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ABSTRACT 
Ultrasound is a widely used medical imaging technique used for 

diagnostic purposes. But the major problem with these images 

is that they are inherently corrupted by speckle. The presence of 

speckle severely hampers the interpretation and analysis of 

medical ultrasonic images. In this paper, a comparison of 

various speckle reducing spatial and wavelet based methods has 

been carried out while de-speckling the image. These methods 

are evaluated and compared in terms of filter assessment 

parameters namely Peak Signal to Noise Ratio (PSNR), MSSIM 

(Mean Structural Similarity), FOM (Figure of Merit) and 

Method noise and consequently classified into three categories- 

outstanding, average and below average on the basis of their 

performance.  

General Terms 
Image de-noising 
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1. INTRODUCTION 
Ultrasound imaging is a widely used medical imaging technique 

for diagnostic purposes. It is useful for monitoring the growth 

of fetus in pregnant women. It is a non-invasive technique and 

uses no ionizing radiation. It is portable and provides real time 

images. It is relatively economic as compared to other medical 

technologies. 

However the main disadvantage of ultrasound imaging is that it 

is contaminated by speckle noise. Speckle noise is defined as 

multiplicative noise, having a granular pattern that inherently 

exists in and degrades the quality of the active radar, synthetic 

aperture radar, medical ultrasound and optical coherence 

tomography images. Speckle noise is generated by the 

constructive and destructive interference of the reflected waves 

from various independent scatters within a cell resolution [1]. In 

other words, it occurs due to random interference between the 

coherent returns [2].  

Speckle artefact introduces fine-false structures which reduces 

image contrast and masks the real boundaries of the tissues 

under consideration. Its occurrence may substantially 

compromise the diagnostic effectiveness, introducing a great 

level of subjectivity in the interpretation of images. Therefore, it 

is very important to de-speckle the ultrasound images prior to 

analysis and processing them to reduce the risk of misdiagnose 

and obtaining accurate diagnosis. 

Over the years, many researchers had devoted their efforts to 

address this issue resulting in large number of de-noising 

techniques. These techniques can be classified into two groups: 

compounding and post-processing. Compounding involves 

acquiring images of the same object from different view angles, 

assuming no changes to or motion of the object during 

scanning. Then take average of multiple images to generate the 

final image [3]. But this approach results in loss of detail in the 

final image as well as increased system complexity.  

Post-processing techniques do not require any hardware 

modification in the image reconstruction system, and hence 

have found a growing interest. In this, images are obtained as 

usual and then speckle reduction filters are applied to the image 

to improve its quality. These can be simply classified as local 

adaptive filters, anisotropic filters, non-local means filters and 

wavelet based approaches. Lee [4], Frost [5], Kuan [6], wiener 

[7], median [7] and guided [8] filters are commonly used local 

adaptive filters with low algorithm complexity. Speckle 

reducing anisotropic diffusion [9] filter has good speckle 

suppression ability but de-noised results may create an over-

smooth phenomenon. Optimized Bayesian NL-means with 

block selection (OBNLM) [10] is a novel de-noising algorithm 

with better speckle noise removing effect but it has high 

algorithm complexity. Wavelet-based techniques include Visu 

Hard Shrink [11], Visu Soft Shrink [11], Sure Shrink [12], 

Bayes Shrink [13], Neigh Shrink [14], Neigh Shrink SURE [15] 

and Wavelet and Guided filter [16] and so on. They have been 

widely used in speckle de-noising because they offer a 

simultaneous localization in time and frequency domain [17]. 

1.1 Spatial Domain De-Speckling Filters 
Spatial domain techniques involve direct manipulation of image 

pixels encompassed by the neighbourhood of every pixel in an 

image [7]. Filtering creates a new pixel with coordinates equal 

to the coordinates of the centre of the neighbourhood, and its 

value is equal to the result of filtering operation. Spatial 

filtering can be denoted as: 

 𝑔 𝑥, 𝑦 = 𝑇[𝑓 𝑥, 𝑦 ]    (1) 

where 𝑓 𝑥, 𝑦  is the noisy image, 𝑔 𝑥, 𝑦  is the de-noised 

image, and  𝑇 is an operator on 𝑓 defined over a neighbourhood 

of point  𝑥, 𝑦 . Typically, the neighbourhood of point  𝑥, 𝑦  is a 

rectangle, centred on  𝑥, 𝑦 , and it is much smaller than the size 

of image. The filtered image is generated as the centre of the 

window visits each pixel in the input image.  

1.1.1. Lee filter 
Lee [4] developed a widely used local statistics filter for speckle 

noise reduction. It is a linear filter which tends to minimize the 

mean square error as 

 𝑥 ′ = 𝑥𝑚 + 𝑏(𝑧 − 𝑥𝑚)   (3)   

where  

 𝑏 = 𝑣𝑎𝑟(𝑥)/[𝑧𝑚
2 𝜎𝑛 

2 + 𝑣𝑎𝑟 𝑥 ]  (4) 

Here 𝑧 represents noisy observed image, 𝑥 is the original signal 

and 𝑛 is the speckle noise. 𝑥𝑚  and 𝑣𝑎𝑟 𝑥  (a priori mean and 
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variance of the original signal) can be estimated by the 

following expressions: 

 𝑥𝑚 =  𝑧𝑚                     (5)  

and  

 𝑣𝑎𝑟(𝑥) = (𝑣𝑎𝑟 𝑧 − 𝑧𝑚
2 𝜎𝑛 

2 )/(𝜎𝑛 
2 + 1)                         (6) 

In order to apply the filter, one has to check if the value of 

𝑣𝑎𝑟 𝑥  given by eq. (6) is negative then in that case, we have a 

very homogeneous area, so 𝑣𝑎𝑟 𝑥  is set to zero and 𝑥 ′  is equal 

to the local mean 𝑧𝑚 . But if the numerator of eq. (6) is very 

large then it is a very high contrast region (or edge is present) 

and 𝑥 ′  = 𝑧. 

1.1.2. Frost filter 
Frost et al [5] developed a linear minimum mean square error 

filter which convolves the pixel values within a fixed size 

window with an exponential impulse response m given by: 

 𝑚 = exp⁡[−𝐾𝐶𝑦 (𝑡0)|𝑡|]   (7) 

where 

 𝐶𝑦 = 𝜎𝑦/𝑦     (8) 

Here 𝑥 be an image pixel corrupted by multiplicative noise 𝑛 

such that 𝑦 = 𝑛𝑥. 𝐾 is the filter parameter, 𝑡0  represents the 

location of the processed pixel and |𝑡| is the distance measured 

from pixel 𝑡0 .                             

1.1.3. Kuan filter  
Kuan [6] also developed a local linear minimum mean square 

error filter under multiplicative noise. The local statistics are 

computed by the same expressions as with  

Lee‟s filter. 

 𝑥 ′ = 𝑥𝑚 + 𝑏(𝑧 − 𝑥𝑚)    (9) 

where  

 𝑏 = 𝑣𝑎𝑟(𝑥)/[𝑧𝑚
2 𝜎𝑛 

2 + (1 + 𝜎𝑛
2)𝑣𝑎𝑟 𝑥 ] (10)

  

where 𝑥𝑚  and 𝑣𝑎𝑟(𝑥) (a priori mean and variance of the 

original signal) can be estimated by Eq. (5) and (6). 

1.1.4. Wiener filter 
Wiener filter [7] is based on the least-squared principle. It is a 

pixel-wise adaptive method based on statistics estimated from a 

local neighbourhood of each pixel. It estimates the local mean 

and variance around each pixel as 

 𝜇 =
1

𝑁𝑀
 𝑎(𝑛1, 𝑛2𝑛1 ,𝑛2𝜖𝜂 )   (11) 

and 

 𝜎2 =
1

𝑁𝑀
 𝑎2(𝑛1, 𝑛2𝑛1 ,𝑛2𝜖𝜂 ) − 𝜇2  (12) 

where 𝜂 is the 𝑁 × 𝑀 local neighborhood of each pixel in the 

image A. Wiener filter then uses these local statistics to create 

de-noised image as 

 𝑏 𝑛1, 𝑛2 = 𝜇 +
𝜎2−𝑣2

𝜎2
(𝑎 𝑛1, 𝑛2 − 𝜇) (13) 

where 𝑣2 is the noise variance. If the noise variance is not 

given, it uses the average of all the local estimated variances. 

1.1.5. Median filter 
Median filter [7] belongs to the class of non-linear filters or 

order-statistics filters where response is based on ordering 

(ranking) the pixels contained in the image area encompassed 

by the filter and the replacing the value of the centre pixel with 

the value determined by ranking result.  

1.1.6. Guided filter 
Guided filter [8] is a novel explicit image filter derived from a 

local linear model. It considers the content of a guidance image 

while computing the filtering output 𝑞. Guidance image can be 

the input image itself or another different image. Guided filter 

behaves as an edge-preserving smoothing operator in a special 

case where the guidance image I is identical to the filtering 

input p.  

𝑞 is a linear transform of 𝐼 in a window 𝑤𝑘  centred at the 

pixel 𝑘: 

 𝑞𝑖 = 𝑎𝑘𝐼𝑖 + 𝑏𝑘 ,      ∀𝑖 ∈ 𝑤𝑘        (14) 

where 𝑎𝑘  and 𝑏𝑘  are linear coefficients of the window  𝑤𝑘  , 𝐼 is 

the guided image, 𝑝 is the input image and 𝑞 is the output 

image. Because pixel 𝑖 is involved in all the overlapping 

windows 𝑤𝑘 that covers 𝑖 , the value of 𝑞𝑖 computed in different 

windows is averaged out to obtain final value of 𝑞𝑖   by the 

following equations: 

 𝑞𝑖 =
1

 𝑤 
  (𝑎𝑘𝑘,𝑖∈𝑤𝑘 𝐼𝑖 + 𝑏𝑘) = 𝑎𝑖 𝐼𝑖 + 𝑏𝑖  (15) 

where 𝑎𝑖 =
1

 𝑤 
 𝑎𝑘  and 𝑏𝑖 =

1

 𝑤 
 𝑏𝑘   

1.1.7. OBNLM filter 
It is a novel method for restoring the ultrasound images. It is an 

adaptation of the NL-means method to de-noise ultrasound 

images using a Bayesian framework for the NL-means filter 

[10]. An empirical estimator of 𝑣 (𝐵𝑖𝑘) of a block  𝐵𝑖𝑘  can be 

defined as 

𝑣  𝐵𝑖𝑘 =
 𝑢 𝐵𝑗  𝑝(𝑢(𝐵𝑖𝑘 )|𝑢 𝐵𝑗  )

|∆𝑖𝑘
|

𝑗=1

 𝑝(𝑢(𝐵𝑖𝑘 )|𝑢 𝐵𝑗  )
|∆𝑖𝑘

|

𝑗=1

                  (16) 

where 𝑝(𝑢(𝐵𝑖𝑘)|𝑢 𝐵𝑗  ) denotes the probability distribution 

function of 𝑢 𝐵𝑖𝑘  conditionally to 𝑢 𝐵𝑗  . Based on the 

Bayesian formulation, the Pearson distance is used to compare 

image patches. 

1.2 Wavelet Based De-Speckling Methods 
In addition to spatial filters, wavelet-based methods have been 

considered as a popular method for suppressing speckle noise 

from image. Logarithmic transformation is performed on the 

noisy image to convert multiplicative speckle noise into 

additive noise, followed by wavelet decomposition to 

concentrate the signal energy into a few large coefficients [18]. 

Then the noisy wavelet coefficients are modified using certain 

shrinkage function. This step typically involves thresholding the 

wavelet coefficients to remove the noise from the noisy image 

without affecting the significant features of an image. Finally, 

the de-noised image is obtained by taking the inverse wavelet 

transform of the processed coefficients, followed by exponential 

transformation. 

The two general categories of thresholding are hard-

thresholding and soft-thresholding. 

Hard Thresholding Method - All coefficients whose 

magnitude is greater than the selected threshold value 𝑇 remain 

as unchanged while the others are set to zero. The hard-

thresholding is described as 

  𝑤 ′ = 𝑤 𝑖𝑓   𝑤 > 𝑇  𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒 𝑧𝑒𝑟𝑜  (17) 

where 𝑤 is a wavelet coefficient, 𝑇 is the threshold.  
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Soft Thresholding Method – Hard thresholding is 

discontinuous and causes ringing effect in the de-noised image. 

To overcome this, Donoho [19] introduced the soft thresholding 

method where the coefficients with magnitude greater than the 

threshold are shrunk towards zero after comparing them to a 

threshold. The Soft-thresholding function is described as 

     𝑤 ′ = 𝑠𝑖𝑔𝑛(𝑤)( 𝑤 − 𝑇) 𝑖𝑓   𝑤 > 𝑇  𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒 0     (18) 

where 𝑠𝑖𝑔𝑛(𝑥) is the sign function of x.  

The various threshold selections strategies are - 

1.2.1. Visu Shrink 
This is also called as the universal threshold method [11]. A 

threshold is given by  

𝑡 = 𝜎 2 log 𝑛    (19) 

where 𝜎2 is the noise variance and 𝑛 is the number of samples. 

The noise variance 𝜎 is estimated as 𝑀𝐴𝐷(𝑊)/0.6745, where 

𝑊 represents the wavelet coefficients from sub-band 𝐻𝐻1 and 

𝑀𝐴𝐷 represents median absolute deviation. 

1.2.2. Sure Shrink 
A threshold chooser based on Stein‟s Unbiased Risk Estimator 

(SURE) was proposed by Donoho and Johnstone [12] and is 

called as Sure Shrink. This method specifies a threshold value 

𝑡𝑗  for each resolution level 𝑗 in the wavelet transform which is 

referred to as level dependent thresholding. The goal of Sure 

Shrink is to minimize the mean squared error, defined as  

 𝑀𝑆𝐸 =
1

𝑛2
 (𝑧 𝑥, 𝑦 − 𝑠 𝑥, 𝑦 )2𝑛
𝑥,𝑦=1   (20) 

where 𝑧 𝑥, 𝑦  is the estimate of the signal while 𝑠(𝑥, 𝑦) is the 

original signal without noise and 𝑛 is the size of the signal. Sure 

Shrink suppresses noise by thresholding the wavelet 

coefficients. The Sure Shrink threshold 𝑡∗ is defined as 

 𝑡∗ = min⁡(𝑡, 𝜎 2 log 𝑛)   (21)  

where 𝑡 denotes the value that minimizes Stein‟s Unbiased Risk 

Estimator, 𝜎 is the noise variance, and 𝑛 is the size of the 

signal. Sure Shrink follows the soft thresholding rule. Sure 

Shrink is smoothness adaptive. 

1.2.3. Bayes Shrink 
Bayes Shrink was proposed by Chang, Yu and Vetterli [13]. 

The goal of this method is to minimize the Bayesian risk, and 

hence its name, Bayes Shrink. It uses soft thresholding and is 

sub band-dependent. The Bayes threshold, 𝑡𝐵  is defined as 

 𝑡𝐵 = 𝜎2/ 𝜎𝑠     (22) 

where 𝜎2  is the noise variance and 𝜎𝑠
2  is the signal variance 

without noise. From the definition of additive noise we have 

 𝑤 𝑥, 𝑦 = 𝑠 𝑥, 𝑦 + 𝑛(𝑥, 𝑦)   (23) 

Since the noise and the signal are independent of each other, it 

can be stated that 

 𝜎𝑤
2 = 𝜎𝑠

2 + 𝜎2     (24) 

𝜎𝑤
2  can be computed as shown below: 

 𝜎𝑤
2 =

1

𝑛2
 𝑤2(𝑥, 𝑦)𝑛
𝑥,𝑦=1               (25) 

The variance of the signal, 𝜎𝑠
2  is computed as 

 𝜎𝑠 =  max⁡(𝜎𝑤
2 − 𝜎2, 0)   (26) 

1.2.4. Neigh Shrink 
This wavelet-domain image thresholding scheme incorporates 

neighbouring coefficients, namely Neigh Shrink [14]. Neigh 

Shrink method thresholds the wavelet coefficients according to 

the magnitude of the squared sum of all the wavelet 

coefficients, i.e. the local energy within the neighbourhood 

window. The shrinkage function for Neigh Shrink of any 

arbitrary 3 × 3 window centered at  𝑖, 𝑗  is expressed as: 

 Γ𝑖𝑗 = (1 −
𝑇𝑈

2

𝑆𝑖𝑗
2 )+    (27) 

where, 𝑇𝑈  is the universal threshold and 𝑆𝑖𝑗
2  is the squared sum 

of all wavelet coefficients in the respective 3 × 3 window given 

by: 

 𝑆𝑖𝑗
2 =   𝑌𝑚,𝑛

2𝑖+1
𝑚=𝑖−1

𝑗+1
𝑛=𝑗−1    (28) 

Here, + sign at the end of the formula means to keep the 

positive values while setting it to zero when it is negative. The 

estimated centre wavelet coefficient 𝐹 ij is then calculated from 

its noisy counterpart 𝑌𝑖𝑗  as 𝐹 ij= Γ𝑖𝑗𝑌𝑖𝑗 .  

1.2.5. Neigh Shrink SURE 
Neigh Shrink Sure [15] is an improvement over Neigh Shrink, 

which has disadvantage of using a non-optimal universal 

threshold value and the same neighbouring window size in all 

wavelet sub bands. Neigh Shrink Sure can determine an optimal 

threshold and neighbouring window size for every sub band by 

the Stein‟s unbiased risk estimate (SURE). The optimal 

threshold value and window size are estimated as – 

  𝜆𝑠 , 𝐿𝑠 = arg min 𝑆𝑈𝑅𝐸(𝑤𝑠 , 𝜆, 𝐿)     (29) 

where 𝜆𝑠 represents optimal threshold value for sub band 𝑆, 𝐿𝑠  
represents optimal window size for sub band 𝑆 which 

minimizes 𝑆𝑈𝑅𝐸(𝑤𝑠 , 𝜆, 𝐿).                

1.2.6. Wavelet and guided filter  
A new de-noising method based on an improved wavelet filter 

and guided filter is developed to achieve speckle suppression 

and feature preservation [16]. It uses an improved threshold 

function related to the layer number of wavelet decomposition 

based on the universal wavelet threshold function.  

𝑇𝑗 = 𝑎𝑗𝜎𝑛 2 log𝑀    (30) 

where 𝑗(= 1,2, … 𝐽) are the decomposition layers of wavelet 

transformation, 𝐽 denotes the largest decomposition layer. 𝑎𝑗  

represents the adaptive parameter of the 𝑗 layer. The bigger 

decomposition layer 𝑗, the smaller the parameter 𝑎𝑗   is. 𝑎𝑗   is 

selected as 1/ ln 𝑗 + 1  . The Bayesian maximum a posteriori 

estimation is applied to obtain a new wavelet shrinkage 

algorithm which is used to process the wavelet coefficients of 

the high frequency sub bands in each layer.  

𝑔 =

 
 
 

 
 0                                                                         𝑓 ≤ 𝑇𝑗

𝑠𝑖𝑔𝑛 𝑓 . max  𝑓 −
𝜎𝑛

2+ 𝜎𝑛
4+2𝜎𝑛

2𝜎𝑔
2

 2𝜎𝑔
, 0  𝑓 > 𝑇𝑗

         (31) 

where 𝑔  is the estimation of original signal 𝑔 and 𝑓 is the 

observed signal. The guided filter is used to filter the speckle 

noise in the low frequency sub-band.  
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2. PERFORMANCE EVALUATION OF 

DE-SPECKLING METHODS 
In order to quantitatively evaluate the de-noising methods, the 

performance of the noise reduction methods are measured using 

measures such as, peak signal-to-noise ratio (PSNR) [16], 

structural similarity index (SSIM) [20] and  Pratt‟s Figure of 

Merit (FOM) [16]. 

PSNR index is defined as the ratio between the maximum 

possible power of signal and the power of corrupting noise that 

affects the fidelity of its representation. It is most easily defined 

via the mean squared error (MSE). Given a noise-free 𝑀 ×𝑁 

image 𝑋𝑖𝑗 , and its noisy approximation 𝑋 𝑖𝑗 , MSE is defined as: 

 𝑀𝑆𝐸 =
1

𝑀𝑁
  (𝑋𝑖𝑗 − 𝑋 𝑖𝑗 )2𝑁

𝑗=1
𝑀
𝑖=1                (32) 

where 𝑀 and 𝑁 represents the length and width of the two-

dimensional signal 𝑋, respectively. The PSNR is defined as: 

 𝑃𝑆𝑁𝑅 𝑋, 𝑋  = 10 log(
2552

𝑀𝑆𝐸
)                  (33) 

where 𝑋  is the estimation of signal 𝑋. 

SSIM index is a novel method for measuring the structural 

similarity between two images. MSSIM index is a mean SSIM 

index. MSSIM is given by: 

 𝑀𝑆𝑆𝐼𝑀 𝑋, 𝑌 =
1

𝑀
 𝑆𝑆𝐼𝑀(𝑥𝑗 , 𝑦𝑗 )𝑀
𝑗=1                 (34) 

 𝑆𝑆𝐼𝑀 𝑥, 𝑦 =
(2𝜇𝑥𝜇𝑦+𝐶1)(2𝜎𝑥𝑦 +𝐶2)

(𝜇𝑥
2+𝜇𝑦

2 +𝐶1)(𝜎𝑥
2+𝜎𝑦

2+𝐶2)
                       (35) 

where 𝜇𝑥   , 𝜇𝑦  , 𝜎𝑥
2    , 𝜎𝑦

2  represents the mean and variance of 

the reference image 𝑋  and its estimation 𝑌 respectively. 𝜎𝑥𝑦   
represents the covariance of 𝑋  and 𝑌. 𝐶1 and 𝐶2   are selected as 

positive. The resultant MSSIM index is a decimal value 

between 0 and 1, and value 1 is only reachable in case the two 

pictures have the same structure. 

FOM can be used to objectively evaluate the performance of 

edge detectors, and its definition is:  

𝐹𝑂𝑀 𝑋, 𝑋  =
1

max  𝑁𝑋 ,𝑁𝑋  
 

1

1+𝛼𝑑𝑖
2

𝑁𝑋
𝑖=1             (36) 

where 𝑁𝑋  and 𝑁𝑋  represent the ideal and the actual detected 

edge pixel number, respectively.𝛼 is a constant (usually 

𝛼 = 1/9), and 𝑑𝑖  represents the distance of the 𝑖𝑡𝑕  edge pixel to 

the nearest ideal edge pixel. The value range of FOM is [0 1] 
with 1 being the best result.  

There is another parameter called Method noise, defined as the 

difference between the noisy image and its de-noised image. It 

contains the residual information of the image after the 

application of the de-noising method. The performance of de-

speckling method is good if less structural information and 

more noise is present in its method noise image. 

3. EXPERIMENTAL ANALYSIS 

                
               (a)                     (b)                        (c) 
 

                            

(d)      (e) 

Figure 1 Noise free images of (a) Liver Cyst (b) Gallstone (c) 

Pancreas (d) Stomach (e) Thyroid 

           

(a)               (b)                                  (c) 

 

(d)  (e) 

Figure 2 (a) Original Liver Cyst image (b) Noisy image with 

noise level 0.02 (c) Noise level 0.04 (d) Noise level 0.06 (e) 

Noise level 0.08 

The objective of this work is to carry out a comparative 

evaluation of de-speckling filters on ultrasound images. An 

experiment is performed to compare 14 de-speckling filters 

(including both spatial and wavelet domain filters) and to 

classify them into three categories of „Outstanding‟, „Average‟ 

and „Below average‟. These methods are evaluated in terms of 

above filter assessment parameters. Filters used in the 

experiment are Lee, Frost, Kuan, Median, Wiener, OBNLM, 

Guided, VisuHard Shrink, VisuSoft Shrink, Sure Shrink, Bayes 

Shrink, Neigh Shrink, Neigh Shrink SURE and Wavelet & 

Guided filter. The parameters used in various filters are 

determined empirically for optimal results. In this experiment, 

all algorithms are implemented and run on Matlab R2010a. All 

the wavelet based methods has used the Daubechies 4 wavelet 

basis with two level of decomposition of DWT. 

Experiment is performed on the five images shown in Figure 1 

taken from [21]. Speckle noise is added to these images with 

matlab function „imnoise‟ at different noise levels (=0.02, 0.04, 

0.06, 0.08). Then the abovementioned filters are applied and 

results are obtained for PSNR, MSSIM and FOM. The PSNR, 

MSSIM and FOM results for the five images at different noise 

levels are averaged out and then used for classification.  

                 

             (a)            (b)       (c)     
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            (d)      (e)        (f)     

 

                 

(g)      (h)        (i)      

                 

(j)     (k)        (l) 

                 

(m)        (n)         (o) 

 

             (p)     

Figure 3 (a) Noise free Liver Cyst image (b) Noisy image 

(noise level=0.04) (c)-(p) De-noised images 

In the Figure 3, (c) Lee filtered image (d) Frost filtered image 

(e) Kuan filtered image (f) Wiener filtered image (g) Median 

filtered image (h) Guided filtered image (i) OBNLM filtered 

image (j) Visu Hard filtered image (k) Visu Soft filtered image 

(l) Sure Shrink filtered image (m) Bayes Shrink filtered image 

(n) Neigh Shrink filtered image (o) Neigh Shrink SURE filtered 

image (p) Wavelet & Guided filtered image 

3.1 Comparative analysis using PSNR –  
The average PSNR values of the five ultrasound images used in 

the experiment for each de-speckling filter at each noise level 

are tabulated in Table 1.  

Based on the Average PSNR value calculated for any filter at 

any noise level 𝜇 = 29.7966 and 𝜎 = 1.4780, we classify the 

filters into three categories as: 

Below Average (B): PSNR < 𝜇 − 𝜎  i.e. PSNR < 28.3185 

Average (A): 𝜇 − 𝜎 ≤  PSNR ≤ 𝜇 + 𝜎 i.e. 28.3185 ≤ PSNR ≤ 

31.2796   

Outstanding (O): PSNR > 𝜇 + 𝜎 i.e.  PSNR > 31.2746 

The graph shown in Figure 4 graphically represents the results 

of PSNR values of different de-speckling filters when applied 

on ultrasound images at different speckle noise levels (=0.02, 

0.04, 0.06 and 0.08).  

The graph of Figure 5 is plotted on the basis of average PSNR 

values for any speckle noise level to compare the performance 

of 14 de-speckling filters.  

              Table 1 - Average PSNR of the De-noised Images 

Noise 

Level → 

Filter↓ 

0.02 0.04 0.06 0.08 
Avg. 

PSNR 

Cate

-

gory 

Lee 

Filter 

33.090

5 

30.448

3 

29.033

4 

28.061

8 

30.158

5 
A 

Frost 

filter 

32.490

1 

31.863

3 

31.345

1 

30.859

5 

31.639

5 
O 

Kuan 

Filter 

33.133

4 

30.528

2 

29.142

3 

28.195

1 

30.249

7 
A 

Wiener 

filter 

31.992

7 

28.842

0 

27.085

9 

25.893

3 

28.453

4 
A 

Median 

filter 

32.124

5 

29.508

7 

27.980

9 

26.816

5 

29.107

6 
A 

Guided 

filter 

32.837

2 

31.533

0 

30.117

7 

28.795

9 

30.820

9 
A 

OBNLM 

filter 

32.058

3 

29.844

8 

27.991

6 

26.383

8 

29.069

6 
A 

VisuHar

d Shrink 

31.130

4 

30.316

3 

29.491

2 

28.712

1 

29.912

5 
A 

VisuSoft 

Shrink 

33.531

3 

31.294

9 

29.845

0 

28.691

1 

30.840

5 
A 

Sure 

Shrink 

33.531

3 

31.418

7 

30.254

1 

29.272

4 

31.119

1 
A 

Bayes 

Shrink 

28.570

6 

26.945

8 

26.295

4 

25.990

0 

26.950

4 
B 

Neigh 

Shrink 

31.187

3 

30.635

7 

30.080

1 

29.376

7 

30.319

9 
A 

Neigh 

Shrink 

SURE 

28.955

5 

27.048

6 

26.520

4 

26.012

6 

27.134

2 
B 

Wavelet 

&Guide

d filter 

33.264

3 

31.869

7 

30.658

4 

29.712

0 

31.376

1 
O 

Average 

PSNR 

31.992

6 

30.149

8 

28.988

6 

28.055

2 
29.796

6 
- 

 

 

Figure 4 Graph representing PSNR values for different de-

speckling filters     at different speckle noise levels 

The graphs show that the Frost filter and Wavelet & guided 

filter give higher values of average PSNR than the other filters 

at any level of speckle noise. But Bayes Shrink and Neigh 

Shrink SURE filter do not give good results in terms of PSNR. 

Sure Shrink filter also performs well. 
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3.2 Comparative analysis using MSSIM  
The average MSSIM values of the five ultrasound images used 

in the experiment for each de-speckling filter at each noise level 

are tabulated in Table 2. 

 

Figure 5 Graph representing average PSNR values for 

different de-speckling filters at any speckle noise level 

             Table 2 - Average MSSIM of the De-noised Images 

Noise 

Level 

→ 

Filter↓ 

0.02 0.04 0.06 0.08 

Averag

e 

MSSIM 

Cate

-gory 

Lee  

Filter 

0.877

4 

0.797

3 

0.755

8 

0.718

5 
0.7872 A 

Frost  

filter 

0.891

1 

0.876

6 

0.862

9 

0.849

9 
0.8701 O 

Kuan 

filter 

0.878

1 

0.806

5 

0.759

1 

0.723

0 
0.7916 A 

Wiener  

filter 

0.868

4 

0.793

5 

0.744

5 

0.707

9 
0.7785 A 

Median 

filter 

0.874

0 

0.796

9 

0.741

5 

0.697

9 
0.7775 A 

Guided 

 filter 

0.876

3 

0.845

2 

0.806

1 

0.767

3 
0.8237 A 

OBNL

M filter 

0.881

9 

0.799

8 

0.726

7 

0.667

2 
0.7689 A 

Visu 

Hard 

Shrink 

0.826

4 

0.830

0 

0.820

7 

0.803

4 
0.8201 A 

Visu 

Soft 

Shrink 

0.892

5 

0.859

5 

0.835

7 

0.813

6 
0.8503 A 

Sure 

Shrink 

0.892

5 

0.862

2 

0.841

4 

0.817

4 
0.8533 A 

Bayes  

Shrink 

0.742

5 

0.681

3 

0.658

1 

0.648

1 
0.6825 B 

Neigh 

Shrink 

0.824

3 

0.812

5 

0.806

9 

0.796

7 
0.8101 A 

Neigh 

Shrink 

SURE 

0.756

7 

0.694

1 

0.665

6 

0.642

9 
0.6898 B 

Wavelet 

& 

Guided 

filter 

0.880

5 

0.866

2 

0.847

8 

0.828

5 
0.8557 O 

Average 

MSSIM 

0.854

4 

0.808

6 

0.776

6 

0.748

7 
0.7971 - 

    

Based on the Average MSSIM value calculated for any filter at 

any noise level 𝜇 = 0.7971 and 𝜎 = 0.0571, we classify the 

filters into three categories as: 

Below Average (B): MSSIM < 𝜇 − 𝜎  i.e. MSSIM < 0.7399 

Average (A): 𝜇 − 𝜎 ≤  MSSIM ≤ 𝜇 + 𝜎 i.e. 0.7399 ≤ MSSIM 

≤ 0.8542   

Outstanding (O): MSSIM > 𝜇 + 𝜎  i.e.   MSSIM > 0.8542 

 

Figure 6 Graph representing MSSIM values for different 

de-speckling filters at different speckle noise levels 

The graph shown in Figure 6 graphically represents the results 

of MSSIM values of different de-speckling filters when applied 

on ultrasound images at different speckle noise levels (=0.02, 

0.04, 0.06 and 0.08). 

 

Figure 7 Graph representing average MSSIM values for 

different de-speckling filters at any speckle noise level 

The graph in Figure 7 is plotted on the basis of average MSSIM 

values for any speckle noise level. 

The above graphs indicate that average MSSIM values of the 

Frost filter and Wavelet & guided filter for any speckle noise 

level are higher than the other de-speckling filters. Like PSNR, 

the MSSIM values of Bayes Shrink and Neigh Shrink SURE 

are minimum among all the filters. 

3.3 Comparative analysis using FOM - 
The average FOM values of the five ultrasound images used in 

the experiment for each de-speckling filter at each noise level 

are tabulated in Table 3. 

Based on the Average FOM value (for any filter at any noise 

level) 𝜇 = 0.7854 and 𝜎 = 0.0324 calculated from Table 3, we 

classify the filters into three categories as: 

Below Average (B): FOM  < 𝜇 − 𝜎  i.e. FOM < 0.7529 

Average (A): 𝜇 − 𝜎 ≤ FOM  ≤ 𝜇 + 𝜎 i.e.  0.7529 ≤ FOM ≤  
0.8178  

Outstanding (O): FOM > 𝜇 + 𝜎 i.e. FOM > 0.8178 
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Table 3 - Average FOM of the De-noised Images 

Noise Level 

→ 

Filter↓ 

0.02 0.04 0.06 0.08 
Avg. 

FOM 

Cate-

gory 

Lee filter 0.8437 0.7705 0.7384 0.7234 0.7690 A 

Frost filter 0.8126 0.8238 0.8283 0.8173 0.8205 O 

Kuan filter 0.8444 0.7685 0.7405 0.7234 0.7692 A 

Wiener filter 0.8362 0.7765 0.7526 0.7247 0.7725 A 

Median filter 0.8157 0.7683 0.7265 0.6766 0.7467 B 

Guided filter 0.7360 0.7621 0.7782 0.7650 0.7603 A 

OBNLM 

filter 
0.7696 0.7625 0.7962 0.7738 0.7755 A 

Visu Hard 

Shrink 
0.8321 0.8229 0.8197 0.8044 0.8197 O 

Visu Soft 

Shrink 
0.8422 0.8172 0.8027 0.7959 0.8145 A 

Sure Shrink 0.8422 0.8187 0.8090 0.798 0.8169 A 

Bayes Shrink 0.7661 0.7275 0.7267 0.7145 0.7337 B 

Neigh 

Shrink 
0.8271 0.8346 0.8217 0.8034 0.8217 O 

Neigh Shrink 

SURE 
0.7811 0.7581 0.7425 0.7267 0.7521 B 

Wavelet & 

Guided 

filter 

0.8396 0.8289 0.8186 0.8036 0.8226 O 

Average 

FOM 
0.8134 0.7885 0.7786 0.7607 0.7854 - 

 

Figure 8 Graph representing FOM values for different de-

speckling filters     at different speckle noise levels 

The graph shown in Figure 8 graphically represents the results 

of FOM values of different de-speckling filters when applied on 

ultrasound images at different speckle noise levels (=0.02, 0.04, 

0.06 and 0.08).  

 

 

          Figure 9 Graph representing average FOM values for 

differentde-speckling filters at any speckle noise level 

The graph shown in Figure 9 is plotted on the basis of average 

FOM values for any speckle noise level to compare the 

performance of 14 de-speckling filters.  

The above graphs show that FOM values of Frost filter, Visu 

Hard Shrink, Neigh Shrink and Wavelet & guided filter are 

higher than the FOM values of other filters whereas Median, 

Bayes Shrink and Neigh Shrink SURE have lowest values of 

FOM parameter. 

3.4 Comparative analysis using Method noise  
Figure 10 shows the images of method noise obtained after de-

speckling the noisy liver cyst image having 0.04 speckle noise 

level with all the filters used in the experiment for the purpose 

of comparative analysis.  

               

              (a)      (b)            (c) 

               

(d)     (e)            (f)

     

(g)                      (h)             (i) 

              

(j)       (k)             (l) 
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(m)         (n) 

Figure 10 (a)-(n) Method noise images of liver cyst image 

with 0.04 noise level  

In the Figure 10, Method noise images are obtained after 

application of (a) Lee filter (b) Frost filter (c) Kuan filter (d) 

Wiener filter (e) Median filter (f) Guided filter (g) OBNLM 

filter (h) Visu Hard filter (i) Visu Soft filter (j) Sure Shrink filter 

(k) Bayes Shrink filter (l) Neigh Shrink filter (m) Neigh Shrink 

SURE filter (n) Wavelet & Guided filter 

It follows that the performance of Median, Bayes Shrink and 

Neigh Shrink SURE methods is poor in suppressing speckle as 

their method noise images contain very little noise. Method 

noise image of Guided filters contains speckle noise but 

structural information is also present in it whereas method noise 

images of Wiener and OBNLM filters contain lot of noise and 

less structural details.  

4. CONCLUSION 
In this paper, an extensive comparative analysis of different de-

speckling methods including both spatial filters and wavelet 

methods has been carried out. Filtering is done by seven 

different spatial filters- Lee, Frost, Kuan, Wiener, Median, 

Guided and OBNLM filters and seven different wavelet 

thresholding methods – Visu Hard Shrink, Visu Soft Shrink, 

Sure Shrink Universal, Bayes Shrink, Neigh Shrink, Neigh 

Shrink SURE and Wavelet & Guided filter and their results for 

filter assessment parameters are shown in tables and graphs. 

The quality of de-noised image is high if it has higher value of 

PSNR, MSSIM and FOM. The analysis concludes that Wavelet 

& Guided filter and Frost filter have higher PSNR, MSSIM and 

FOM at different speckle noise level and are classified as 

Outstanding filters whereas Bayes Shrink and Neigh Shrink 

SURE filters are categorised as Below Average filters as they 

do not give satisfactory results. Lee, Kuan, Wiener, Median, 

Guided, OBNLM filter, Visu Hard Shrink, Visu Soft Shrink, 

Sure Shrink and Neigh Shrink filters are placed in the category 

of Average filters.  
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