
International Journal of Computer Applications (0975 – 8887)

Volume 155 – No 8, December 2016

41

Performance Analysis of Hybrid Approach Comprising

Genetic Algorithm and Adaptive Approach on Test Case

Prioritization

Rajanroop Walia
M.Tech, CSE

DAVIET, Jalandhar

Harpreet K. Bajaj
Head of Deptt. CSE
DAVIET, Jalandhar

ABSTRACT

Regression testing is an important domain of software testing,

which attempts to verify all the fixes that had been introduced

into the software throughout its development period by means

of test suites. In spite of being exorbitant in terms of time and

cost, it cannot be evaded. As a result, lot many techniques

have been proposed in the past in order to minimize these

expenses. One such technique is Test Case Prioritization,

which works by scheduling the execution order of test cases

with a goal of improving the fault detection rate. This paper

introduces a hybrid approach to test case prioritization, by

combining Genetic Algorithm and Adaptive approach.

Initially, it applies the Adaptive approach for the prioritization

of test cases. Further, the left over test cases are prioritized by

applying the Genetic Algorithm. Finally, the outcomes

obtained from the proposed approach are compared with those

of Genetic Algorithm based on two parameters: execution

time and average percentage of statement coverage (APSC)

values. The evaluation results prove that the proposed

approach performs better in terms of both the parameters.

Keywords

Regression testing, test case prioritization, genetic algorithms,

adaptive approach

1. INTRODUCTION
One of the major goals of regression testing is to make sure

whether the software under development still performs in the

same manner as it did before the modifications were

introduced [1]. Nevertheless, it is an expensive process as far

as cost and time factors are concerned. This drawback of

regression testing stimulated the efforts to cut down these

expenses and consequently led to the development of three

major techniques: Test Case Prioritization, Test Case

Selection and Test Suite Minimization. Test Case

Prioritization schedules the execution order of test cases such

that the rate of fault detection is improved. Test Case

Selection attempts to choose a subset of the original test suite.

In case of Test Suite Minimization, the original test suite gets

reduced to a smaller suite that still maintains the coverage.

Amidst these techniques, Test Case prioritization is known to

be most effective. This is so because it takes into

consideration all the test cases contained in a test suite and

detects the best test case execution sequence that meets a

certain testing criteria. This does not happen in case of other

two techniques since they do not take account of all the test

cases present in a test suite and thus increase the chances of

the software containing undetected errors [2].

Test Case Prioritization has been performed in the past using

several approaches. Prominent among these are genetic

algorithm, particle swarm optimization, ant colony

optimization, bee colony optimization, history-based approach

and adaptive approach. Genetic Algorithms provide excellent

solutions to prioritization problems and thus are widely used.

But these prove to be quite time-consuming in case of bigger

test suites, since they perform test suite prioritization and

execution as separate phases. In contrast, an adaptive

approach saves time by carrying out both these processes

concurrently. Therefore, it is gaining popularity these days.

But it does not schedule the execution order of all the test

cases. Rather, it schedules the order of some selected test

cases that have attained some amount of statement coverage

in the past. Thus it does not prioritize all the test cases, which

implies that statement coverage has not been done perfectly.

As a result, a hybrid approach has been proposed in this

paper. It combines the above two approaches in such a

manner that both the approaches counteract the limitations of

each other. In this way, the proposed approach achieves

almost 100% statement coverage in minimum time.

This paper is organized as follows. Section 2 describes related

work. Section 3 gives an insight into some of the existing test

case prioritization approaches. Section 4 presents the

proposed work. Section 5 explains how the experiment is

carried out and presents the results. Section 6 concludes the

paper and mentions the future scope.

2. RELATED WORK
A detailed insight into the regression testing practices was

carried out in order to resolve the issues associated with it. In

[1] Y. Li gave a thorough explanation of regression testing,

involving its definition and types. In addition, they also

compared the retest all and selective regression testing

strategies and arrived at the conclusion that a tradeoff exists

between the both. However, [2] explained that with an

increase in the size of test suite, retest all strategy becomes

impracticable due to time and cost constraints. Thus, it

unveiled an increasing trend towards the different strategies

for removing these constraints namely, test case prioritization,

test suite minimization and test case selection. However, test

case prioritization gained much importance which is apparent

from the large amount of work that has been done in this area.

Y.C. Huang in [3] proposed a cost-cognizant prioritization

technique that arranged test cases in accordance with their

history information using genetic algorithm. The technique

performed prioritization of test cases based on their test costs

and fault severities, without examining the source code. The

efficiency of the same was evaluated using a UNIX utility

program and the results proved the effectiveness of the

proposed technique. In [4], a technique for locating the test

path to be tested first in case of static testing was proposed.

Test paths or scenarios were extracted from the source code.

For finding out the path to be tested first, the approach used

International Journal of Computer Applications (0975 – 8887)

Volume 155 – No 8, December 2016

42

Information Flow model and Genetic Algorithm. In [5], the

necessity of Component-Based Software testing prioritization

framework was evolved and proved, which exposed more

severe bugs at an early level and improved software product

deliverable quality employing Genetic Algorithm with java

decoding technique. For this purpose, a set of prioritization

keys was proposed. An algorithm for prioritizing test cases

based on total coverage using a modified genetic algorithm

was designed in [6]. Its performance was compared with five

other approaches and the results revealed the proposed

algorithm to be better than other approaches. However, the

same could not be assured for bigger test suites. L.

Ramingwong in [7] proposed the standard ABC algorithm for

prioritizing the test suites based on code coverage. The results

revealed that ABC shows promising results and hence, is a

great candidate for prioritizing test suites. It also suggested

that by modifying the standard ABC algorithm or combining

it with another SI algorithm should yield an even better result.
In [8], Y. Singh proposed a regression test prioritization

technique based on Ant Colony Optimization for reordering

the test suites in time constrained environment. On the other

hand, K. Solanki in [9] presented an enhanced version of Ant

Colony Optimization for test case prioritization. The metric

used for performance evaluation in both the cases was

Average Percentage of Faults detected (APFD) metric and the

results confirmed the usefulness of these techniques. Tyagi in

[10] proposed a 3-step approach for performing regression

testing using Multi Objective Particle Swarm Optimization.

The proposed MOPSO outshined other approaches like No

Ordering, Reverse Ordering and Random Ordering by

achieving maximum fault coverage and maximum APFD

value in minimum execution time. T. Noguchi in [11]

proposed a framework to prioritize test cases for black box

testing on a new product using the test execution history

collected from a similar prior product and the Ant Colony

Optimization. The effectiveness and practicality of the

proposed framework was shown by a simulation using two

actual products. In [12], history-based approach to prioritize

the test cases was extended to modified lines. Initially, the

modified lines were prioritized, followed by the test cases.

The results proved the proposed approach’s capability to

detect faults faster and with less effort as compared to

previous approach. Md. Arafeen in [13] proposed adaptive

regression testing (ART) strategies that attempt to identify the

regression testing techniques that will be the most cost-

effective for each regression testing session according to

organization’s situations and testing environment. For

assessing the approach, an experiment was conducted by

focusing on test case prioritization techniques. The results

showed that prioritization techniques selected by the approach

can be more cost-effective than those used by the control

approaches. Dan Hao in [14] proposed an adaptive TCP

approach, which worked by determining the execution order

of test cases simultaneously during their execution on the

modified program. The results indicated the superiority of the

proposed approach over the total test case prioritization

approach. It also concluded the proposed approach to be

comparable to additional statement-coverage based test case

prioritization approach. In [15], L. Mei proposed Preemptive

Regression Testing (PRT), a novel strategy that rescheduled

test cases according to the changes detected in the service

under test, during the course of each actual regression test

session. For generating new techniques, three particular PRT

strategies, integrated with existing test case prioritization

techniques were proposed. The experimental results proved

the capability of one of the PRT-enriched techniques to test

workflow-based web service. In [16] the existing strategies

were empirically studied and two additional Adaptive Test

Prioritization (ATP) strategies were developed, using fuzzy

analytical hierarchy process (AHP) and the weighted sum

model (WSM). The empirical studies provided in this case

revealed that the cost-effectiveness of regression testing can

be improved by utilizing these strategies.

3. EXISTING TEST CASE

PRIORITIZATION APPROACHES

3.1 Genetic Algorithm
Genetic Algorithm is a search-based optimization technique

that generates optimal or near-optimal solutions to difficult

problems by imitating the process of biological evolution. In

order to accomplish this, it repeatedly modifies a random

population of individuals, represented by chromosomes

towards a better solution. During each step, it chooses

individuals from the population in accordance to some fitness

function of the problem under consideration. The two best fit

individuals selected then act as parents to produce new off-

springs. For this purpose, they undergo modifications in the

form of following genetic operators:

a) Crossover: Crossover operator is used to introduce

variation among chromosomes belonging to successive

generations in such a manner that the new chromosome

obtained after the crossover operation is superior over the

original chromosomes. Basically, it mimics the natural

selection process by taking two or more chromosomes as

parents and then generating a child chromosome from

them. Figure 1 below explains the process of one-point

crossover, in which a random crossover point is chosen

in each parent chromosome. Everything beyond that

point is then swapped for obtaining off-springs.

Fig 1: One-point crossover

b) Mutation: Mutation operator is used to insert a small

tweak in the chromosome in order to produce a new

solution. The solutions obtained after applying mutation

can be completely different from the previous solution.

Figure 2 below explains the process of bit-flip mutation,

in which one or more bits are randomly selected and then

flipped.

Fig 2: Bit-Flip mutation

International Journal of Computer Applications (0975 – 8887)

Volume 155 – No 8, December 2016

43

3.2 Adaptive Approach
An adaptive approach provides solutions to prioritization

problems by carrying out the processes of prioritization and

execution simultaneously, in contrast to other existing

prioritization approaches that perform them in isolation. This

is done by calculating an initial fault detection capability

(denoted as Priority(t)) for each test case t according to its

statement coverage in previous program. Then a test case ts

with the highest Priority is selected, which is given by the

following equation:

𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝑡 = 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙(𝑠)𝑆 𝑖𝑠 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 𝑏𝑦 𝑡 (1)

where Potential (s) indicates how likely a statement s

contains faults that have been left uncovered by an existing

test suite. It lies in the interval [0, 1] for each statement.

Initially, every statement is assigned a Potential 1. The test

case with the largest priority is then executed and its output is

recorded. Based on this output i.e. pass or fail, the adaptive

approach modifies the Potential of each statement s in

accordance to the given equation:

𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑠 =

𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙′ 𝑠 , 𝑠 𝑖𝑠 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 𝑏𝑦 𝑡′

𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙′ 𝑠 ∗ 𝑞,
𝑠 𝑖𝑠 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 𝑏𝑦 𝑡′⋀

𝑡′ 𝑖𝑠 𝑝𝑎𝑠𝑠𝑒𝑑

𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙′ 𝑠 ∗ 𝑝,
 𝑠 𝑖𝑠 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 𝑏𝑦 𝑡′⋀

𝑡′ 𝑖𝑠 𝑓𝑎𝑖𝑙𝑒𝑑

 (2)

Here, 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙’ 𝑠), denotes the likelihood of any statement

containing new faults prior to running any test case t’. p and q

are two non-negative constants, which lie in the interval [0,1].

This process terminates when all the test cases have been

prioritized as well as executed.

4. PROPOSED WORK
Test Case Prioritization using Genetic Algorithm yields

excellent results. This is so because it uses the techniques

inspired by the natural selection for generating the solutions.

But the main drawback with Genetic Algorithm is that it

consumes too much time to complete this activity. The reason

behind this is the isolation of prioritization and execution

processes i.e. test cases are executed only after they have been

prioritized. On the contrary, an adaptive approach carries out

both the processes side by side. Since both processes occur

simultaneously, the time expenses are minimized to a great

deal. But the problem with this approach is that it does not

schedule the order of all the test cases contained in the test

suite. It only prioritizes those test cases which have attained

some amount of statement coverage in the past. On the other

hand, the test cases which have been unable to achieve

statement coverage are left non-prioritized, which implies that

100% statement coverage has not yet been achieved. As a

result, a hybrid approach has been proposed in this paper,

which is a combination of Genetic Algorithm and Adaptive

approach. This approach works by initially employing the

adaptive approach for the prioritization of those test cases

which have achieved statement coverage on the previous

program. Further, the test cases with no statement coverage

i.e. leftover test cases are prioritized using Genetic Algorithm.

This is done with the help of four operations: parent selection,

crossover, mutation and duplicate elimination. In this way,

the hybrid approach succeeds in overcoming the limitations of

both approaches. Thus apart from saving time, the proposed

approach also achieves nearly 100% statement coverage.

The methodology of the proposed approach consists of the

following steps:

1. Collect different test cases from Apache Open source by

interfacing it in Eclipse and testing with JUnit test

toolkit.

2. Collect execution information of those test cases on the

previous program.

3. Use adaptive approach for calculating the initial fault

detection capability of each test case on the basis of

execution information obtained.

4. Select the test case with the largest priority.

5. Run the selected test case and record its output value

(passed or failed).

6. Based on its output, use adaptive approach for modifying

the priority of unselected test cases and selecting the test

case with largest modified priority.

7. Repeat the above process until all the test cases within

the test suite are prioritized.

8. If there are any test cases which are left non-prioritized,

take those for initializing the population of Genetic

algorithm.

9. Apply parent selection, crossover and mutation operation

on the initialized population and prioritize the test cases.

10. Calculate the execution time and APSC values for the

proposed hybrid approach.

5. EXPERIMENTAL EVALUATION
For performance evaluation of the proposed hybrid approach,

100 test cases have been fetched from the Apache Open

Source by interfacing it in Eclipse and then using JUnit Test

Toolkit for its testing. The proposed approach has been

implemented on this dataset. For the purpose of demonstrating

its superiority over existing prioritization approaches, Genetic

algorithm has been chosen and implemented on the same

dataset. After implementing both the approaches, the

performance of each has been evaluated on the basis of two

factors: Execution Time and Average Percentage of Statement

Coverage (APSC) values. APSC metric can be defined as the

degree to which a prioritized test suite covers the statements

and is given by the following equation:

𝐴𝑃𝑆𝐶 = 1 −
𝑇𝑆1+𝑇𝑆2+⋯+𝑇𝑆𝑚

𝑛𝑚
+

1

2𝑛
 (3)

where

TSi denotes the id of first test case that first covers the

statement i in the execution sequence.

m denotes the number of statements.

n denotes the number of test cases.

The first set of each of these values for both the approaches

has been obtained by varying the number of test cases of the

dataset as shown by Table 1. For this purpose, five different

subsets of the original dataset have been created. These

contain 20, 40, 60, 80 and 100 test cases respectively. Figures

3 and 4 represent the comparison graphs of APSC and

execution time values respectively for both the approaches. It

can be clearly seen from these graphs that the proposed hybrid

approach outperforms Genetic Algorithm in terms of

statement coverage. Apart from this, it also cuts down time

expenses to a great extent.

International Journal of Computer Applications (0975 – 8887)

Volume 155 – No 8, December 2016

44

Table 1 Set Of Values Obtained By Varying The Number

Of Test Cases

No. of

Test

Cases

APSC values (in %) Execution Time values

(in ms)

APSC

(GA)

APSC

(HY)

Time

(GA)

Time

(HY)

20 98.89 100.15 28484 19026

40 98.83 99.73 77285 40220

60 96.5 99.55 123043 73675

80 96.95 99.74 227599 65910

100 95.65 99.61 237198 146052

Fig 3: Graph illustrating the APSC values for Genetic

Algorithm and the proposed hybrid approach obtained by

varying the number of test cases.

Fig 4: Graph illustrating the execution time values for

Genetic Algorithm and the proposed hybrid approach

obtained by varying the number of test cases.

The next set of values has been obtained by running both the

approaches for different number of generations, as given by

Table 2. This has been achieved by setting the number of

generations to [2], [3], [4] and [5]. Figures 5 and 6 represent

the comparison bar graphs of APSC and execution time

values respectively for both the approaches, whereas figures 7

and 8 show the comparison line graphs for the same. From

both the graphs, it is evident that the proposed approach

performs better by maximizing the statement coverage up to 4

%. Moreover, a significant difference can be observed in case

of execution time also.

Table 2 Set Of Values Obtained By Varying The Number

Of Generations

No. of

Generations

APSC values (in

%)

Execution Time

values (in ms)

APSC

(GA)

APSC

(HY)

Time

(GA)

Time

(HY)

[2] 97.53 99.6 289582 98623

[3] 95.91 99.51 411032 113702

[4] 96.12 99.6 417585 204130

[5] 95.51 99.56 468275 255237

Fig 5: Graph illustrating the APSC values for Genetic

Algorithm and the proposed hybrid approach obtained by

varying the number of generations.

Fig 6: Graph illustrating the execution time values for

Genetic Algorithm and the proposed hybrid approach

obtained by varying the number of generations.

Fig 7: Graph illustrating the APSC values for Genetic

Algorithm and the proposed hybrid approach obtained by

varying the number of generations.

International Journal of Computer Applications (0975 – 8887)

Volume 155 – No 8, December 2016

45

Fig 8: Graph illustrating the execution time values for

Genetic Algorithm and the proposed hybrid approach

obtained by varying the number of generations.

6. CONCLUSION AND FUTURE SCOPE
In this paper, a hybrid approach to test case prioritization has

been presented with a view to combat the issues involved in

regression testing. A combination of adaptive approach and

Genetic Algorithm, the proposed approach firstly utilizes the

adaptive approach for the prioritization of test cases. It works

by selecting a test case with the largest priority. Then it runs

that test case and records its output. On the basis of this

output and the execution history of next unselected test case,

it prioritizes the next test case. This process terminates when

all the test cases that cover code statements have been

prioritized and executed. As far as test cases with zero

statement coverage are concerned, Genetic Algorithm

prioritizes them using four operations: parent selection,

crossover, mutation and duplicate elimination. The

performance of the proposed approach when further compared

with Genetic Algorithm, reveals promising results in terms of

APSC values and Execution times.

The future work on this paper will focus on exploring the

effectiveness of the proposed technique to a greater extent, by

means of some more parameters.

7. ACKNOWLEDGEMENT
I am grateful to Ms. Harpreet K. Bajaj, Head of Department,

CSE at DAVIET Jalandhar. Without her guidance and

support, I would not have been able to complete this paper.

8. REFERENCES
[1] Y. Li, N J. Wahl. An Overview of Regression Testing.

ACM SIGSOFT Software Engineering Notes, 25(1),

69-73, January 1999.

[2] S. Yoo, M. Harman. Regression testing minimization,

selection and prioritization: a survey. Software Testing,

Verification and Reliability, 22(2), 67-120, March 2012.

[3] YC Huang, CY Huang, JR Chang. Design and Analysis

of Cost-Cognizant Test Case Prioritization Using Genetic

Algorithm with Test History. In: Proceedings of 34th

IEEE Annual Computer Software and Applications

Conference, 413-418, July 2010.

[4] S. Sabharwal, R. Sibal, C. Sharma. A Genetic Algorithm

based Approach for Prioritization of Test Case Scenarios

in static testing. In: Proceedings of International

Conference on Computers and Communication

Technology (ICCCT), 304-309, September 2011.

[5] S. Mahajan, S.D. Joshi, V. Khanaa. Component-Based

Software System Test Case Prioritization with Genetic

Algorithm Decoding Technique Using Java Platform. In:

Proceedings of IEEE International Conference on

Computing Communication Control and Automation,

(ICCUBEA), 847-851, February 2015.

[6] L. Ramingwong, P. Konsaard. Total Coverage Based

Regression Test Case Prioritization using Genetic

Algorithm. In: Proceedings of 12th IEEE International

Conference on Electrical Engineering/Electronics,

Computer, Telecommunications and Information

Technology (ECTI-CON), 1-6 , June 2015.

[7] L. Ramingwong, P. Konsaard. Using Artificial Bee

Colony for Code Coverage based Test Suite

Prioritization. In: Proceedings of IEEE 2nd International

Conference on Information, Science and Security,

(ICISS), 1-4, December 2015.

[8] Y. Singh, A. Kaur, B. Suri. Test Case Prioritization using

Ant Colony Optimization. ACM SIGSOFT Software

Engineering Notes, 35(4), 1-7, July 2010.

[9] K. Solanki, Y. Singh, S. Dalal. Test Case Prioritization:

An Approach Based on Modified Ant Colony

Optimization (m-ACO). In: Proceedings of IEEE

International Conference on Computer, Communication

and Control (ICCCC), 1-6, September 2015.

[10] M. Tyagi, S. Malhotra. Test Case Prioritization using

Multi Objective Particle Swarm Optimizer. In:

Proceedings of IEEE International Conference on Signal

Propagation and Computer Technology (ICSPCT), 390-

395, July 2014.

[11] T. Noguchi, H. Washizaki. et al. History-Based Test

Case Prioritization for Black Box Testing using Ant

Colony Optimization. In: Proceedings of 8th IEEE

International Conference on Software Testing,

Verification and Validation (ICST), 1-2, April 2015.

[12] A.Gupta, N. Mishra, A. Tripathi, et al. An Improved

History- Based Test Prioritization Technique Using Code

Coverage. Advanced Computer and Communication

Engineering Technology, 315, 437-448, 2015.

[13] Md. J. Arafeen and H. Do. Adaptive Regression Testing

Strategy: An Empirical Study. In: 22nd International

Symposium on Software Reliability Engineering, 130-

139, November 2011.

[14] D. Hao, X. Zhao, L. Zhang. Adaptive Test-Case

Prioritization Guided by Output Inspection. In:

Proceedings of 37th IEEE Annual Computer Software

and Applications Conference (COMPSAC), 169-179,

July 2013.

[15] L. Mei, W.K. Chan, T.H. Tse, B. Jiang. Preemptive

Regression Testing of Workflow-based Web Services.

IEEE Trans. On Services Computing, 8 (5): 740-754,

2015.

[16] A.Schwartza, H. Do. Cost-effective regression testing

through Adaptive Test Prioritization strategies. Journal

of Systems and Software, 115, 61-81, May 2016.

IJCATM : www.ijcaonline.org

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7180538
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7180538
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7180538
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7180538
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7180538
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7180538
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7180538
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7180538
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7180538
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7180538
https://scholar.google.co.in/citations?user=WE5V6bkAAAAJ&hl=en&oi=sra

