
International Journal of Computer Applications (0975 – 8887)

Volume 156 – No 14, December 2016

46

Equipartition Search a New Algorithm for Searching

Arindam Agarwal
BVCOE

A-18 Pundrik Vihar,
Pitampura, New Delhi-34

Apoorv Gakhar
BVCOE

c8/10 sector 8
New Delhi-85

Narina Thakur
BVCOE

A4 Paschim vihar
New Delhi-63

ABSTRACT

Searching finds wide application in computer systems and till

date, it remains one of the most fundamental operation. The

need for evolving searching algorithm is never ending. This

paper focuses on proposing a new algorithm namely

Equipartition search algorithm and compares this method to

existing methods by searching in various sequences. Results

have been compiled by taking running time as a major

parameter. As evident from the results, the Equipartition

search method performs better than compared algorithms for

several distributions. Hence the proposed method helps to

reduce the running time in searching operation.

Keywords

Searching, binary search, interpolation search, linear search,

jump search, binary search tree, complexity.

1. INTRODUCTION
Searching is the process of finding an element or item in a

given collection or element set. Searching, till date, remains

one of the most fundamental operations in any computer

system or program, and it has been extensively used in

numerous areas like in database management, personalized

searching and, even in the currently used Operating Systems.

Searching also finds its application in social Networks and

search on the web [1] and information retrieval as Backwards

Search Algorithm [2]. To a great sets or sequences, the cost of

searching for a given key can be extremely high. Hence, there

is a need for efficient searching algorithms [3]. The most

widely used techniques include binary search algorithm and

linear search algorithm. Both of these do not use the

distribution of the elements.

It has been observed that sorting the list helps the process of

searching especially for lists of large sizes [4]. Interpolation

search was developed which assumes a linear distribution.

These algorithms have been discussed in detail in the

upcoming sections.

In this paper, a new search algorithm, namely the

Equipartition search algorithm has been proposed which aims

at reducing the execution time and number of probes (key

comparisons) while searching for a specified key in the given

collection. This algorithm treats the sequence as a linear

collection of equidistant elements and uses this property to

reach the destination of the specified key. The following

sections discuss how searching has evolved and major

characteristics of common searching methods. Section 2, 3

and 4 review and compare the existing search algorithms.

Section 5 describes the newly developed algorithm and

explains its working. Section 7 discusses detailed experiments

and results, and Section 8 concludes this work.

2. SEARCHING ALGORITHMS
Many forms of searching algorithms are present that find the

existence of an element in the given set. Some of the major

searching algorithms are Linear Search, Binary Search, and

Interpolation Search. These algorithms have been discussed

and compared in detail. Sequential search or more commonly

known as linear search is an algorithm that finds the specified

value by comparing each element of the sequence till the end

of the set and stops whenever a match is found [5]. This type

of method does not require an ordered or sorted list. The worst

case complexity comes out to be O(n), where n denotes the

number of elements in the sequence, i.e., the running time is

directly proportional to the number of elements in the data set.

The sequential approach viable when the number of elements

in the data set is considerably low. It starts to deteriorate as

the number of elements increase.

2.1 Binary Search
Binary search or Half-interval search algorithm helps to

determine the existence of particular value in a sequence and

to locate its position in the sorted list by using a divide-and-

conquer approach [6][7]. The searching process starts by

comparing the key value to the middle element, which helps

in discarding half of the items in every iteration. This iterative

process stops when the required value is found, or no more

elements are left to consider. The average case of Binary

Search complexity is O(log(n)) [5]. The binary search

algorithm requires a sorted sequence, but it does not take into

consideration, the distribution of elements. Binary search does

not take any advantage of a possible uniformity in

distribution. Equation (1) below is used to find the next

partitioning index in the binary search algorithm. Binary

search is a dichotomic algorithm uses a three-way comparison

system.

Where pos is the next location. The value at pos and the key

value is compared. Left and right represent the two extreme

indices of the given set.

2.2 Interpolation Search
Unlike Binary Search, Interpolation search uses the

distribution of the elements to search. Interpolation search is

also a dichotomic algorithm which aims at rejecting or

discarding a part of the sequence by exploiting the sorted

nature of the sequence. This algorithm assumes a linear

distribution and calculates a most probable index using

interpolation. This assumption helps in reducing data accesses

[8] while searching. W.W. Peterson first introduced

interpolation search [9] in 1957 which was further studied in

detail by Gonnet [10], Yao and Yao [11]. The average case

complexity of this algorithm is O (log (log n)) [10] [11] [12]

assuming a linear scale distribution, and the average number

of accesses is equal to (log (log n)) + O(1)[13]. Interpolation

search faces the limitation that as the distribution varies from

the assumption of a linear scale, the algorithm starts to fail

and reaches a worst-case complexity of O (n), which is same

as linear search. Interpolation search tree [14] data structure

has been introduced with an average cost of O (log (log n)) for

International Journal of Computer Applications (0975 – 8887)

Volume 156 – No 14, December 2016

47

search operations and a worst case cost of O (log ~ n) to

overcome the above drawback. The augmented sampled

forest, or ASF [15] was introduced by Arne Andersson and

Christer Mattsson to support a large class of distributions

using a dynamic approach. Another drawback is that the

number of comparisons in every iteration is quite high for

interpolation search, limiting its use and wide acceptance.

Also, the additional comparison needed to avoid a divide-by-0

situation slows the process.

The equation (2) below, is used in interpolation search to

calculate the next partitioning index. This equation can be

compared to the standard equation of the line as shown in

equation (3). Equation (4) represents the analogous slope of

assumed linear distribution in interpolation search.

Santoro [16] shows how to combine both interpolation and

binary search to achieve a worst case complexity of binary

search i.e. O (log n). Along with interpolation and binary

search, other methods like Fibonacci search and jump search

also exist. Fibonacci search [17] uses the Fibonacci numbers

to narrow down the key being searched. It runs in the time

complexity of O (log(n)), same as binary search. Jump search

[18] is a modification to sequential search where the step size

varies according to the number of elements. It takes O (√n)

time to complete its search which is much slower than binary

search for large sets.

3. METHODOLOGY
This paper introduces an algorithm which tries to take

advantage of the distribution of the sequence. This is achieved

by comparing it to a series of equidistant elements between

the two extreme elements. By this assumption, the sequence

can be treated as divided into equally sized partitions and the

algorithm can figure out the most probable partition or

location for the key (element to be searched) by using the

following equation(5)

Here pos is the next location, and its value is compared to the

key that is to be searched. Left and right carry the same

meaning as above and arr[left] and arr[right] represent the

value at respective ends. Here, the number of elements is

divided by the sum of first and last elements, resulting in a

partitioning factor, which when multiplied by the key value

provides the most probable location (pos) for the key in the

given set. pos gives the most likely location under the

assumption of equispaced distribution. This allows us to avoid

extra comparisons.

The process starts with verifying that the element to be

searched lies within the given set by comparing it to extremes.

Then it checks if the extremes match the value to be searched.

If yes, the respective values are returned. Following this, a

most probable location is calculated by the equation

mentioned above. Then, similar to binary and interpolation

search, a three-way comparison is made. If the most likely

location has the key element, its index is returned. If the value

at calculated index is less than key value, the left half is

rejected, and the calculated index (pos) becomes the left

extreme. Else if the value at calculated index is greater than

key value, the right half is rejected, and the calculated index

(pos) becomes the right extreme. Hence the proposed

algorithm is also dichotomous in nature. This process is

continued until either the index of the key value is found or

it's non-existence is determined. Unlike interpolation search,

there is no need to verify that extremes are not equal (to avoid

divide-by-0 error). Such a situation can occur when both the

extremes are equal to zero, in which case, the function would

return a value at an earlier stage. Not only this has fewer

comparisons than interpolation search as shown, but it also

works better for the slightly higher degree of distributions,

cases in which the performance of interpolation search

deteriorates rather quickly (discussed further in section 5).

3.1 Algorithm
1. Equipartition_search(left, right, key)

2. if(left>right||arr[left]>key||arr[right]<key)

3. return -1

4. if(arr[left]==key)

5. return left

6. if(arr[right]==key)

7. return right

8. pos=left+(key*(right-left+1))/(arr[right]+arr[left])

9. if(pos<left||pos>right)

10. return -1

11. if(arr[pos]==key)

12. return pos

13. if(arr[pos]>key)

14. return Equipartition_search(left, pos-1, key)

15. if(arr[pos]<key)

16. return Equipartition_search(pos+1, right, key)

17. return -1

3.2 Example
To demonstrate the working of the algorithm mentioned

above, let’s take a randomly generated sequence. Say,

Table 1. Randomly Generated Sequence

loc 0 1 2 3 4 5 6

Arr[loc] 67 158 210 382 499 567 681

Now on applying the algorithm to search for 499 in the above

sequence.

I.e. key = 499

1st iteration

Left = 0

Right = 6

Then,

International Journal of Computer Applications (0975 – 8887)

Volume 156 – No 14, December 2016

48

 (decimal values are neglected)

Return Pos

Index 4 (the required location) is returned in first iteration

itself.

4. EXPERIMENTAL RESULTS

4.1 Experimental Setup
The searching performance of the proposed algorithm is tested

on eight synthetic sequences. Sequences [1, 2, 5, 6, 7, and 8]

have been generated using simple polynomial functions while

sequences [3, 4] are randomly generated sequences. Also, all

of these sequences are 10^6 elements long. All the algorithms

were made to search for every element present in the sequence

and running times are calculated by using CPU clock cycles

of the same machine. The running times have been calculated

individually for a different sequence, and since the number of

elements in every sequence is same, the calculated time has

been used as a direct comparison for efficiency.

4.2 Results and Discussion
We can observe from the below-mentioned Table.2 that,

Equipartition search algorithm outperforms Interpolation in all

the considered test sequences. Since Binary search remains

unaffected by the distribution of elements within the

sequence, the time taken by it remains almost constant

(though it is affected by redundancy), running time for both

Interpolation search and Equipartition search vary noticeably

for different distributions.

Table 2. Execution time in milliseconds

Sno. Distribution or list Equipartition Search Interpolation Seach Binary Search

1
y=x {1,2,3,4,5....} 17.466

20.649 191.308

2

y=2*x

{2,4,6,8,10....} 16.942 19.642
186.944

3

y=random(10)*

{3,17,21,32,49...} 21.857 25.955 187.077

4

y=random(100)*

{5,170,237,323....} 21.904 27.39 185.996

5

y=x^0.25

{1,1,1,1,1....} 140.57
163.842

22.313

6

y=x^0.5

{1,1,1,2,2....} 183.035 205.895 62.781

7

y=x^1.85

{1,3,7,12,19....}
392.386

539.03 187.359

8

y=x^2

{1,4,9,16,25....} 452.169 728.398 186.268

*random(X) denotes a sequence of randomly generated

values, where a number is generated for every X numbers.

For example, random (10) is generated in following manner in

C.

For i goes from 0 to 10^6

arr[i] =rand()%10+10*i;

As evident from Table 1 (above), Equipartition search is

almost ten times as fast as binary search or even more quickly

for sequences[1,2,3,4]. Generalizing these results, we can say

that Equipartition search shows a reduction of more than 80%

in the time required to complete the search, where the

sequence follows a linear and uniform scale distribution

Equipartition search takes less time than interpolation search

due less number of comparisons and more converging partition

approach. Also as the scale of distribution increases, the

differences in the principal assumptions of interpolation (linear

scale) and Equipartition search (equidistant elements) come

into action, making Equipartition search much faster than

Interpolation search.

International Journal of Computer Applications (0975 – 8887)

Volume 156 – No 14, December 2016

49

Fig 1: Comparison between Equipartition and interpolation Search

Fig 2: Comparison between Equipartition, interpolation Search and Binary Search.

Figure 2. (Above) shows how binary search remains almost

unaffected by distribution while the running time is reduced as

redundancy is introduced (y=x^0.25 has redundant elements).

Also as the degree of distribution increases, the performance of

both, Equipartition search and Interpolation search

deteriorates.

5. CONCLUSION AND FUTURE SCOPE
In this paper, a new search technique, namely the equipartition

search has been proposed. Its performance has been compared

to existing search algorithms like Binary and Interpolation

search.

Experimental Results for different data sets demonstrate that

Equipartition Algorithm provides substantial speedups up to

80% time reduction over Binary Search and up to 50%

reduction over Interpolation Search. Results also indicate that

Equipartition search performs very fast for searching in

sequences with a linear distribution or distributions similar to

any arithmetic progressions but slows down as the degree of

distribution increases. Nevertheless, the proposed algorithm

can narrow down the vast differences between Interpolation

and Binary search and can cover for flaws in interpolation

search that lead to its much less application in real world.

Indeed, much remains to be done. Extending Equipartition

search for distribution with higher degrees is one direction.

Also, the Time complexity of the algorithm is yet to be

determined. Exploring its usefulness in Artificial Intelligence,

Graphic Processing, Data Handling and Machine learning tasks

is another interesting avenue for future work. Tree-structured

implementation of the algorithm is another promising direction

for broader scope in searching objects.

6. REFERENCES
[1] Jiang Z, Li J. A tag feedback based sorting algorithm for

social search. InSystems and Informatics (ICSAI), 2012

International Conference on 2012 May 19 (pp. 1482-

1485). IEEE.

[2] Li Z, Zhang C, Hu Y. Backwards Search Algorithm of

Double-Sorted Inter-relevant Successive Trees. In2008

Fifth International Conference on Fuzzy Systems and

Knowledge Discovery 2008 Oct 18.

International Journal of Computer Applications (0975 – 8887)

Volume 156 – No 14, December 2016

50

[3] Horowitz E, Sahni S. Fundamentals of computer

algorithms. Computer Science Press; 1978.

[4] Asagba PO, Osaghae EO, Ogheneovo EE. IS BINARY

SEARCH TECHNIQUE FASTER THAN LINEAR

SEARCH. Scientia Africana. 2010 Dec;9(2):83-92.

[5] Knuth DE. The art of computer programming: sorting

and searching. Pearson Education; 1998.

[6] Cormen TH. Introduction to algorithms. MIT press; 2009

Jul 31.

[7] Weisstein EW. Binary Search. From MathWorld—A

Wolfram Web Resource.

[8] Knuth DE. TheArt ofComputerProgramming, vol. 3.

[9] Peterson WW. Addressing for random-access storage.

IBM journal of Research and Development. 1957 Apr

1;1(2):130-46.

[10] Gonnet GH. Interpolation and interpolation hash

searching. Canada: University of Waterloo; 1977 Feb.

[11] Yao AC, Yao FF. The complexity of searching an

ordered random table. InFoundations of Computer

Science, 1976., 17th Annual Symposium on 1976 Oct 25

(pp. 173-177). IEEE.

[12] Perl Y, Itai A, Avni H. Interpolation search—a log log N

search. Communications of the ACM. 1978 Jul

1;21(7):550-3.

[13] Gonnet GH, Rogers LD, George JA. An algorithmic and

complexity analysis of interpolation search. Acta

Informatica. 1980 Jan 1;13(1):39-52.

[14] Mehlhorn K, Tsakalidis A. Dynamic interpolation search.

Journal of the ACM (JACM). 1993 Jul 1;40(3):621-34.

[15] Andersson A, Mattsson C. Dynamic Interpolation Search

in o (log log n) Time. InInternational Colloquium on

Automata, Languages, and Programming 1993 Jul 5 (pp.

15-27). Springer Berlin Heidelberg.

[16] Santoro N, Sidney JB. Interpolation-binary search.

Information processing letters. 1985 May 10;20(4):179-

81.

[17] Ferguson DE. Fibonaccian searching. Communications

of the ACM. 1960 Dec 1;3(12):648.

[18] Shneiderman B. Jump searching: a fast sequential search

technique. Communications of the ACM. 1978 Oct

1;21(10):831-4.

IJCATM : www.ijcaonline.org

