
International Journal of Computer Applications (0975 – 8887)

Volume 155 – No 2, December 2016

7

An Aggressive Concurrency Control Protocol for Main

Memory Databases

Mohammed Hamdi
Department of Computer

Science
Southern Illinois University

Carbondale, IL, USA

Weidong Xiong
Department of Computer

Science
Southern Illinois University

Carbondale, IL, USA

Feng Yu
Department of Computer
Science and Information

Systems
Youngstown State University

Youngstown, OH, USA

Sarah Alswedani
Department of Computer Science

Southern Illinois University
Carbondale, IL, USA

Wen-Chi Hou
Department of Computer Science

Southern Illinois University
Carbondale, IL, USA

ABSTRACT
In this paper, we propose a concurrency control protocol,

called the Prudent-Precedence Concurrency Control (PPCC)

protocol, for high data contention main memory databases.

PPCC is prudently more aggressive in permitting more

serializable schedules than two-phase locking. It maintains a

restricted precedence among conflicting transactions and

commits the transactions according to the serialization order

established in the executions. A detailed simulation model has

been constructed and extensive experiments have been

conducted to evaluate the performance of the proposed

approach. The results demonstrate that the proposed algorithm

outperforms the two-phase locking in all ranges of system

workload.

Keywords
Concurrency Control, Main Memory Database, Serializability,

Serialization Graph, 2PL

1. INTRODUCTION
Most database management systems are designed assuming

that data would reside on a hard disk. As hardware technology

advances, computers nowadays can easily accommodate tens

or even hundreds of gigabytes of memory with which to

perform operations. A significant amount of data can be held

in main memory without severe constraints on the memory

size. Thus, the use of main memory databases is becoming an

increasingly more realistic option for many applications. In

light of this, database researchers can exploit main memory

database features to improve real-time concurrency control

protocols [15].

During the past few decades, there has been much research on

currency control mechanisms in databases. The two-phase

locking (2PL) [7], timestamping [3, 4, 13], and optimistic

algorithms [10] represent three fundamentally different

approaches and have been most widely studied. Many other

algorithms are developed based on these or combinations of

these basic algorithms. Bernstein et al. [2] contains

comprehensive discussions on various concurrency control

protocols.

Optimistic concurrency controls (OCCs) have attracted a lot

of attention in distributed and real time databases [8, 9, 11, 12,

5, 6] due to its simplicity and dead-lock free nature.

Transactions are allowed to proceed without hindrance until at

the end - the verification phase. However, as the resource and

data contention intensifies, the number of restarts can increase

dramatically, and OCCs may perform much worse than 2PL

[1]. As for the timestamp ordering methods, they are generally

more appropriate for distributed environments with short

transactions, but perform poorly otherwise [14]. 2PL and its

variants have emerged as the winner in the competition of

concurrency control in the conventional databases [1, 5] and

have been implemented in all commercial databases.

Recent advances in wireless communication and cloud

computing technology have made accesses to databases much

easier and more convenient. Conventional concurrency

control protocols face a stern challenge of increased data

contentions, resulted from greater numbers of concurrent

transactions. Although two-phase locking (2PL) [7] has been

very effective in conventional applications, its

conservativeness in handling conflicts can result in

unnecessary blocks and aborts, and deter the transactions in

high data-contention environment.

Recently, there has been some research on concurrency

control in main memory databases [16, 17, 18, 19, 20]. These

works mainly focused on reducing the overheads in

implementing concurrency control mechanisms, such as 2PL.

In this paper, we propose a concurrency control protocol,

called prudent-precedence concurrency control (PPCC), for

high data contention main memory databases. The idea comes

from the observations that some conflicting transactions need

not be blocked and may still be able to complete serializably.

This observation leads to a design that permits higher

concurrency levels than the 2PL. In this research, we design a

protocol that is prudently more aggressive than 2PL,

permitting some conflicting operations to proceed without

blocking. We prove the correctness of the proposed protocol

and perform simulations to examine its performance. The

simulation results verify that the new protocol performs better

than the 2PL and OCC at high data contention main memory

databases. This method is also simple and easy to implement.

The rest of this paper is organized as follows. In Section 2, we

introduce the prudent-precedence concurrency control

protocol. In Section 3, we report on the performance of our

protocol. Conclusions are presented in Section 4.

International Journal of Computer Applications (0975 – 8887)

Volume 155 – No 2, December 2016

8

2. THE PRUDENT-PRECEDENCE

CONCURRENCY CONTROL
To avoid rollback and cascading rollback, hereafter we

assume all protocols are strict protocols, that is, all writes are

performed in the private workspaces and will not be written to

the database until the transactions have committed.

2.1 Observations
Our idea comes from the observation that some conflicting

operations need not be blocked and they may still be able to

complete serializably. Therefore, we attempt to be prudently

more aggressive than 2PL to see if the rationalized

aggressiveness can pay off. In the following, we illustrate the

observations by examples.

Example 1. Read-after-Write (RAW). The first few operations

of transactions T1 and T2 are described as follows:

T1: R1(b) W1(a) ..., T2: R2(a) W2(e) ...,

whereRi(x) denotes that transaction i reads item x, and Wj(y)

denotes that transaction j writes item y. Consider the

following schedule:

 R1(b) W1(a) R2(a) ...

There is a read-after-write (RAW) conflict on data item “a”

because transaction T2 tries to read “a” (i.e., R2(a)) after T1

writes “a” (i.e., W1(a)). In 2PL, T2 will be blocked until T1

commits or aborts. T2 can also be killed if it is blocked for too

long, as it may have involved in a deadlocked situation.

If we are a little more aggressive and allow T2 to read “a”, T2

will read the old value of “a”, not the new value of “a” written

by T1 (i.e., W1(a)), due to the strict protocol. Consequently, a

read-after-write conflict, if not blocked, yields a precedence,

that is, T2 precedes T1, denoted as T2 -> T1. We attempt to

record the precedence to let the conflicting operations

proceed.

Example 2. Write-after-Read (WAR). Consider the same

transactions with a different schedule as follows.

R1(b) R2(a) W1(a) ...

Similarly, W1(a) can be allowed to proceed when it tries to

write “a” after T2 has read “a” (R2(a)). If so, the write-after-

read (WAR) conflict on item “a” produces a precedence T2 ->

T1 in the strict protocol. Note that T2 again reads “a” before

T1’s W1(a) becomes effective later in the database.

Precedence between two transactions is established when

there is a read-after-write or write-after-read conflict. Note

that a write-after-write conflict does not impose precedence

between the transactions unless that the item is also read by

one of the transactions, in which case precedence will be

established through the read-after-write or the write-after-read

conflicts.

Note that either in a read-after-write or write-after read

conflict, the transaction reads the item always precedes the

transaction that writes that item due to the strict protocol.

2.2 Prudent Precedence
To allow reads to precede writes (in RAW) and writes to be

preceded by reads (in WAR) without any control can yield a

complex precedence graph. Detecting cycles in a complex

precedence graph to avoid possible non-serializability can be

quite time consuming and defeat the purpose of the potentially

added serializability. Here, we present a rule, called the

Prudent Precedence Rule, to simplify the graph so that the

resulting graph has no cycles and thus automatically

guarantees serializability.

Let G(V, E) be the precedence graph for a set of concurrently

running transactions in system, where V is a set of vertices

T1, T2, …, Tn, denoting the transactions in the system, and E

is a set of directed edges between transactions, denoting the

precedence among them. An arc is drawn from Ti to Tj, Ti -

>Tj ,
jinji ,,1

,if Ti read an item written by Tj,

which has not committed yet, or Tj wrote an item (in its

workspace) that has been read earlier by Ti.

Transactions in the system can be classified into 3 classes. A

transaction that has not executed any conflicting operations is

called an independent transaction. Once a transaction has

executed its first conflicting operation, it becomes a preceding

or preceded transaction, depending upon whether it precedes

or is preceded by another transaction. To prevent the

precedence graph from growing rampantly, once a transaction

has become a preceding (or preceded) transaction, it shall

remain a preceding (or a preceded) transaction for its entire

life time.

Let Ti and Tj be two transactions that involve in a conflict

operation. Regardless the conflict being RAW or WAR, let Ti

be the transaction that performs a read on the item, while Tj

the transaction that performs a write on that item. The conflict

operation is allowed to proceed only if the following rule,

called the Prudent Precedence Rule, is satisfied.

Preceding
Transactions

Preceded
Transactions

T6 T1 T2

T7 T5T4T3

Fig 1: The Precedence Graph

2.2.1 Prudent Precedence Rule:
Ti is allowed to precede Tj or Tj is allowed to be preceded by

Ti if

(i) Ti has not been preceded by any transaction and

(ii) Tj has not preceded any other transaction.

We shall use Figure 1 to explain the properties of the resulting

precedence graph for transactions following the Prudent

Precedence Rule. It can be observed that the first condition of

the rule (denoted by (i) in the rule) states that a preceded

transaction cannot precede any transaction, as illustrated by

the red arcs, marked with x, T7 to T1 and T3 to T4, in the

figure, while the second condition (denoted (ii)) states that a

preceding transaction cannot be preceded, as illustrated by the

red arcs, marked with x, T1 to T2 and T7 to T1, in the figure.

Since there cannot be any arcs between nodes in the same

class and there is no arc from the preceded class to the

preceding class, the graph cannot have a cycle.

2.3. Prudent Precedence Protocol
Each transaction is executed in three phases: read, wait-to-

commit, and commit phases. In the read phase, transactions

proceed following the precedence rule. Once a transaction

finishes all its operations, it enters the wait-to-commit phase,

International Journal of Computer Applications (0975 – 8887)

Volume 155 – No 2, December 2016

9

waiting for its turn to commit following the precedence

established in the read phase. Transactions release resources

in the commit phase. In the following, we describe in details

each phase.

2.3.1. Read Phase
A transaction executing a conflict operation with another

transaction will be allowed to proceed if it satisfies the

prudent precedence rules; otherwise, it will be either blocked

or aborted. The transaction that violates the precedence rules

is hereafter called a violating transaction.

In the following, we show a situation with a violating

transaction.

Example 3. There are three transactions. Their operations and

schedule are as follows.

T1: R1(b) W1(a) ...

T2: R2(a) W2(e) ...

T3: R3(e) …

Schedule: R1 (b) W1(a) R2(a) W2(e) R3(e)

T2 -> T1 is established when T2 reads “a”, and T2 becomes a

preceding transaction. Later when T3 tries to read “e” (R3(e)),

the operation is suspended (denoted by R3(e) in the schedule)

because T2, a preceding transaction, cannot be preceded.

Thus, T3 becomes a violating transaction and needs to be

blocked or aborted.

The simplest strategy to handle a violating transaction, such as

T3, is to abort it. Unfortunately, aborts may waste the efforts

already spent. Therefore, we prefer blocking with the hope

that the violation may later resolve and the violating

transaction T3 can still complete later. For example, T3 is

blocked, i.e., R3(e) is postponed; if T2 eventually commits,

then T3 can resume and read the new value of “e” produced

by T2. The read/write with the Prudent Precedence Rule is

summarized in Figure 2.

Fig 2: Read/Write with Prudent Precedence Rule

Let us elaborate on the blocking of a violating transaction a

bit. By allowing a violating transaction to block, a transaction

can now either be in an active (or running) state or a blocked

state. Although blocking can increase the survival rate of a

violating transaction, it can also hold data items accessed by

the violating transaction unused for extended periods.

Therefore, a time quantum must be set up to limit the amount

of time a violating transaction can wait (block itself), just like

the 2PL. Once the time quantum expires, the blocked

(violating) transaction will be aborted to avoid building a long

chain of blocked transactions.

Theorem 1. The precedence graph generated by transactions

following the Prudent Precedence Rule is acyclic.

Proof. As explained in Section 2.2, there cannot be a cycle in

the precedence graph following the Prudent Precedence Rule.

As for violating transactions, they will either abort by

timeouts or resume executions if the violation disappear due

to the aborts or commits of the other transactions with which

the transactions conflict. In either case, it does not generate

any arcs that violate the Prudent Precedence Rule, and the

graph remains acyclic.

2.3.2 Wait-to-Commit Phase
Once a transaction finishes its read phase, it enters the wait-to-

commit phase, waiting for its turn to commit because

transactions may finish the read phase out of the precedence

order established.

First, each transaction acquires exclusive locks on those items

it has written in the read phase to avoid building further

dependencies. Any transaction in the read phase wishes to

access a locked item shall be blocked. If such a blocked

transaction already preceded a wait-to-commit transaction, it

shall be aborted immediately in order not to produce a circular

wait, that is, wait-to-commit transactions wait for their

preceding blocked transactions to complete or vice versa.

Otherwise, the blocked transaction remains blocked until the

locked item is unlocked. Figure 3 shows the locking when a

transaction accesses a locked item.

A transaction can proceed to the commit phase if no

transactions, either in the read or the wait-to-commit phase,

precede it. Otherwise, it has to wait until all its preceding

transactions commit.

Fig 3: Accessing Locked Items

2.3.3 Commit Phase
As soon as a transaction enters the commit phase, it flushes

updated items to the database, releases the exclusive locks on

data items obtained in the wait-to-commit phase, and also

releases transactions blocked by it due to violations of the

precedence rule. Figure 4 summarizes the wait-to-commit and

the commit phases.

Fig 4: Wait-to-Commit and Commit Phases

/* when a trans. Ti reaches its wait-to-commit phase */

Wait-to-Commit Phase:

Lock items written by Ti;

Ti waits until all preceding transactions have committed;

Commit Phase:

 Flush updated items to database;

 Release locks;

 Release transactions blocked by Ti;

if there is a RAW or WAR conflict

{

if the prudent precedence rule is satisfied,

proceed with the operation;

else

abort or block;

} /* Ti is accessing an item x

if x is locked

 { if x is locked by a transaction preceded by Ti

abortTi;

else

blockTi (until x is unlocked);

 }

read/write with the Prudent Precedence Rule (Figure 2);

International Journal of Computer Applications (0975 – 8887)

Volume 155 – No 2, December 2016

10

Table 1: Parameter Settings

Database size 100, 500 items

Average transaction size 8± 4, 16±4 operations

Write probability 20%, 50%

Num. of CPUs 4, 16

CPU burst 15±5 time units

Example 4. Suppose that we have the following transactions,

T1, T2:

T1: R1(a), R1(b)

T2: R2(b), W2(a), W2(b)

Assume that the following is the schedule:

R1 (a), R2(b), W2(a), W2(b), [wc2], R1 (b) abort1, wc2,c2

When T2 writes “a” (W2(a)), T1 ->T2 is established, due to

an earlier R1(a). So, when T2 reaches its wait-to-commit

phase, denoted by wc2, it locks both “a” and “b”. However,

T2 has to wait until T1 has committed, denoted by [wc2], due

to the established precedence T1 ->T2. Later, when T1 tries to

read “b”, it is aborted, as indicated by R1(b) and abort1,

because “b” is locked by T2, as stipulated in Figure 3. Now

no transaction is ahead of T2, so it can finish its wait phase

(wc2) and commits (c2).

2.4 Serializability
A history is a partial order of the operations that represents the

execution of a set of transactions [5]. Let H denote a history.

The serialization graph for H, denoted by SGH, is a directed

graph whose nodes are committed transactions in H and

whose edges are TiTj (i≠j) if there exists a Ti’s operation

precedes and conflicts with a Tj’s operation in H. To prove

that a history H is serializable, we only have to prove that

SGH is acyclic.

Theorem 2. Every history generated by the Prudent

Precedence Protocol is serializable.

Proof. The precedence graph is acyclic as proved in Theorem

1. The wait-to-commit phase enforces the order established in

the precedence graph to commit. So, the serialization graph

has no cycle and is serializable.

3. SIMULATION RESULTS
This section reports the performance evaluation of 2PL, OCC,

and the Prudent Precedence Concurrency Control (PPCC) by

simulations.

3.1 Simulation Model
We have implemented 2PL, OCC and PPCC in a simulation

model that is similar to [1]. Each transaction has a randomized

sequence of read and write operations, with each of them

separated by a random period of a CPU burst of 15±5 time

units on average. All writes are performed on items that have

already been read in the same transactions. All writes are

stored in private work space and will only be written to the

database after commits following the strict protocol.

3.2 Parameter Settings
Our goal is observe the performance of the algorithms under

data contentions. The write operations cause conflicts and thus

the data contentions. Therefore, we shall experiment with

different write probabilities, 20% (moderate), and 50% (the

highest), to observe how the two algorithms adapt to conflicts.

Other factors that affect the data contentions are database

sizes and transaction sizes. Therefore, two database sizes of

100 and 500 items, and two transaction sizes of averaged 8

and 16 operations will be used in the simulation as shown in

Table 1.

Transactions may be blocked in 2PL, OCC and PPCC to avoid

generating cycles in the precedence graphs. Blocked

transactions are aborted if they have been blocked longer than

specified periods. We have experimented with several block

periods and select the best ones to use in the simulations.

The primary performance metric is the system throughput,

which is the number of transactions committed during the

period of the simulation. This is an overall performance

metric.

3.3 Experimental Results
In this section, we report the simulation results on the two

protocols based on the above setups.

3.3.1 Data Contention
As mentioned earlier, the data contention is mainly caused by

the write operations. If transactions have no writes, there will

be no conflicts and all three protocols will have identical

performance.

Given the same write probability, the greater the transaction

sizes, the greater the numbers of write operations are in the

system, and thus the higher the data contentions are. On the

other hand, given the same number of write operations, the

smaller the database size, the greater the chance of conflicts,

and thus the higher the data contentions are. Here, we will see

how these factors affect the performance of the three

protocols.

Fig 5(a): DB size 500

Fig 5(b): DB size 100

Fig 5: Write probability 0.2, Transaction Size 8

International Journal of Computer Applications (0975 – 8887)

Volume 155 – No 2, December 2016

11

We experimented with two database sizes, 100 items and 500

items, and two transaction sizes, averaged 8 and 16 operations

in each transaction. The experimental results in this subsection

were obtained with the setup of 4 CPUs. The simulation time

for each experiment is 100,000 time units.

Fig 6(a): DB size 500

Fig 6(b): DB size 100

Fig 6: Write probability 0.2, Transaction Size 16

 Write probability 0.2

Given the write probability 0.2, each transaction has on

average one write operation for every four reads.

Figures 5 shows the performance for transactions with

averaged 8 (8 ± 4) operations for two databases of sizes 500

(Figure 5(a)) and 100 (Figure 5(b)). As observed, as the level

of concurrency increased initially, the throughput increased.

At low concurrency levels, all protocols had similar

throughputs because there were few conflicts. But as the

concurrency level increased further, conflicts or data

contention intensified and the increase in throughput slowed

down a bit. After a particular point, each protocol reached its

peak performance and started to drop, known as thrashing.

For database size 500 (Figure 5(a)), the highest numbers of

transactions completed in the given 100,000 time unit period

were 3,299 for PPCC, 3,271 for 2PL, and 3,046 for OCC, that

is, a 0.86% and 8.31% improvements over 2PL and OCC,

respectively.

In Figure 5(b), the database size was reduced to 100 items to

observe the performance of these protocols in a high data

contention environment. The highest numbers of completed

transactions were 3,078, 2,857, and 2,417 for PPCC, 2PL, and

OCC, respectively, i.e., an 7.74% and 27.35% higher

throughputs than 2PL and OCC. This indicates that PPCC is

more effective in high data contention environments than in

low data contention environments, which is exactly the

purpose that we design the PPCC for.

Now, we increase the average number of operations in each

transaction to 16 while maintaining the same write probability

0.2. Figure 6 shows the results.

For database size 500 (Figure 6(a)), the highest throughput

obtained by PPCC was 1,605, while 2PL peaked at 1,527 and

OCC at 1,316. PPCC had a 5.11% and 21.96% higher

throughputs than 2PL and OCC. As for database size 100

(Figure 6(b)), the highest throughputs obtained were 1,226,

1,019, and 854 for PPCC, 2PL and OCC, respectively. PPCC

had a 20.31% and 43.56% higher throughputs than 2PL and

OCC.

Fig 7(a): DB size 500

Fig 7(b): DB size 100

Fig 7: Write probability 0.5, Transaction Size 8

In general, as the data contention intensifies, PPCC has

greater improvements over 2PL and OCC in performance.

International Journal of Computer Applications (0975 – 8887)

Volume 155 – No 2, December 2016

12

Fig 8(a): DB size 500

Fig 8(b): DB size 100

Fig 8: Write probability 0.5, Transaction Size 16

 Write probability 0.5

With the write probability 0.5, every item read in a transaction

is later written too in that transaction. Figure 7 shows the

throughput of the two protocols with the average number of

operations set to 8 per transaction.

The highest numbers of transactions completed during the

simulation period (Figure 7(a)) were 3,258 for PPCC, 3,237

for 2PL, and 2,978 for OCC for database size 500, a slight

improvement over 2PL(0.65%), but a much larger

improvement over OCC (9.40%). As the database size

decreased to 100 (Figure 7(b)), the highest numbers of

completed transactions were 2,898, 2,803, and 2,365 for

PPCC, 2PL, and OCC, respectively, that is, a 3.39% and

22.54% higher throughput than 2PL and OCC, due to the

higher data contentions.

Figure 8 shows the throughput of the three protocols with the

number of operations per transaction increased to 16.

The highest numbers of transactions completed during the

simulation period (Figure 8(a)) were 1,490 for PPCC, 1,480

for 2PL, and 1,213 for OCC for database size 500, a 0.68%

and 22.84% improvements over 2PL and OCC. As the

database size decreased to 100 (Figure 8(b)), the highest

numbers of completed transactions were 1,011, 969, 747 for

PPCC, 2PL, and OCC, respectively, that is, a 4.33% and

35.34% higher throughputs than 2PL and OCC.

In very high data contention environments, few transactions

can succeed, as illustrated in Figure 8(b). This indicates that

there is still room for improvement in designing a more

aggressive protocol that allows more concurrent schedule to

complete serializably.

4. CONCLUSIONS
The proposed protocol can resolve the conflicts successfully

to a certain degree. It performed better than 2PL and OCC in

all situations. It has the best performance when conflicts are

not very severe, for example, in situations where transactions

are not very long and write probabilities are not too high.

Further research is still needed for resolving more complex

conflicts while keeping the protocols simple.

5. REFERENCES
[1] R. Agrawal, M. J. Carey, and M. Livny, “Concurrency

Control Performance Modeling: Alternatives and

Implications,” ACM Transactions on Database Systems,

12(4), pp. 609-654, 1987.

[2] P. A. Bernstein, V. Hadzilacos, and N. Goodman. (1987)

Concurrency Control and Recovery in Database Systems.

Addison-Wesley, Reading, MA.

[3] P. Bernstein, N. Goodman, “Timestamp-based Algorithm

for Concurrency Control in Distributed Database

Systems”, Proc. VLDB 1980, pp. 285 – 300.

[4] P. Bernstein, N. Goodman, J. Rothnie, Jr., C.

Papadimitriou, “Analysis of Serializability in SDD-1: a

System of Distributed Databases”, IEEE Transaction on

Software Engineering SE-4:3, 1978, pp. 154 -168.

[5] M. Carey, M. Livny, “Distributed Concurrency Control

Performance: A Study of Algorithms, Distribution, and

Replication”, Proc. 14th VLDB Conference, pp. 13-25,

1988.

[6] S. Ceri, S. Owicki, “On The Use Of Optimistic Methods

for Concurrency Control in Distributed Databases”, Proc.

6th Berkeley Workshop, pp. 117-130, 1982.

[7] P. Eswaran , J. N. Gray , R. A. Lorie , I. L. Traiger,

(1976) The Notions of Consistency and Predicate Locks

in a Database System, Communications of the ACM,

Vol. 19, No. 11, p.624-633.

[8] T. Haerder, (1984) Observations on Optimistic

Concurrency Control Schemes. Information Syst., 9,

111-120.

[9] J. R. Haritsa, , M. J. Carey, and M. Livny, (1990)

Dynamic Real-Time Optimistic Concurrency Control. In

Proc. 11th Real-Time Systems Symp., Lake Buena Vista,

FL,5-7 December, pp. 94-103.

[10] H. Kung, and J. Robinson, (1981) On Optimistic

Methods for Concurrency Control. ACM Trans.

Database Syst., 6, 213-226.

[11] K.W. Lam, K.Y. Lam and S.L. Hung. Distributed Real-

time Optimistic Concurrency Control Protocol. In

Proceedings of International Workshop on Parallel and

Distributed Real-time Systems, Hawaii, pp. 122-125,

IEEE Computer Society Press (1996).

[12] S. Mullender and A. S. Tanenbaum. ”A Distributed File

Service Based on Optimistic Concurrency Control,”

Proc. 10th ACM Symp. On Operating System Principles,

1985, pp. 51-62.

International Journal of Computer Applications (0975 – 8887)

Volume 155 – No 2, December 2016

13

[13] D. Reed, “Implementing Atomic Actions on

Decentralized Data”, ACM Transactions on Computer

Systems, 1,1, pp. 3-23, 1983.

[14] I. Ryu, A. Thomasian, “Performance Evaluation of

Centralized Databases with Optimistic Concurrency

Control”, Performance Eval. U, 3, 195, 211, 1987.

[15] Özgür, U and Alejandro, B. "Exploiting main memory

DBMS features to improve real-time concurrency control

protocols." ACM SIGMOD Record 25.1 (1996): 23-25.

[16] Ren K, Thomson A, Abadi DJ. "Lightweight locking for

main memory database systems". In Proceedings of the

VLDB Endowment 2012; 6(2): 145-156. VLDB

Endowment.https:/doi.org/10.14778/2535568.2448947

[17] Larson PÅ, Blanas S, Diaconu C, Freedman C, Patel JM,

Zwilling M. "High-performance concurrency control

mechanisms for main-memory databases". Proceedings

of the VLDB Endowment 2011; 5(4), 298-

309.https:/doi.org/10.14778/2095686.2095689

[18] Neumann T, Mühlbauer T, Kemper A. Fast serializable

multi-version concurrency control for main-memory

database systems. In Proceedings of the 2015 ACM

SIGMOD International Conference on Management of

Data 2015; 677-689.

ACM.https:/doi.org/10.1145/2723372.2749436

[19] Yu X, Bezerra G, Pavlo A, Devadas S, Stonebraker M.

Staring into the abyss: An evaluation of concurrency

control with one thousand cores. Proceedings of the

VLDB Endowment 2014; 8(3): 209-

220.https:/doi.org/10.14778/2735508.2735511

[20] Jones EP, Abadi DJ, and Madden S. Low overhead

concurrency control for partitioned main memory

databases. In Proceedings of the 2010 ACM SIGMOD

International Conference on Management of data 2010;

603-614. ACM.https:/doi.org/10.1145/1807167.1807233

IJCATM : www.ijcaonline.org

