Abstract

The collection of information from the space is too difficult because of the huge difference in the environment from earth. From studies researchers concluded space operational robotics (SOR) helps a lot for information gathering through space. In this paper, space operational robotics collected information from the space and send to earth for the further use in new inventions. The specific gathered information is real time monitored simultaneously by various devices on the earth by researchers and scientists. This real time monitoring mechanism is followed by using one new approach named as moonshot thinking. The major goal of moonshot thinking is to find out the radical solution without investigating the potential risks will occur in future. This overall scenario is managed with the support of SOR. This SOR complete its operation in two different steps. At first step, SOR collect information from space through intelligent sensors that are embedded on it and in the second step, SOR itself performs mining on collected information while utilizing installed software’s on SOR body. The main significance to use the concept of mining on SOR is only sending filtered or mined information that will be definitely useful information on the earth. The additional benefit to use this new designed methodology is it
reduces human time, effort, energy and correspondingly save space robotics memory (SRM). Only theoretical analysis has been investigated by authors by considering different data sets of atmospheric conditions with its different attributes. The nature of information received on earth during real time monitoring by space operational robotics is plays very important parameter of this paper.

References

17. John Schreiner,Lorenzo Fluckiger,Clayton Kunz,IlIah Nourbaksh, Terrence Fong, 2005.
Use of Moonshot Thinking in Space Operational Robotics (SOR) – A Theoretical Analysis

The peer-to-peer HRI Project, National Institute of standards and technology, Space, California.
20. Whatis.techtarget.com/definition/moonshot.
21. www.wired.com/2013/02/moonshots-matter-heres-how-to-make-them-happen.
22. branchannel.com/2015/03/04/how-moonshot-thinking-inform-everything-google-does/
23. fitplan.io/10X-moonshot-thinking/.
24. Googleblog.blogspot.in/2013/02/solve-for-x-celebrating-moonshot.html.
25. www.huffingtonpost.Com/2012/02/06/google-unveils-solve-for-n-1258870.html?ir=india&adsSiteOverride=in.
26. www.pcmag.com/article/0,2817,2453259,00.asp.
29. techchomp.blogspot.in/2013/04/moonshot-thinking.html.
30. Schedule.sxsw.com/2013/events-IAP993258.
31. blog.aha.io/index.php/should-your-startup-take-a-moonshot/.
32. moonshotdigital.com/how-we-work.
33. wscannestastic.tumblr.com/Post/53338240093/lessons-from-google-on-moonshot-thinking-it-is.
34. www.pocket.lint.com/news/12668/-google-x-explained-what-s-really-going-on-at-google-s-secret-lab.
35. sukshma.net/2014/10/04/moonshot-thinking-the-film-the-edge-of-tomorrow/.
36. healthxl.org/what-are-healthcare-moonshots/.
39. www.slideshare.net/fidaushkan10/iicc2013-fk-google-moonshots.
40. www.compudynamics.co.za/whats-your-x-amplifying-technology-moonshots.
41. Cloudtimes.org/2013/06/19/hp-launches-new-products-cloud-OS-and-the-moonshot/.
42. blog.cue.org/moonshots-in-education/.
43. stevenmorrane.blogspot.in/2014/10/moonshot-thinking.html.
45.

Index Terms

Computer Science
Artificial Intelligence

Keywords
Space operational Robotics (SOR), Moonshot Thinking, Intelligent Sensors, Real Time monitoring device (wireless Camera), Data mining, atmosphere and earth.