
International Journal of Computer Applications (0975 – 8887)

Volume 155 – No 7, December 2016

35

Computed Summaries of Android Bluetooth Library:

Data Leakages Detection

Kevin A. Nyakundi
School of Computing and Informatics

University of Nairobi, Kenya

Elisha Abade
School of Computing and Informatics

University of Nairobi, Kenya

ABSTRACT

Static analysis has been used for assessing android

applications for possible data leaks both known and unknown.

Due to large size of applications and the libraries that they

depend on, it’s expensive to perform whole program analysis

which leads to either ignoring or making assumptions of the

effect of the library that puts into question the soundness of

the results. Missed paths are generated that lead to false

alarms and missed paths that in return allow possible leaks

evade detection. The study computed Android Bluetooth

Library 2.1 summaries that were successful used to analyze

twenty target applications and no possible data leak was

detected. Exploratory approach was used to answer the

research questions and lastly java-call graph suite of programs

was used to construct a call graph of the library and Dexter

android static tool for applications.

General Terms

Android Applications

Keywords

Static Analysis, data leakages, Android Libraries

1. INTRODUCTION
Static analysis has been used to detect possible data leakage in

android applications According to [7] static analysis is an

attempt to analyze an application before execution for

possible data leaks. It involves approximations of the possible

behavior of a program.

Despite static analysis being the de-facto technique that can

exhaustively examine all data flows and detect possible data

leakages in android applications, it generates false alarms and

missed alarms due to its over approximation and requires

minutes or even hours to examine a real application thus

making it difficult to capture all usage patterns, enumerate or

yield usable results

A lot of research work has been done with regard to making

static analysis efficient and applicable in android data leaks

detection. According to [17] due to inherent undecided ability

nature of determining code behaviors, any static analysis

method must make a tradeoff between computing time and

precision of results. In this case a decision has to be made

whether to perform a whole program analysis or partial where

the effect of the libraries the applications depend on is ignored

or assumptions made without analyzing them.

Solutions have been centered in analyzing the android APIs

and defining sensitive sources of data, some concentrating on

mapping APIs and permissions they require which runs the

risk of missed sources and sinks of sensitive data with a goal

of reducing computational time and improving precision [2, 8,

15] produced a sound partial call graph but didn’t analyze the

library based on separate compilation assumption which left

the critical questions on the role of the libraries unanswered.

What code is actually called when a method is invoked and

which implementers of that class are possible candidates and

if among them there is a malicious one that will fetch data and

send it to the attacker .The study answers this questions and

evaluates the hypothesis that A complete analysis and

computation of library summaries implemented by android

application can lead to a highly precise static analysis without

knowledge of the code that will use them later. Android

Bluetooth Library 2.1 was considered for this study.

2. RELATED WORK.

2.1 Placeholder library
In this study they did build up on their previous work [2]

where they generated a partial call graph using CGC tool

based on separate compilation assumption [1]. In this study

they evaluated the possibility of integrating the separate

compilation assumption into whole program analysis

frameworks. They presented Averroes tool that generated a

placeholder library that replaces the original library that has

the constraints that are derived from separate compilation

assumption. It assumes that any code of the library that is not

analyzed is capable of anything .The placeholder library has

three kinds of classes; Referenced library classes, concrete

implementation classes and Averroes library class. Averroes

performs whole program analysis by generating a sound and a

precise call graph without analyzing the library and instead

generates a placeholder library that is smaller as compared to

the library.

2.2 Separate compilation assumption
In their study they acknowledge the most common approach

of building a call graph for a whole program is to ignore all

the effects of the library code and all the calls that it makes to

the application [2]. In generating call graphs in static analysis

of android applications for possible data leaks, the possibility

of missed paths and misused library code by malicious

developers or knowingly or unknowingly use of

advertisement libraries by developers exposing users private

data to advertisement firms. Having this in mind makes that

common approach unsound and unusable. In solving this they

developed a CGC tool that generates a sound call graph that

overestimates the set of target at each call site in the analysis

scope and a set of reachable for the application part of a

program but does not analyze the library code instead makes

assumptions about the library code by generating a summary

node that represents methods in the library o and invoking

separate compilation assumption argument, where they argue

that the division between an application and the library it uses

is not arbitrary which they also acknowledge that if the

analysis scope was a set of classes then the call graph would

be very imprecise. They concluded by saying that separate

compilation assumption is sufficient to construct a precise call

graph but considering the possibility of call backs there is

need to know which code is called and possible

International Journal of Computer Applications (0975 – 8887)

Volume 155 – No 7, December 2016

36

implementations, they also recommend definition of multiple

libraries and

Their dependencies with each and own library points to set

.This study leveraged on this study to support its hypothesis.

2.3 Unsoundness of android Call graph

generation tools analysis
Reviewed the unsoundness of call graphs in android static

analysis tools where they define a sound call graph as one

with all methods of a client application and how critical it’s

for accuracy of analysis results and in the case of static

analysis of android applications for possible data leaks

accurate results are crucial [16] .In this study they proposed

and implemented a novel approach that automatically

identifies unsoundness, where they evaluated dynamic call

graph against a static call graph. They mapped edges of the

two graphs and all methods present in a dynamic call graph

and missing in static one resulted to it being classified as

unsound.

3. METHODOLOGY
The study proposes computation of library summaries and use

of the computed summaries to analyze target application. The

diagrams below represent the conceptual framework of the

solution and experiment set ups.Java-call graph suite of

programs was used to analyze the library while Dexter

android static analysis tool was used to analyze target

applications

3.1 Computation of summaries of android

libraries
The goal is to find out which code is called when a method is

invoked, the possible implementation of classes, whether

there is an implementation that can led to data being sent to

hackers or to unsecure storage space where it can be accessed

by malicious applications and the possibility of analyzing a

library without knowledge of the client application that will

use it later. Lastly the evaluation of computed summaries with

target application

3.2 Conceptual framework

Figure 1.Conceptual Framework

Computational cost, Complexity, Accuracy are independent

variables, static analysis is the dependent variable libraries are

moderating variable

For this study we moderated Libraries without constraints on

cost, complexity and improving accuracy .A more precise

static analysis which in the context of android data leakages

means a sound analysis of possible data leaks

3.3 Experiment set up
3.3.1 Java –call graph or javacg set up.

• After installing maven

• Run mvn install this produces a target directory with

jars

Javacg-0.1-SNAPSHOT.jar

Javacg-0.1-SNAPSHOT.jar for static

Javacg-0.1-SNAPSHOT.jar for dynamic

• Run javacg static from the command prompt.

Java –jar javacg-0.1-SNAPSHOT-static.jar

AndroidBluetoothLibrary.jar

3.3.2 Steps of using Dexter
1. Create an Account

2. Confirmation Mail link

3. Create a new project

4. Upload the Ask you wish to analyze

5. Wait until the process is done and you will have

your results ready

4. RESULTS
RQ 1. What code is called when a method is invoked?

M:

it.gerdavax.android.bluetooth.LocalBluetoothDevice$Bluetoot

hBroadcastReceiver: onReceive (M) java.lang.String: equals.

Is the output from the generated results of call site and

reachable methods in this case we have a method(onReceive)

from (LocalBluetoothDevice)implementing

(BluetoothBroadcastReceiver) invoking method equals of

class String from library lang.

When method equals is invoked the following code is called

Public Boolean equals (Object anObject) {

if (this == anObject) {

 return true;

 }

if (anObject instanceof String) {String anotherString =

(String) anObject;

 int n = count;

 if (n == anotherString.count) {

char v1 [] = value char v2 [] = anotherString.value;

 int i = offset;

int j = anotherString.offset;

 while (n-- != 0) {

 if (v1[i++] != v2[j++])

 return false;

 }

 return true;

International Journal of Computer Applications (0975 – 8887)

Volume 155 – No 7, December 2016

37

 }

 }

 return false;

 }

It returns true or false

RQ 2.which are the possible implementers of a class are

possible candidates?

a).BluetoothSocket:connect()

.getInputStream(),getConnectionType(),getInputStream,getRe

moteDevice(),getOutputStream(),isConnected(),Close().

b)RemoteBluetoothDevice:getName(),getAddress(),getRSSI()

,getDeviceClass(),pair(String

s),isPaired(),setPin(),BluetoothSocket openSocket (int i)

throws

Exception,setListener(RemoteBluetoothDeviceListener

remotebluetoothdeviceListener)

c).RemoteBluetoothDeviceListener: paired () and

pinRequested ().

d).LocalBluetoothDeviceListener

:enabled(),disabled(),scanStarted(),scanCompleted(ArrayList

arrayList)

RQ5. Is there an implentation that can lead to data being sent

to an attacker?

Connect(),getConnectionType(),getOutputstream(),getRemote

BluetoothDevice(),getInputstream(),getName(),getAddress(),g

etRSSI(),setPin(),pair(Strings),pair(),isEnabled(),getPort(),get

Manufacturer(),setPin().

RQ6. How applicable are these computed summaries in

analyzing target applications?

The applications without Bluetooth permissions are not

considered for further analysis based on the computed

summaries and in this case getAddress() was considered as it

gets MAC address of the adapter and from previous studies its

grouped as private users data.

Figure 2.Analysis of applications based on permissions

Table 1.Results of analyzed applications

Number of

Applications

analyzed

Number of

identified

Data Leaks

Recommendations

5 0 Further Analysis of

Fitbit Application

4.1 Summary of the results
Java Call graph suite of programs was used to construct a call

graph of the android Bluetooth library 2.1.The generated Call

graphs aided this study to find out the code that is actually

Called when a method is invoked.

Figure 3. Computed Summaries of Libraries

For the possible candidates of a class, the main source code

was considered with the aid of the generated call graph, where

interfaces were considered. Class connect implements

BluetoothScoket, Class <init> implements

remoteBluetoothDevice, private class BluetoothSocketImpl

implements BluetoothSocket, private class

RemoteBluetoothDeviceImpl implements

RemoteBluetoothDevice.

International Journal of Computer Applications (0975 – 8887)

Volume 155 – No 7, December 2016

38

The results of whether there is an implementation that results

to user’s data being sent to hackers or misuse that will result

data being leaked through the external storage where no

protection measures are implemented thus can be picked by

malicious applications.

In this case implementations were classified into two groups

either as sources or sinks as defined in previous studies like

[13].

They aided the computation of summaries and also

consideration of whether the methods require permissions to

access data or open sockets, use Bluetooth, read and write to

external storage, internet permissions which are useful to

know whether an application sends data to external servers.

Analysis of target applications was done, the first step was to

find out whether among the twenty applications that were

selected for analysis have Bluetooth permission if not they

were not considered for further analysis and an assumption

was made that they do not have ability to access Bluetooth

either through shared id’s or through other applications. After

this consideration only 5 applications were analyzed with

computed summaries of the library and getAddress() was

considered as the private users data that can be possibly be

obtained from the users device and sent out without users

permission either through internet Urls or to a file in the

external storage. The getOutputStream (), getInputStream()

were also considered whether the data they obtain is sent out

through urls or to the external storage, also whether they read

data from the external storage and send it out to external

servers by opening sockets through connect().From the

findings none of the analyzed applications leak data through

the misuse of android Bluetooth library though the study

recommends further analysis on the Fitbit application

considering it reads data to and from the external storage

5. DISCUSSION
In support of this study, findings and hypothesis we

considered what was done by [2] which this study is partly an

extension of what they did. In their study they produced a

partial call graph that soundly over approximated the set of

targets of every call site during static analysis scope and a set

of reachable functions in the analysis scope. They produced a

node of the libraries and avoided analyzing them. They based

their study on the separate compilation assumption from

which they deduced specific restrictions on how the library

interacts with the application using it. The inability of the

library calling a method, accessing a field or instantiating a

class of an application of which the library author has no

knowledge of the method, field or class ,considering that the

library can be compiled without knowledge of the

application.

This supports the study’s argument that it is possible to

analyze the application separately and compute summaries of

possible use without knowledge of the application that will

use it. In their efforts to ensure they generate a sound call

graph the computation cost, accuracy and complexity has to

be considered and this informed their decision to moderate the

library aspect and a void the whole program call graph which

is considered expensive and armed with this in mind .The

study further moderates the aspect of the library by computing

summaries based on answering which code is actual called

when a method is invoked and classifying them according to

sensitive nature by finding out which classes are implemented

and the possibility of having any of their implementation

leading to possible data leakage in android applications that

implement them. Thus with these summaries and the code that

is actually called will improve the preciseness of static

analysis without any strain on the cost and complexity

because the summaries will be readily available and can be

used to analyze applications that implement them.

Code extract from [2].

Public class Main{

Public static void main(){

MyHashMap<String,String>myHashMap=new

MyHashMap<String,String>();

System.out.println(myHashMap);

}}

6. CONCLUSION
The findings report the possibility of being able to perform a

complete analysis of an android libraries without having

knowledge of the code or program that will use it later that

will lead to precise static analysis considering that it’s

possible to extract what code is called when a method is

invoked, possible implementations of classes and lastly

computing summaries according to their sensitivity .Lastly

it’s not practically possible to achieve 100% preciseness and

thus preciseness is a continuous process

7. FUTURE WORKS
Considering the importance of a precise static analysis in

android data leakages and the role of computed summaries of

the libraries that are used by these applications.

• The study suggests more summaries of other

libraries to be computed then validated by

experimental studies with target applications and

compared with other techniques.

• The study also suggests new call graph algorithms

for large java libraries like JDK and android SDK.

• The study suggests a repeat of this study using soot

framework and comparing the findings with this

study.

• The study suggests computation of summaries of

the recent versions of android Bluetooth library and

consideration of evaluation of computed summaries

with malicious applications.

8. ACKNOWLEDGMENTS
Sincerely thank the Dexter labs organization for providing an

open source android static analysis tool that we used for

analyzing the applications and lastly the GitHub specifically

Georgious Gousious for his java call graph: java call graph

utilities suite that we used to analyze the android Bluetooth

library

9. REFERENCES
[1].Ali, K. and Lhoták, O., 2013, July. Averroes: Whole-

program analysis without the whole program.

In European Conference on Object-Oriented

Programming (pp. 378-400). Springer Berlin Heidelberg.

[2].Ali, K. and Lhoták, O., 2012, June. Application-only call

graph construction. In European Conference on Object-

Oriented Programming (pp. 688-712). Springer Berlin

Heidelberg.

[3].Yan, D., Xu, G. and Rountev, A., 2012, June. Rethinking

soot for summary-based whole-program analysis.

International Journal of Computer Applications (0975 – 8887)

Volume 155 – No 7, December 2016

39

In Proceedings of the ACM SIGPLAN International

Workshop on State of the Art in Java Program

analysis (pp. 9-14). ACM.

[4].Ali, K., 2014. The Separate Compilation

Assumption (Doctoral dissertation, University of

Waterloo).

[5.]Allen, N., Krishnan, P. and Scholz, B., 2015, June.

Combining type-analysis with points-to analysis for

analyzing Java library source-code. InProceedings of the

4th ACM SIGPLAN International Workshop on State Of

the Art in Program Analysis (pp. 13-18). ACM.

[6].Smaragdakis, Y., Balatsouras, G., Kastrinis, G. and

Bravenboer, M., 2015, November. More sound static

handling of Java reflection. In Asian Symposium on

Programming Languages and Systems (pp. 485-503).

Springer International Publishing.

[7].Gordon, M.I., Kim, D., Perkins, J.H., Gilham, L., Nguyen,

N. and Rinard, M.C., 2015. Information Flow Analysis

of Android Applications in DroidSafe. In NDSS.

[8].Gibler, C., Crussell, J., Erickson, J. and Chen, H., 2012,

June. AndroidLeaks: automatically detecting potential

privacy leaks in android applications on a large scale.

In International Conference on Trust and Trustworthy

Computing (pp. 291-307). Springer Berlin Heidelberg.

[9].Payet, É. and Spoto, F., 2012. Static analysis of Android

programs.Information and Software Technology, 54(11),

pp.1192-1201.

[10].Gibler, C., Crussell, J., Erickson, J. and Chen, H., 2012,

June. AndroidLeaks: automatically detecting potential

privacy leaks in android applications on a large scale.

In International Conference on Trust and Trustworthy

Computing (pp. 291-307). Springer Berlin Heidelberg.

[11].Parvez, MAD&J 2013, 'Evaluating Smartphone

Application Security: A Case Study on Android', Global

Journal of Computer Science and Technology Network,

Web & Security, vol 13, no. 12, pp. 9-15.

[12].Luigi Vigneriy, JCIPAOH 27th april 2015, 'Taming the

Android AppStore: Lightweight Characterization of

Android Applications', Research Report RR-15-305,

Networking and Security department , EURECOM,

Campus SophiaTech, 1504.06093v2, EURECOM,

Sophia Antipolis cedex,France

[13].Steven Arzt and Eric Bodden 2014, Secure software

Engineering group, viewed 20 January 2015,

<http://sse.ec-spride.de/>.

[14].Gascon, H., Yamaguchi, F., Arp, D. and Rieck, K., 2013,

November. Structural detection of android malware

using embedded call graphs. InProceedings of the 2013

ACM workshop on Artificial intelligence and security(pp.

45-54). ACM.

[15].Shen, T., Zhongyang, Y., Xin, Z., Mao, B. and Huang,

H., 2014, September. Detect android malware variants

using component based topology graph. In2014 IEEE

13th International Conference on Trust, Security and

Privacy in Computing and Communications (pp. 406-

413). IEEE.

IJCATM : www.ijcaonline.org

