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ABSTRACT  
In this paper, we propose a concurrency control protocol, 

called the Prudent-Precedence Concurrency Control (PPCC) 

protocol, for high data contention main memory databases. 

PPCC is prudently more aggressive in permitting more 

serializable schedules than two-phase locking. It maintains a 

restricted precedence among conflicting transactions and 

commits the transactions according to the serialization order 

established in the executions. A detailed simulation model has 

been constructed and extensive experiments have been 

conducted to evaluate the performance of the proposed 

approach. The results demonstrate that the proposed algorithm 

outperforms the two-phase locking in all ranges of system 

workload. 

Keywords 
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Serialization Graph, 2PL 

1. INTRODUCTION 
Most database management systems are designed assuming 

that data would reside on a hard disk. As hardware technology 

advances, computers nowadays can easily accommodate tens 

or even hundreds of gigabytes of memory with which to 

perform operations. A significant amount of data can be held 

in main memory without severe constraints on the memory 

size. Thus, the use of main memory databases is becoming an 

increasingly more realistic option for many applications. In 

light of this, database researchers can exploit main memory 

database features to improve real-time concurrency control 

protocols [15]. 

During the past few decades, there has been much research on 

currency control mechanisms in databases. The two-phase 

locking (2PL) [7], timestamping [3, 4, 13], and optimistic 

algorithms [10] represent three fundamentally different 

approaches and have been most widely studied. Many other 

algorithms are developed based on these or combinations of 

these basic algorithms. Bernstein et al. [2] contains 

comprehensive discussions on various concurrency control 

protocols. 

Optimistic concurrency controls (OCCs) have attracted a lot 

of attention in distributed and real time databases [8, 9, 11, 12, 

5, 6] due to its simplicity and dead-lock free nature. 

Transactions are allowed to proceed without hindrance until at 

the end - the verification phase. However, as the resource and 

data contention intensifies, the number of restarts can increase 

dramatically, and OCCs may perform much worse than 2PL 

[1]. As for the timestamp ordering methods, they are generally 

more appropriate for distributed environments with short 

transactions, but perform poorly otherwise [14]. 2PL and its 

variants have emerged as the winner in the competition of 

concurrency control in the conventional databases [1, 5] and 

have been implemented in all commercial databases.   

Recent advances in wireless communication and cloud 

computing technology have made accesses to databases much 

easier and more convenient. Conventional concurrency 

control protocols face a stern challenge of increased data 

contentions, resulted from greater numbers of concurrent 

transactions. Although two-phase locking (2PL) [7] has been 

very effective in conventional applications, its 

conservativeness in handling conflicts can result in 

unnecessary blocks and aborts, and deter the transactions in 

high data-contention environment.  

Recently, there has been some research on concurrency 

control in main memory databases [16, 17, 18, 19, 20]. These 

works mainly focused on reducing the overheads in 

implementing concurrency control mechanisms, such as 2PL. 

In this paper, we propose a concurrency control protocol, 

called prudent-precedence concurrency control (PPCC), for 

high data contention main memory databases. The idea comes 

from the observations that some conflicting transactions need 

not be blocked and may still be able to complete serializably. 

This observation leads to a design that permits higher 

concurrency levels than the 2PL. In this research, we design a 

protocol that is prudently more aggressive than 2PL, 

permitting some conflicting operations to proceed without 

blocking. We prove the correctness of the proposed protocol 

and perform simulations to examine its performance. The 

simulation results verify that the new protocol performs better 

than the 2PL and OCC at high data contention main memory 

databases. This method is also simple and easy to implement. 

The rest of this paper is organized as follows. In Section 2, we 

introduce the prudent-precedence concurrency control 

protocol. In Section 3, we report on the performance of our 

protocol. Conclusions are presented in Section 4. 
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2. THE PRUDENT-PRECEDENCE 

CONCURRENCY CONTROL 
To avoid rollback and cascading rollback, hereafter we 

assume all protocols are strict protocols, that is, all writes are 

performed in the private workspaces and will not be written to 

the database until the transactions have committed.  

2.1 Observations 
Our idea comes from the observation that some conflicting 

operations need not be blocked and they may still be able to 

complete serializably. Therefore, we attempt to be prudently 

more aggressive than 2PL to see if the rationalized 

aggressiveness can pay off. In the following, we illustrate the 

observations by examples.  

Example 1. Read-after-Write (RAW). The first few operations 

of transactions T1 and T2 are described as follows: 

T1: R1(b) W1(a) ...,            T2: R2(a) W2(e) ..., 

whereRi(x) denotes that transaction i reads item x, and Wj(y) 

denotes that transaction j writes item y.  Consider the 

following schedule: 

               R1(b) W1(a) R2(a) ... 

There is a read-after-write (RAW) conflict on data item “a” 

because transaction T2 tries to read “a” (i.e., R2(a)) after T1 

writes “a” (i.e., W1(a)). In 2PL, T2 will be blocked until T1 

commits or aborts. T2 can also be killed if it is blocked for too 

long, as it may have involved in a deadlocked situation. 

If we are a little more aggressive and allow T2 to read “a”, T2 

will read the old value of “a”, not the new value of “a” written 

by T1 (i.e., W1(a)), due to the strict protocol. Consequently, a 

read-after-write conflict, if not blocked, yields a precedence, 

that is, T2 precedes T1, denoted as T2 -> T1. We attempt to 

record the precedence to let the conflicting operations 

proceed. 

Example 2. Write-after-Read (WAR). Consider the same 

transactions with a different schedule as follows. 

R1(b) R2(a) W1(a) ... 

Similarly, W1(a) can be allowed to proceed when it tries to 

write “a” after T2 has read “a” (R2(a)). If so, the write-after-

read (WAR) conflict on item “a” produces a precedence T2 -> 

T1 in the strict protocol. Note that T2 again reads “a” before 

T1’s W1(a) becomes effective later in the database.  

Precedence between two transactions is established when 

there is a read-after-write or write-after-read conflict. Note 

that a write-after-write conflict does not impose precedence 

between the transactions unless that the item is also read by 

one of the transactions, in which case precedence will be 

established through the read-after-write or the write-after-read 

conflicts. 

Note that either in a read-after-write or write-after read 

conflict, the transaction reads the item always precedes the 

transaction that writes that item due to the strict protocol.  

2.2 Prudent Precedence 
To allow reads to precede writes (in RAW) and writes to be 

preceded by reads (in WAR) without any control can yield a 

complex precedence graph. Detecting cycles in a complex 

precedence graph to avoid possible non-serializability can be 

quite time consuming and defeat the purpose of the potentially 

added serializability. Here, we present a rule, called the 

Prudent Precedence Rule, to simplify the graph so that the 

resulting graph has no cycles and thus automatically 

guarantees serializability. 

Let G(V, E) be the precedence graph for a set of concurrently 

running transactions in system, where V is a set of vertices 

T1, T2, …, Tn, denoting the transactions in the system, and E 

is a set of directed edges between transactions, denoting the 

precedence among them. An arc is drawn from Ti to Tj, Ti -

>Tj ,
jinji  ,,1

,if Ti read an item written by Tj, 

which has not committed yet, or Tj wrote an item (in its 

workspace) that has been read earlier by Ti. 

Transactions in the system can be classified into 3 classes. A 

transaction that has not executed any conflicting operations is 

called an independent transaction. Once a transaction has 

executed its first conflicting operation, it becomes a preceding 

or preceded transaction, depending upon whether it precedes 

or is preceded by another transaction. To prevent the 

precedence graph from growing rampantly, once a transaction 

has become a preceding (or preceded) transaction, it shall 

remain a preceding (or a preceded) transaction for its entire 

life time. 

Let Ti and Tj be two transactions that involve in a conflict 

operation. Regardless the conflict being RAW or WAR, let Ti 

be the transaction that performs a read on the item, while Tj 

the transaction that performs a write on that item. The conflict 

operation is allowed to proceed only if the following rule, 

called the Prudent Precedence Rule, is satisfied. 

Preceding
Transactions

Preceded
Transactions

T6 T1 T2

T7 T5T4T3

 

Fig 1: The Precedence Graph 

2.2.1 Prudent Precedence Rule: 
Ti is allowed to precede Tj or Tj is allowed to be preceded by 

Ti if  

(i) Ti has not been preceded by any transaction and  

(ii) Tj has not preceded any other transaction. 

We shall use Figure 1 to explain the properties of the resulting 

precedence graph for transactions following the Prudent 

Precedence Rule. It can be observed that the first condition of 

the rule (denoted by (i) in the rule) states that a preceded 

transaction cannot precede any transaction, as illustrated by 

the red arcs, marked with x, T7 to T1 and T3 to T4, in the 

figure, while the second condition (denoted (ii)) states that a 

preceding transaction cannot be preceded, as illustrated by the 

red arcs, marked with x, T1 to T2 and T7 to T1, in the figure. 

Since there cannot be any arcs between nodes in the same 

class and there is no arc from the preceded class to the 

preceding class, the graph cannot have a cycle. 

2.3. Prudent Precedence Protocol 
Each transaction is executed in three phases: read, wait-to-

commit, and commit phases. In the read phase, transactions 

proceed following the precedence rule. Once a transaction 

finishes all its operations, it enters the wait-to-commit phase, 
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waiting for its turn to commit following the precedence 

established in the read phase. Transactions release resources 

in the commit phase.  In the following, we describe in details 

each phase. 

2.3.1. Read Phase 
A transaction executing a conflict operation with another 

transaction will be allowed to proceed if it satisfies the 

prudent precedence rules; otherwise, it will be either blocked 

or aborted. The transaction that violates the precedence rules 

is hereafter called a violating transaction. 

In the following, we show a situation with a violating 

transaction. 

Example 3. There are three transactions.  Their operations and 

schedule are as follows. 

T1: R1(b) W1(a) ... 

T2: R2(a) W2(e) ... 

T3: R3(e) … 

Schedule: R1 (b) W1(a) R2(a) W2(e) R3(e) 

T2 -> T1 is established when T2 reads “a”, and T2 becomes a 

preceding transaction. Later when T3 tries to read “e” (R3(e)), 

the operation is suspended (denoted by R3(e) in the schedule) 

because T2, a preceding transaction, cannot be preceded. 

Thus, T3 becomes a violating transaction and needs to be 

blocked or aborted.  

The simplest strategy to handle a violating transaction, such as 

T3, is to abort it.  Unfortunately, aborts may waste the efforts 

already spent. Therefore, we prefer blocking with the hope 

that the violation may later resolve and the violating 

transaction T3 can still complete later. For example, T3 is 

blocked, i.e., R3(e) is postponed; if T2 eventually commits, 

then T3 can resume and read the new value of “e” produced 

by T2. The read/write with the Prudent Precedence Rule is 

summarized in Figure 2. 

 

 

 

  

 

 

 

 

Fig 2: Read/Write with Prudent Precedence Rule 

Let us elaborate on the blocking of a violating transaction a 

bit. By allowing a violating transaction to block, a transaction 

can now either be in an active (or running) state or a blocked 

state. Although blocking can increase the survival rate of a 

violating transaction, it can also hold data items accessed by 

the violating transaction unused for extended periods. 

Therefore, a time quantum must be set up to limit the amount 

of time a violating transaction can wait (block itself), just like 

the 2PL. Once the time quantum expires, the blocked 

(violating) transaction will be aborted to avoid building a long 

chain of blocked transactions.  

Theorem 1. The precedence graph generated by transactions 

following the Prudent Precedence Rule is acyclic. 

Proof. As explained in Section 2.2, there cannot be a cycle in 

the precedence graph following the Prudent Precedence Rule.  

As for violating transactions, they will either abort by 

timeouts or resume executions if the violation disappear due 

to the aborts or commits of the other transactions with which 

the transactions conflict. In either case, it does not generate 

any arcs that violate the Prudent Precedence Rule, and the 

graph remains acyclic. 

2.3.2 Wait-to-Commit Phase 
Once a transaction finishes its read phase, it enters the wait-to-

commit phase, waiting for its turn to commit because 

transactions may finish the read phase out of the precedence 

order established.   

First, each transaction acquires exclusive locks on those items 

it has written in the read phase to avoid building further 

dependencies. Any transaction in the read phase wishes to 

access a locked item shall be blocked. If such a blocked 

transaction already preceded a wait-to-commit transaction, it 

shall be aborted immediately in order not to produce a circular 

wait, that is, wait-to-commit transactions wait for their 

preceding blocked transactions to complete or vice versa.  

Otherwise, the blocked transaction remains blocked until the 

locked item is unlocked. Figure 3 shows the locking when a 

transaction accesses a locked item. 

A transaction can proceed to the commit phase if no 

transactions, either in the read or the wait-to-commit phase, 

precede it. Otherwise, it has to wait until all its preceding 

transactions commit.  

 

 

 

 

 

 
 

Fig 3: Accessing Locked Items 

2.3.3 Commit Phase 
As soon as a transaction enters the commit phase, it flushes 

updated items to the database, releases the exclusive locks on 

data items obtained in the wait-to-commit phase, and also 

releases transactions blocked by it due to violations of the 

precedence rule. Figure 4 summarizes the wait-to-commit and 

the commit phases. 

 

Fig 4: Wait-to-Commit and Commit Phases 

 

/* when a trans. Ti reaches its wait-to-commit phase */ 

Wait-to-Commit Phase: 

Lock items written by Ti; 

Ti waits until all preceding transactions have committed; 

Commit Phase: 

  Flush updated items to database; 

 Release locks; 

 Release transactions blocked by Ti; 

if there is a RAW or WAR conflict 

{        

if the prudent precedence rule is satisfied,  

proceed with the operation; 

else 

abort or block; 

} /* Ti is accessing an item x 

if x is locked  

 {          if x is locked by a transaction preceded by Ti 

abortTi; 

else 

blockTi (until x is unlocked); 

  } 

read/write with the Prudent Precedence Rule (Figure 2); 
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Table 1:  Parameter Settings 

Database size 100, 500 items 

Average transaction size 8± 4,  16±4 operations 

Write probability 20%, 50% 

Num. of CPUs 4, 16 

CPU burst 15±5 time units 

Example 4. Suppose that we have the following transactions, 

T1, T2: 

T1: R1(a), R1(b) 

T2: R2(b), W2(a), W2(b) 

Assume that the following is the schedule: 

R1 (a), R2(b), W2(a), W2(b),  [wc2], R1 (b) abort1, wc2,c2 

When T2 writes “a” (W2(a)), T1 ->T2 is established, due to 

an earlier R1(a). So, when T2 reaches its wait-to-commit 

phase, denoted by wc2, it locks both “a” and “b”. However, 

T2 has to wait until T1 has committed, denoted by [wc2], due 

to the established precedence T1 ->T2. Later, when T1 tries to 

read “b”, it is aborted, as indicated by R1(b) and abort1, 

because “b” is locked by T2, as stipulated in Figure 3.  Now 

no transaction is ahead of T2, so it can finish its wait phase 

(wc2) and commits (c2). 

2.4 Serializability 
A history is a partial order of the operations that represents the 

execution of a set of transactions [5]. Let H denote a history. 

The serialization graph for H, denoted by SGH, is a directed 

graph whose nodes are committed transactions in H and 

whose edges are TiTj (i≠j) if there exists a Ti’s operation 

precedes and conflicts with a Tj’s operation in H. To prove 

that a history H is serializable, we only have to prove that 

SGH is acyclic.  

Theorem 2. Every history generated by the Prudent 

Precedence Protocol is serializable. 

Proof. The precedence graph is acyclic as proved in Theorem 

1. The wait-to-commit phase enforces the order established in 

the precedence graph to commit. So, the serialization graph 

has no cycle and is serializable. 

3. SIMULATION RESULTS 
This section reports the performance evaluation of 2PL, OCC, 

and the Prudent Precedence Concurrency Control (PPCC) by 

simulations. 

3.1 Simulation Model 
We have implemented 2PL, OCC and PPCC in a simulation 

model that is similar to [1]. Each transaction has a randomized 

sequence of read and write operations, with each of them 

separated by a random period of a CPU burst of 15±5 time 

units on average. All writes are performed on items that have 

already been read in the same transactions. All writes are 

stored in private work space and will only be written to the 

database after commits following the strict protocol.  

3.2 Parameter Settings    
Our goal is observe the performance of the algorithms under 

data contentions. The write operations cause conflicts and thus 

the data contentions. Therefore, we shall experiment with 

different write probabilities, 20% (moderate), and 50% (the 

highest), to observe how the two algorithms adapt to conflicts. 

Other factors that affect the data contentions are database 

sizes and transaction sizes.  Therefore, two database sizes of 

100 and 500 items, and two transaction sizes of averaged 8 

and 16 operations will be used in the simulation as shown in 

Table 1. 

Transactions may be blocked in 2PL, OCC and PPCC to avoid 

generating cycles in the precedence graphs. Blocked 

transactions are aborted if they have been blocked longer than 

specified periods. We have experimented with several block 

periods and select the best ones to use in the simulations. 

The primary performance metric is the system throughput, 

which is the number of transactions committed during the 

period of the simulation. This is an overall performance 

metric.  

3.3 Experimental Results    
In this section, we report the simulation results on the two 

protocols based on the above setups.  

3.3.1 Data Contention  
As mentioned earlier, the data contention is mainly caused by 

the write operations. If transactions have no writes, there will 

be no conflicts and all three protocols will have identical 

performance. 

Given the same write probability, the greater the transaction 

sizes, the greater the numbers of write operations are in the 

system, and thus the higher the data contentions are. On the 

other hand, given the same number of write operations, the 

smaller the database size, the greater the chance of conflicts, 

and thus the higher the data contentions are. Here, we will see 

how these factors affect the performance of the three 

protocols. 

 
Fig 5(a): DB size 500 

 
Fig 5(b): DB size 100 

Fig 5: Write probability 0.2, Transaction Size 8 
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We experimented with two database sizes, 100 items and 500 

items, and two transaction sizes, averaged 8 and 16 operations 

in each transaction. The experimental results in this subsection 

were obtained with the setup of 4 CPUs. The simulation time 

for each experiment is 100,000 time units. 

Fig 6(a): DB size 500 

 
Fig 6(b): DB size 100 

Fig 6: Write probability 0.2, Transaction Size 16 

 Write probability 0.2 

Given the write probability 0.2, each transaction has on 

average one write operation for every four reads. 

Figures 5 shows the performance for transactions with 

averaged 8 (8 ± 4) operations for two databases of sizes 500 

(Figure 5(a)) and 100 (Figure 5(b)). As observed, as the level 

of concurrency increased initially, the throughput increased. 

At low concurrency levels, all protocols had similar 

throughputs because there were few conflicts. But as the 

concurrency level increased further, conflicts or data 

contention intensified and the increase in throughput slowed 

down a bit. After a particular point, each protocol reached its 

peak performance and started to drop, known as thrashing.  

For database size 500 (Figure 5(a)), the highest numbers of 

transactions completed in the given 100,000 time unit period 

were 3,299 for PPCC, 3,271 for 2PL, and 3,046 for OCC, that 

is, a 0.86% and 8.31% improvements over 2PL and OCC, 

respectively. 

In Figure 5(b), the database size was reduced to 100 items to 

observe the performance of these protocols in a high data 

contention environment. The highest numbers of completed 

transactions were 3,078, 2,857, and 2,417 for PPCC, 2PL, and 

OCC, respectively, i.e., an 7.74% and 27.35% higher 

throughputs than 2PL and OCC. This indicates that PPCC is 

more effective in high data contention environments than in 

low data contention environments, which is exactly the 

purpose that we design the PPCC for. 

Now, we increase the average number of operations in each 

transaction to 16 while maintaining the same write probability 

0.2.  Figure 6 shows the results. 

For database size 500 (Figure 6(a)), the highest throughput 

obtained by PPCC was 1,605, while 2PL peaked at 1,527 and 

OCC at 1,316. PPCC had a 5.11% and 21.96% higher 

throughputs than 2PL and OCC. As for database size 100 

(Figure 6(b)), the highest throughputs obtained were 1,226, 

1,019, and 854 for PPCC, 2PL and OCC, respectively. PPCC 

had a 20.31% and 43.56% higher throughputs than 2PL and 

OCC. 

 

Fig 7(a): DB size 500 

 

Fig 7(b): DB size 100 

Fig 7: Write probability 0.5, Transaction Size 8 

In general, as the data contention intensifies, PPCC has 

greater improvements over 2PL and OCC in performance. 
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Fig 8(a): DB size 500 

 

Fig 8(b): DB size 100 

Fig 8: Write probability 0.5, Transaction Size 16 

 Write probability 0.5 

With the write probability 0.5, every item read in a transaction 

is later written too in that transaction. Figure 7 shows the 

throughput of the two protocols with the average number of 

operations set to 8 per transaction. 

The highest numbers of transactions completed during the 

simulation period (Figure 7(a)) were 3,258 for PPCC, 3,237 

for 2PL, and 2,978 for OCC for database size 500, a slight 

improvement over 2PL(0.65%), but  a much larger 

improvement over OCC (9.40%). As the database size 

decreased to 100 (Figure 7(b)), the highest numbers of 

completed transactions were 2,898, 2,803, and 2,365 for 

PPCC, 2PL, and OCC, respectively, that is, a 3.39% and 

22.54% higher throughput than 2PL and OCC, due to the 

higher data contentions. 

Figure 8 shows the throughput of the three protocols with the 

number of operations per transaction increased to 16. 

The highest numbers of transactions completed during the 

simulation period (Figure 8(a)) were 1,490 for PPCC, 1,480 

for 2PL, and 1,213 for OCC for database size 500, a 0.68% 

and 22.84% improvements over 2PL and OCC. As the 

database size decreased to 100 (Figure 8(b)), the highest 

numbers of completed transactions were 1,011, 969, 747 for 

PPCC, 2PL,  and OCC, respectively, that is, a 4.33% and 

35.34% higher throughputs than 2PL and OCC. 

In very high data contention environments, few transactions 

can succeed, as illustrated in Figure 8(b). This indicates that 

there is still room for improvement in designing a more 

aggressive protocol that allows more concurrent schedule to 

complete serializably. 

4. CONCLUSIONS 
The proposed protocol can resolve the conflicts successfully 

to a certain degree. It performed better than 2PL and OCC in 

all situations. It has the best performance when conflicts are 

not very severe, for example, in situations where transactions 

are not very long and write probabilities are not too high. 

Further research is still needed for resolving more complex 

conflicts while keeping the protocols simple. 
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