossible to 

improve significantly 

“Biometrics is the science of establishing the identity of an 

individual based on physical, chemical or behavioral 

attributes of the person” [15]. Due to the distinctive nature of 

biometric traits [16] and the non-repudiation it offers [17], 

biometry is frequently used to enhance the overall security of 

the system in which it is implemented: the authentication 

system or the biometric cryptosystem. Biometric 

authentication is the process of validating the uniqueness of 

individuals according to their physiological or behavioral 

qualities [18]. Physiological qualities, such as a fingerprint, an 

iris or a face, refer to something that an individual is. 

Behavioral qualities, such as speech, signature and keystroke 

dynamics refer to something that an individual can do. Biggio 

[19] proposed a generic modular biometric authentication 

system and the steps as explained as follows. A user who 

wants to access some resources provides his identity. The 

sensor acquires the biometric sample of the user. Features are 

extracted from the sample and a similarity score is calculated 

between the provided biometric sample and the one stored in 

the biometric template database corresponding to the provided 

user identity. The similarity score is compared with the 

threshold and the user is identified as a genuine user or a fake. 

According to this decision, the user is allows to access the 

resources.  

There are several advantages of biometric authentication 

compare to traditional authentication methods, such as 

difficulties in stealing, sharing and reproduction of biometric 

samples, tolerance to brute force attacks, and non-repudiation 

[20].  

There are two types of biometric systems: A unimodal, which 

employs a single biometric sample acquired from the user, 

and a multimodal, which employs two or more biometric 

samples, e.g. an iris and a fingerprint. Multimodal systems 

overcome some drawbacks of unimodal systems, such as large 

false rejection rates (FRR) and unacceptable false acceptance 

rates (FAR). Additional information provided to the classifier 

increases the recognition accuracy and decreases error rates, 
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while the identity proof is strengthened as data is acquired 

from different sources [21]. When compared to unimodal, 

multimodal systems are less prone to spoof attacks [22] and 

carefully crafted attacks targeted towards modular biometric 

authentication systems (replaying old data, feature extractor 

overriding, stored template modification, communication 

channel interception and providing synthetic vectors to the 

matching module) [23, 24].  

The basis of multimodal biometric authentication systems is 

the information fusion. The decision level fusion [25] is the 

initial approach to information fusion in multimodal biometric 

authentication systems. This approach is based on majority 

vote scheme that is used to combine classification results from 

different modalities and make the final decision [26]. At the 

matching score level [27], the system calculates similarity 

scores between the sample and the corresponding template for 

each modality and combines them to verify the identity of an 

individual. At the feature level, feature vectors extracted from 

different modalities are integrated into a new vector that 

represents the identity of the individual [28].  

2. RELATED WORK 
There are several ways in which we could assess the quality 

of a random prime generation algorithm, based on its speed 

(time complexity), its accuracy (the probability that it outputs 

numbers that are in fact composite), its statistical properties 

(the regularity of the output distribution), and the number of 

bits of randomness it consumes to produce a prime number (as 

good randomness is crucial to key generation and not easy to 

come by [8]). 

Many cryptographers have proposed faster prime generation 

algorithms [6, 7, 10, 11] or algorithms providing a proof that 

the generated numbers are indeed prime numbers [12, 13, 14]. 

A number of these works also prove lower bounds on the 

entropy of the distribution of prime numbers they generate, 

usual based on very strong conjectures on the regularity of 

prime numbers, such as the prime r-tuple conjecture of Hardy-

Littlewood [9]. However, such bounds on the entropy do not 

ensure that the resulting distribution is statistically close to the 

uniform distribution: for example, they do not preclude the 

existence of efficient distinguishers from the uniform 

distribution, which can indeed be shown to exist in most cases 

a) Primality and Compositeness Tests 

A lot of studies on primality testing have been carried out for 

years, and can be found in the literature devoted to the subject 

[30]. Computationally, we may distinguish true primes and 

probable primes: the difference being the way these are 

generated. A probable prime is usually obtained through a 

compositeness test. Such a test declares that a number is 

composite with probability 1 or prime with some probability < 

1. Hence repeatedly running the test gives more and more 

confidence in the generated (probable) prime. Typical 

examples of compositeness tests include Fermat test, Solovay-

Strassen test [32], and Miller-Rabin test [31]. There also exist 

(true) primality tests, which declare a number prime with 

probability. Typical examples of exist primality tests includes 

Pocklington's test [33] and its elliptic curve analogue [34], the 

Jacobi sum test [35]. However, these tests are generally more 

expensive or intricate 

1. Prime sieves 

A prime sieve or prime number sieve is a fast type of 

algorithm for finding primes. There are many prime sieves. 

The simple sieve of Eratosthenes (250s BCE), the sieve of 

Sundaram (1934), the still faster but more complicated sieve 

of Atkin (2004), and various wheel sieves are most common. 

A prime sieve works by creating a list of all integers up to a 

desired limit and progressively removing composite numbers. 

This is the most efficient way to obtain a large range of 

primes. To find individual primes, direct primality tests are 

more efficient. Furthermore, based on the sieve formalisms, 

some integer sequences (sequence A240673 in OEIS) are 

constructed which they also could be used for generating 

primes in certain intervals 

2. Sieve of Eratosthenes 

To find all the prime numbers less than or equal to a given 

integer n by Eratosthenes' method: 

1. Create a list of consecutive integers from 2 through 

n: (2, 3, 4, ..., n). 

2. Initially, let p equal 2, the smallest prime number. 

3. Enumerate the multiples of p by counting to n from 

2p in increments of p, and mark them in the list 

(these will be 2p, 3p, 4p, ... ; the p itself should not 

be marked). 

4. Find the first number greater than p in the list that is 

not marked. If there was no such number, stop. 

Otherwise, let p now equal this new number (which 

is the next prime), and repeat from step 3. 

When the algorithm terminates, the numbers remaining not 

marked in the list are all the primes below n. 

The main idea here is that every value given to p will be 

prime, because we have already marked all the multiples of 

the numbers less than p. Note that some of the numbers being 

marked may have already been marked earlier (e.g., 15 will be 

marked both for 3 and 5) 

3. Sieve of Sundaram 

The sieve of Sundaram is a simple deterministic algorithm for 

finding all prime numbers up to a specified integer. It was 

discovered by Indian mathematician S. P. Sundaram in 1934 

a. Algorithm 

Start with a list of the integers from 1 to n. From this list, 

remove all numbers of the form i + j + 2ij where: 

1. 𝑖, 𝑗 ∈ 𝑁, 1 ≤ 𝑖 ≤ 𝑗 

2. 𝑖 + 𝑗 + 2𝑖𝑗 ≤ 𝑛 

The remaining numbers are doubled and incremented by one, 

giving a list of the odd prime numbers (i.e., all primes except 

2) below 2n + 2. The sieve of Sundaram sieves out the 

composite numbers just as sieve of Eratosthenes does, but 

even numbers are not considered; the work of "crossing out" 

the multiples of 2 is done by the final double-and-increment 

step. Whenever Eratosthenes' method would cross out k 

different multiples of a prime2𝑖 + 1 , Sundaram's method 

crosses out𝑖 + 𝑗(2𝑖 + 1) for1 ≤ 𝑗 ≤  𝑘 2    

4. Sieve of Atkin 

Algorithm 

In the algorithm: 

 All remainders are modulo-sixty remainders (divide 

the number by 60 and return the remainder). 

 All numbers, including x and y, are positive 

integers. 
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 Flipping an entry in the sieve list means to change 

the marking (prime or nonprime) to the opposite 

marking. 

 This results in numbers with an odd number of 

solutions to the corresponding equation being 

potentially prime (prime if they are also square 

free), and numbers with an even number of 

solutions being composite. 

b) Primality test 

A primality test is an algorithm for determining whether an 

input number is prime. Amongst other fields of mathematics, 

it is used for cryptography. Unlike integer factorization, 

primality tests do not generally give prime factors, only 

stating whether the input number is a prime or not. 

Factorization is thought to be a computationally difficult 

problem, whereas primality testing is comparatively easy. The 

running time is polynomial in the size of the input numbers. 

Some primality tests prove that a number is prime, while 

others like Miller–Rabin prove that a number is composite. 

Therefore, the latter might be called compositeness tests 

instead of primality tests 

1) Simple methods 

The simplest primality test is trial division: Given an input 

number n, check whether any prime integer m from 2 to  𝑛 

evenly divides n (the division leaves no remainder). If n is 

divisible by any m then n is composite, otherwise it is prime.  

For example, we can do a trial division to test the primality of 

100. Let's look at all the divisors of 100: 

2, 4, 5, 10, 20, 25, 50 

Here we see that the largest factor is 100/2 = 50. This is true 

for all n: all divisors are less than or equal to n/2. If we take a 

closer look at the divisors, we will see that some of them are 

redundant. If we write the list differently: 

100 = 2 × 50 = 4 × 25 = 5 × 20 = 10 × 10 

= 20 × 5 = 25 × 4 = 50 × 2 

Once we reach 10, which is √100, the divisors just flip around 

and repeat. Therefore, we can further eliminate testing 

divisors greater than √n. We can also eliminate all the even 

numbers greater than 2, since if an even number can divide n, 

so can 2 

2) Heuristic tests 

The Fermat test and the Fibonacci test are simple examples, 

and they are very effective when combined. John Selfridge 

has conjectured that if p is an odd number, and p ≡ ±2 (mod 

5), then p will be prime if both of the following hold: 

 2p-1 ≡ 1 (mod p) 

 fp+1 ≡ 0 (mod p), 

where fk is the kth Fibonacci number. The first condition is the 

Fermat primality test using base 2. The Baillie-PSW primality 

test is another excellent heuristic, using the Lucas sequence in 

place of the Fibonacci sequence 

3) Probabilistic tests 

Probabilistic tests are more exact than heuristics in that they 

provide provable bounds on the probability of being fooled by 

a composite number. Many popular primality tests are 

probabilistic tests. These tests use, apart from the tested 

number n, some other numbers a which are chosen at random 

from some sample space, the usual randomized primality tests 

never report a prime number as composite, but it is possible 

for a composite number to be reported as prime. 

The probability of error can be reduced by repeating the test 

with several independently chosen values of a; for two 

commonly used tests, for any composite n at least half the a's 

detect n's compositeness. So k repetitions reduce the error 

probability to at most 2−k, which can be made arbitrarily small 

by increasing k. 

The basic structure of randomized primality tests is as 

follows: 

1. Randomly pick a number a. 

2. Check some equality (corresponding to the chosen 

test) involving a and the given number n. If the 

equality fails to hold true, then n is a composite 

number, a is known as a witness for the 

compositeness, and the test stops. 

3. Repeat from step 1 until the required accuracy is 

achieved. 

After one or more iterations, if n is not found to be a 

composite number, then it can be declared probably prime. 

4) Fermat primality test 

The simplest probabilistic primality test is the Fermat 

primality test (a compositeness test). It works as follows: 

Given an integer n, choose some integer a coprime to n and 

calculate an − 1 modulo n. If the result is different from 1, then 

n is composite. If it is 1, then n may or may not be prime. 

If an−1 (modulo n) is 1 but n is not prime, then n is called a 

pseudoprime to base a. In practice, we observe that, if an−1 

(modulo n) is 1, then n is usually prime. But here is a 

counterexample: if n = 341 and a = 2, then 

2340 ≡ 1(𝑚𝑜𝑑  341) 

even though 341 = 11·31 is composite. In fact, 341 is the 

smallest pseudoprime base 2 [36]. 

There are only 21853 pseudoprimes base 2 that are less than 

2.5×1010 [36]. This means that, for n up to 2.5×1010, if 2n−1 

(modulo n) equals 1, then n is prime, unless n is one of these 

21853 pseudoprimes. 

5) Miller-Rabin and Solovay-Strassen primality test 

The Miller–Rabin primality test and Solovay–Strassen 

primality test are more sophisticated variants which detect all 

composites. These are also compositeness tests. The Miller–

Rabin primality test works as follows: Given an integer n, 

choose some positive integer a < n. Let 2sd = n − 1 where d is 

odd. If 

𝑎𝑑 ≢ 1(𝑚𝑜𝑑 𝑛) 

and 

𝑎2𝑟𝑑 ≢ −1  (𝑚𝑜𝑑 𝑛) for all 0 ≤ 𝑟 ≤ 𝑠 − 1 

then n is composite and a is a witness for the compositeness. 

Otherwise, n may or may not be prime. The Miller-Rabin test 

is a strong pseudoprime test [36]. 

The Solovay–Strassen primality test uses another equality: 

Given an odd number n, choose some integer a  < n, if 

𝑎
(𝑛−1)

2 ≢  
𝑎

𝑛
   (𝑚𝑜𝑑 𝑛), where 

𝑎

𝑛
  is the Jacobi symbol, 
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then n is composite and a is a witness for the compositeness. 

Otherwise, n may or may not be prime. The Solovay-Strassen 

test is an Euler pseudoprime test [36]. 

For each individual value of a, the Solovay-Strassen test is 

weaker than the Miller-Rabin test. For example, if n = 1905 

and a = 2, then the Miller-Rabin test shows that n is 

composite, but the Solovay-Strassen test does not. This is 

because 1905 is an Euler pseudoprime base 2 but not a strong 

pseudoprime base 2. 

6) Frobenius primality test 

The Miller-Rabin and the Solovay-Strassen primality tests are 

simple and are much faster than other general primality tests. 

One method of improving efficiency further in some cases is 

the Frobenius pseudoprimality test; a round of this test takes 

about three times as long as a round of Miller–Rabin, but 

achieves a probability bound comparable to seven rounds of 

Miller–Rabin. 

The Frobenius test is a generalization of the Lucas 

pseudoprime test. One can also combine a Miller-Rabin type 

test with a Lucas pseudoprime test to get a primality test that 

has no known counterexamples. That is, this combined test 

has no known composite n for which the test reports that n is 

probably prime. One such test is the Baillie-PSW primality 

test, several variations of which are described in [37]. 

7) Other tests 

Leonard Adleman and Ming-Deh Huang presented an 

errorless (but expected polynomial-time) variant of the elliptic 

curve primality test. Unlike the other probabilistic tests, this 

algorithm produces a primality certificate, and thus can be 

used to prove that a number is prime [39]. The algorithm is 

prohibitively slow in practice. 

If quantum computers were available, primality could be 

tested asymptotically faster than by using classical computers. 

A combination of Shor's algorithm, an integer factorization 

method, with the Pocklington primality test could solve the 

problem in 𝑂(𝑙𝑜𝑔3𝑛 log log𝑛 𝑙𝑜𝑔 𝑙𝑜𝑔 log𝑛)[38]. 

3. PROPOSED BIOPNGA SCHEME 
Traditional prime number generation algorithms 

asymptotically require 𝑂(𝑛4) or 𝑂(𝑛4 log𝑛 ) bit operations 

where n is the bit-length of the expected prime number. This 

complexity may even become of the order of 𝑂(𝑛4 (log𝑛)2 ) 

in the case of constrained primes, such as safe or quasi-safe 

primes for instance. These asymptotic behaviors (assuming 

that multiplications modulo q are in 𝑂( 𝑞 )2. Theoretically, 

one could decrease this complexity by using multiplication 

algorithms such as Karatsuba in 𝑂( 𝑞 log 2 3) or Schonhage-

Strassen in 𝑂(𝑞 log 𝑞 log log 𝑞 )), according to researchers 

view, seem impossible to improve significantly. In this paper, 

we have proposed a technique to generate a set of prime 

numbers from a biometric identity of individual users, which 

substantially reduce the computational cost and improve the 

security level of prime numbers generation. 

The proposed techniques will work very efficiently for 

implementations on cryptographic smart cards for on-board 

RSA [10] (or other schemes) key generation. This technique 

may apply for any kind of biometric based security systems. 

Our motivation here is to help transferring this task from 

terminals to smart-cards themselves in the near future for 

more confidence, security, and compliance with network-

scaled distributed protocols that include smart-cards, such as 

electronic cash or mobile commerce. This concept is new to 

the research world and this will provide more security for 

selecting the prime numbers in PKI. 

Biometric Based Prime Number Generation Algorithm 

(BioPNGA) 

The proposed scheme has two phases:  

1. In the first phase, user biometric identity is acquired 

from the user and the image is converted into gray 

scale image. The user can select a area from image 

based on the size of prime number. The selected 

area converted into binary matrix will be in 0‟s and 

1‟s. 

2. In second phase, the selected size of image value or 

size is taken from the binary image file (binary 

image matrix). The positive number is calculated by 

using this binary value from every row wise. This 

positive number is pass to the Primality Test phase 

for checking the Prime number. For example if we 

want to find a prime number with the size of 32 bits 

then we have to take a 32x32 bit matrix from the 

binary matrix. 

The proposed architecture is given below,

 

 

Figure 1: Proposed BioNPGA Architecture 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 155 – No 14, December 2016 

20 

a. Biometric Identity Acquiring Phase 

In this phase, we have three sub-modules and module working 

principles are given below, 

1) Biometric Identity capturing module 

In this module, the new user or the register user 𝑈𝐴can enroll 

their biometric identity 𝐵𝐼𝐴. This 𝐵𝐼𝐴 is used as a seed value 

for creating the Prime number 

 

 

2) Image Preprocessing and region selection module 

In this module, two main steps are carried out. First one is to 

apply the preprocessing on acquired biometric image from the 

user. In this step, first we apply the Image Filtering methods 

on acquired image and apply the Noise removal techniques. 

The preprocessed image is feed into the second step called 

region selection. In the region selection, a small portion of 

preprocessed image is taken as a seed value for generating 

Prime number. The selected region 𝐵𝐼𝐴[𝑙,𝑘] from 𝐵𝐼𝐴. 

 

 

Figure 2: Biometric 𝑩𝑰𝑨 for user 𝑼𝑨  

 

 

 

 

 

(a) Preprocessed Image 

𝑩𝑰𝑨 

(b) Selected Portion of Image 𝐵𝐼𝐴[𝑙,𝑘]  

for Positive number calculation𝑃𝑁𝑙  

(c) Binary matrix for the selected 

portion of Image𝐵𝑖𝑛𝑎𝑟𝑦𝑀𝑎𝑥𝑖,𝑗  

Figure 3: Biometric Identity Acquiring Phase 

3) Number Generation Module 

In this module, we have convert selected region image into 

binary value or binary matrix, for example 32x32, 64x64, 

128x128, 256x256, likewise. Based on the selected region 

size the positive number will be generated. This number will 

be passing to the next module for applying the Primality test 

or Prime test 

 

 

b. Primality Testing Phase 

In this phase, apply the Primality Test for each positive 

number 𝑃𝑁𝑖  from the row wise in the Binary 

Matrix𝐵𝑖𝑛𝑎𝑟𝑦𝑀𝑎𝑥𝑖,𝑗 . The Binary Matrix 𝐵𝑖𝑛𝑎𝑟𝑦𝑀𝑎𝑥𝑖 ,𝑗  is 

represented like in Figure 3 (c) and every row a positive 

integer value is calculated for the corresponding binary value 

from each row. The following algorithm illustrate the basic 

steps in the proposed method 

 

Algorithm for the Proposed Scheme 

BioPNGAlgorithm(𝑩𝒊𝒏𝒂𝒓𝒚𝑴𝒂𝒙   ,𝑹𝒐𝒘,𝑪𝒐𝒍𝒖𝒎𝒏) 

Begin 

For i=1 to Row 

Begin 

 𝑵𝒊 = 𝑪𝒂𝒍𝒄𝒖𝒍𝒂𝒕𝒆 𝑩𝒊𝒏𝒂𝒓𝒚𝒕𝒐𝑫𝒆𝒄𝒊𝒎𝒂𝒍(𝑩𝒊𝒏𝒂𝒓𝒚𝑴𝒂𝒙 𝒊 )     //Calculate Decimal equivalent 

                                                                                                                                     of Binary String 

𝑩𝒊𝒏𝒂𝒓𝒚𝑴𝒂𝒙 𝒊  
 If(PrimalityTest(𝑵𝒊)=TRUE)                  // Apply Primality Test on 𝑵𝒊 

  Maintain it in a corresponding entry in Table 

 Else 

  Goto Next Entry 

End 

End 
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4. IMPLEMENTATION AND RESULT 

DISCUSSION 
The proposed scheme is implemented by using MATLAB 

version R2009a. The First phase of the proposed scheme is 

implemented by using basic standard functions in MATLAB 

for Image capturing, Image filtering, Noise removal, and other 

preprocessing functions. This phase produces good result in 

Image Quality. The preprocessed image is converted into 

small cell like given in Figure 3 (a) based on the required size 

of Prime number. For example, if a user needs 32 bits size 

prime number then the preprocessed image is converted into 

32x32 block of small images. The one small block selected by 

the user and it is converted into binary matrix as shown in 

Figure 3 (c). A common table is maintained for group the 

binary number list, positive number list and prime number list 

as shown in figure 4.  

The traditional prime number generation algorithms 

asymptotically require 𝑂(𝑛4) or 𝑂(𝑛4 log𝑛 ) bit operations 

where n is the bit-length of the expected prime number. The 

proposed Algorithm asymptotically require only 𝑂(𝑛) and 

only primality checking needs additional computational cost. 

The following table provides the time taken for compute the 

prime list for different size of blocks. For the comparison, we 

have considered the size of 32x32, 64x64, 128x128, and 

256x256. The time taken for computing the prime numbers 

from the given binary matrix is very minimum and it is very 

easy way to generate the prime numbers for Public Key 

Infrastructure (PKI). The proposed scheme requires minimum 

time ≈ 10 𝑚𝑠  for 32 bit prime generation. 

CASIA Fingerprint Image Database Version 5.0 (or CASIA-

FingerprintV5) contains 20,000 fingerprint images of 500 

subjects. The fingerprint images of CASIA-FingerprintV5 

were captured using URU4000 fingerprint sensor in one 

session. The volunteers of CASIA-FingerprintV5 include 

graduate students, workers, waiters, etc. Each volunteer 

contributed 40 fingerprint images of his eight fingers (left and 

right thumb/second/third/fourth finger), i.e. 5 images per 

finger. The volunteers were asked to rotate their fingers with 

various levels of pressure to generate significant intra-class 

variations. All fingerprint images are 8 bit gray-level BMP 

files and the image resolution is 328x356 

The Finger Print image subset used in our experiments 

consists of 250 image samples a resolution of 328x356 pixels. 

The optimal number of cells used in the non-invertible 

transform is selected as a compromise between the template 

security to brute force attacks and Equal Error Rate (EER). 

These parameters were found to provide high local entropy 

and optimum encoding on CASIA Finger Print database [40]. 

 

 

 

Figure 4: Selected portion of 33x33 Binary Matrix 𝑩𝒊𝒏𝒂𝒓𝒚𝑴𝒂𝒙𝒊,𝒋 from Biometric Identity and the List of Prime Numbers 
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Table 1: Time taken for Prime Number generation and Success rate to find minimum one prime number per block 

Block Size in Bits 
Time taken for Number 

generation 

Time taken for 

Primality Test 

Success rate to find minimum one prime 

number per block 

32x32 ≈ 10 𝑚𝑠 ≈ 6 𝑚𝑠 67% 

64x64 ≈ 15 𝑚𝑠 ≈ 6 𝑚𝑠 86% 

128x128 ≈ 27 𝑚𝑠 ≈ 14 𝑚𝑠 92% 

256x256 ≈ 32 𝑚𝑠 ≈ 20 𝑚𝑠 93% 

 

The proposed scheme some time fails to find the prime 

number in a selected block for the biometric identity. The 

failure situation or case is very minimum when high bit size is 

used for prime number generation. The table 1 shows the 

performance evaluation for our proposed scheme 

5. CONCLUSION 
The generation of prime numbers plays the most important 

role in the public-key schemes, essentially as a major 

primitive needed for the creation of key pairs or as a 

computation stage appearing during various cryptographic 

setups. In this paper, we have proposed an algorithm for 

finding the prime number for Public Key Infrastructure (PKI) 

by using biometric identity (example finger print, iris, face, 

DNA,… etc). The proposed scheme requires minimum 

computing cost for generating prime numbers and any size of 

prime numbers can be created by using this scheme. This 

scheme output n-bit prime number from biometric identity 

matrix 𝑚 × 𝑛 in a heuristic average complexity of𝑂(𝑚 × 𝑛). 

This scheme is very suitable for power constrained biometric 

based security schemes 
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