
International Journal of Computer Applications (0975 – 8887)

Volume 156 – No 14, December 2016

19

An Efficient Source Code Auditing using Fuzzy Decision

Tree

Rani Sahu
Student of information Technology Department

SATI
Vldisha (M.P) India

Shailendra Kumar Shrivastava, PhD
Asst. Prof.of information Technology Department

SATI
Vldisha (M.P) India

ABSTRACT
Here in this paper the discovery of Vulnerabilities in the

Source Codes is proposed. The Proposed Methodology

applied is based on the Concept of Fuzzy Based Decision

Tree. The Methodology adopted here for the Checking of

Codes Vulnerabilities provides efficient discovery of

Vulnerabilities and hence provides improved performance and

high precision and Recall. The Proposed Methodology Audits

the source code and searches the possible vulnerabilities on

the basis of Rules generated Fuzzy Decision Tree. Various

Experimental results are achieved on numerous datasets and

shows that the proposed methodology provides better

accuracy in comparison.

Keywords
Software, Auditing, Fuzzing, Vulnerabilities, Fault Prediction,

Vulnerabilities Prediction

1. INTRODUCTION
As gradually more secure the ease of information technology

the security of computer systems is becoming a developing

apprehension. To present it secure network protocols structural

designs and cryptographic algorithms are essential. Due to the

lack of ability of a program to recognize non-trivial properties

of another program, the generic problem of ending software

vulnerabilities is undecidable. However, the efficiency of

traditional fuzz testing tools is usually very poor due to the

blindness of test generation. As working [1] as on involuntary

fuzzing organization for software vulnerability detection, this

combines fuzzing with symbolic execution and taint analysis

techniques to tackle the above problem. As a consequence,

modern represents for marking security flaws are either

inadequate to specific types of vulnerabilities or build on

deadly and manual auditing. Particularly, securing large

software projects, for example an operating system kernel,

look likes a scaring job as a single flaw may challenge the

security of the complete code base. Even though some classes

of vulnerabilities reoccurring all the way through the software

background exist for a long time, for example buffer overflows

and format string vulnerabilities, automatically detecting their

incarnations in specific software projects is often still not

possible without significant expert knowledge [2]. The

techniques that have been proposed include source code

auditing, static program analysis, dynamic program analysis,

and formal verification [3- 5]. However, many of the methods

lie on dangerous conclusions of the range concerning the cost-

effectiveness as represented in Figure 1.1. Static sequence

investigates are utilized by many developers to test their

programs because they are efficient in discovering some trivial

bugs that can be trapped by the laws that describe security

Breaches with very tiny store. On the other hand, they are in

adequate in that the presentation is only good as the laws.

Figure 1: Software Bug Ending Systems Diagram

Mutual system used by many sanctuary scholars is a sequence

challenging system called fuzzing. Fuzzing finds bugs in a

target program by natively executing it with randomly mutated

or generated inputs while monitoring the execution for

abnormal crashes. Fuzzing is good at quickly exploring the

program code in depth for the reason that it runs the objective

program inhabitant with concrete inputs. On the other hand,

due to its scenery, fuzzing often suffers from low code

reporting trouble. Symbolic execution is another method that

has in recent times gotten the awareness of security

researchers. On the contrary to fuzzing, representative

performance tests a program by pleasuring the program’s input

as symbols and understanding the program over these symbolic

inputs. In presumption, symbolic execution is assurance to be

effectual in accomplish high code coverage yet this usually

needs exponential reserve which is not realistic for many real-

world programs. Our purpose is to discover more bugs faster

than conventional approaches. With the purpose of achieve this

aim; we need to obtain high code coverage in reasonable

resource bound (e.g. computing power and time). High code

reporting implies both breadth and depth in exploration of the

program. Although not achieve the best code coverage or

speed, Aim to find the sweet spot in cost-effective way to gain

higher code reporting than the fuzzer and higher speed than the

representative executor as shown in Figure 1.1.

Naturally, security researchers have been dynamically

designing automated vulnerability analysis methods. Many

approaches subsist dropping into three main classes: static,

active, and concolic examination schemes. These approaches

have various advantages and disadvantages. Static analysis

systems can give verifiable assurances – that is a static analysis

system can demonstrate with confidence that a given piece of

binary code is protected. On the other hand, such schemes have

two basic problems: they are inaccurate resulting in a huge

quantity of false positives and they cannot give “actionable

input” (i.e., an illustration of a specific input that can trigger a

International Journal of Computer Applications (0975 – 8887)

Volume 156 – No 14, December 2016

20

detected liability). Dynamic analysis systems, for example

“fuzzers”, check the inhabitant execution of an application to

recognize flaws. When flaws are distinguished these systems

can give actionable inputs to trigger them. On the other hand,

these schemes suffer from they require for “input test cases” to

constrain implementation. Without an comprehensive set of

test cases, which needs significant guidebook attempt to

produce, the usability of such schemes is imperfect. Finally,

concolic execution engines use program understanding and

restriction solving methods to produce inputs to travel around

the circumstances gap of the binary in an effort to accomplish

and trigger vulnerabilities. On the other hand, because such

schemes are capable to trigger a large amount of paths in the

binary (i.e., for a conditional branch, they often produce an

input that physically security researchers have been

dynamically planning automated vulnerability analysis

methods. Many approaches subsist, dropping into three main

classes: static, active, and concolic investigation systems.

These approaches have various advantages and disadvantages.

Static analysis systems can provide provable guarantees – that

is, a static analysis system can demonstrate with assurance that

a given piece of binary code is protected. On the other hand

such systems have two essential disadvantages: they are

inaccurate resulting in a huge amount of false positives and

they cannot make available “actionable input” (i.e., an example

of a specific input that can trigger a distinguished

vulnerability). Dynamic analysis schemes, such as “fuzzers”,

monitor the inhabitant execution of an application to recognize

flaws.

When flaws are detected these methods can give actionable

inputs to trigger them. On the other hand, these methods suffer

from they require for “input test cases” to drive execution.

Without incomprehensive set of test cases which needs

significant instruction manual attempt to produce the usability

of such schemes is inadequate. To conclude, concolic

execution engines operate program understanding and restraint

solving methods to produce inputs to investigate the state space

of the binary in an effort to accomplish and trigger

vulnerabilities. On the other hand, because such schemes are

proficient to trigger a large number of paths in the binary (i.e.,

for a conditional branch, they frequently generate an input

conditions

In this work, here we focus on vulnerabilities in software, and

how they occur and for this reason the schemes regard as are

software systems. Additionally, they prohibit vulnerabilities in

operation and management from the study to give attention to

completely on those flaws observable and fixable in program

code i.e., vulnerabilities in a program's design and completion

With these constraints in mind, here they focused on

vulnerabilities are described to be a subset of flaws making

understandable that determining flaws can be think a first step

in vulnerability discovery. On the other hand, constrict in on

those flaws that infringe security policies is equally significant

consequently, in bare distinction to techniques for the detection

of defects expanded in software engineering [6, 7], the focus

lies on recognizing flaws that are extremely feasible to give the

attacker with a certain increase and that can in information be

triggered by an attacker.

2. PROPOSED METHODOLOGY
The technique implemented here for the Auditing of Source

Codes is based on the concept of feature selection using PSO-

SVM and then classification of these features can be done

using decision tree generated using Fuzzy logic. The proposed

methodology works in the following phases:

2.1 Fuzzy based Decision Tree Classifier
A Decision tree is a recursive form of tree consisting of nodes

and leaves on the basis of which a decision is taken from the

dataset. It is constructed on the basis of attributes dependency

value in which the root node is the most dependent attribute of

the dataset. A decision tree is also used for the classification

of the dataset. Here Fuzzy Logic is used as the superset of

Boolean logic that is used for the identification and

classification of classes from the dataset.

2.1.1 Proposed Algorithm
Fuzzy Decision Tree (T, F , O)

T- Training Dataset Features

F- PIMA Indian Input Dataset features selected from PSO-

SVM

O- Output classified features

1. Initially an empty Tree ‘t’

2. For each of the training features or attributes present in

the dataset

3. Compute Information & Entropy using

Where I denotes Information of the dataset based on classes C1

& c2.

4. Compute Gain using

Where, I is information & E is the entropy of the attribute

5. Select the attribute with highest information gain

6. Update the tree‘t’ the attribute as the root node to ‘t’.

7. Remove the attribute from the relation set

8. End

Figure 2.1: Fuzzy Decision Tree Algorithm

Now we propose our algorithm to generate a decision tree in

the following way.

3. EXPERIMENTAL RESULT
Describes the execution details and parameter detail used in

work and results are shown and analysed. Results are

compared with fuzzy decision tree algorithm based on Particle

Swarm Optimism (PSO)-Support Vector machine (SVM)

techniques.

3.1 Formula Used in Result
The classification algorithms based on Precision, Recall, F-

measure, and Area Under Curve (AUC) or ROC (Receiver

Operating Characteristics) as argues that AUC is the best

measure to report the classification accuracy.

Precision measures how many of the vulnerable instances

returned by a model are actually vulnerable. The higher the

precision is, the fewer false positives exist.

Recall measures how many of the vulnerable instances are

actually returned by a model. The higher the recall is, the

International Journal of Computer Applications (0975 – 8887)

Volume 156 – No 14, December 2016

21

fewer false negatives exist.

 F-Measure is the harmonic mean of Precision and Recall.

A binary classifier, which makes two possible errors:

1. False positive (FPR)

2. True Positive(TPR)

False Positive Rates (FPR): A correctly classified vulnerable

class is a False positive (FP).

 FP=FP/(FP+TP)

True Positive Rates (TPR): A correctly classified non-

vulnerable class is a True positive(TP).

 TP=TP/(TP+TP)

Receiver Operating Characteristic (ROC) Curve:

It is a graphical approach for displaying the trade off between

true positive rate (TPR) and false positive rate (FPR) of a

classifier.

TPR = positives correctly classified/total positives.

FPR = negatives incorrectly classified/total negatives.

Experimental Setup
The following software require to an implementation of the

proposed system.

Software Requirement:
The planned work is implemented on Netbeans-6.9-ml

windows. All analysis and graphs are planned in using

Netbeans. Netbeans provides tools to accumulate, analyse,

and visualize information, sanctioning you to realize insight

into your information in a fraction of the time it would take

using spreadsheets or traditional programming languages.

Additionally document and results sharing through plots and

reports or as revealed Netbeans code is also possible in

Netbeans.

The Datasets
This is a Promise Software Engineering Repository data set

made publicly. Available in order to encourage repeatable,

refutable, verifiable, and/or Improvable predictive models of

software engineering. If you publish material based on

PROMISE data sets then, please follow. The acknowledgment

guidelines posted on the PROMISE repository web page

http://promise.site.uottowa.ca/SERepository.

a. Title: AR1 /Software Defect Prediction

b. Date: February, 4th, 2009

c. Data from a Turkish white-goods manufacturer

d. Donated by: Software Research Laboratory (Soft

lab),

e. Bogazici University, Istanbul, Turkey

Description:

1. Embedded software in a white-goods product.

2. Implemented in C.

3. Consists of 121 modules (9 defective / 112 defect-

free)

4. 29 static code attributes (McCabe, Halstead and

LOC measures) and 1 defect information(false/true)

5. Function/method level static code attributes are

collected using

4. RESULTS ANALYSIS

International Journal of Computer Applications (0975 – 8887)

Volume 156 – No 14, December 2016

22

Datasets Correctly Classified Instances
Mean Absolute

Error

TP

Rate

FP

Rate
Precision Recall

F-

Measure
ROC

ar1 99.17% 0.0083 0.889 0.111 0.991 0.889 0.941 0.944

ar3 100% 0 1 0 1 1 1 1

ar4 81.31% 0.1869 1 0 0.813 1 0.897 0.5

ar5 77.77% 0.22 1 0 0.778 1 0.875 0.5

ar6 85.15% 0.1485 1 0 0.851 1 0.92 0.5

5. CONCLUSION AND FUTURE WORK
The paper deals with the basic concept of software auditing

and various techniques implemented for auditing as well as

finding their advantages and limitations. A major cause of this

is that many developers are not equipped with the right skills

to develop secure code. Because of limited time and

resources, web engineers need help in recognizing vulnerable

components. The proposed Methodology adopted here for the

Auditing of Source codes using Fuzz based Decision Tree

provides better results in terms of Precision and Recall and

Accuracy.

6. REFERENCES
[1] Jun Cai, Jinquan Men, Automatic Software Vulnerability

Detection Based on Guided Deep Fuzzing”, IEEE 2014.

[2] S. Heelan. Vulnerability detection systems: Think

cyborg, not robot. IEEE Security & Privacy, 9(3):74–77,

2011.

[3] Hong-Zu Chou, I-Hui Lin, Ching-Sung Yang, Kai-Hui

Chang, and SyYenKuo. Enhancing bug hunting using

high-level symbolic simulation. In Proceedings of the

19th ACM Great Lakes symposium on VLSI, GLSVLSI

’09, pages 417–420, NewYork, NY, USA, 2009.

[4] Patrice Godefroid, Michael Y. Levin, and David Molnar.

Sage: Whitebox fuzzing for security testing. Queue,

10(1):20:20–20:27, January 2012.

[5] Daniel Quinlan and Thomas Panas.Source code and

binary analysis of software defects. In Proceedings of the

5th Annual Workshop on Cyber Security and

Information Intelligence Research: Cyber Security and

Information Intelligence Challenges and Strategies,

CSIIRW ’09, pages 40:1–40:4, New York, NY, USA,

2009.

[6] Cadar, C., Dunbar, D., and Engler, D. R. Klee:

Unassisted and automatic generation of high-coverage

tests for complex systems programs. In Proc. of USENIX

Symposium on Operating Systems Design and

Implementation (OSDI), 2008.

[7] Li, Z., Lu, S., Myagmar, S., and Zhou, Y. (2006).Cp-

miner: Finding copy-paste and related bugs in large-scale

software code. IEEE Transactions on Software

Engineering, 32:176-192

[8] Ferreira AL, Machado RJ, Paulk MC. Size and

complexity attributes for multimodal improvement

framework taxonomy. Software Engineering and

Advanced Applications (SEAA), 2010 36th

EUROMICRO Conference on.2010; 306–309. DOI:

10.1109/ICSEA.2009.80.

[9] M. Gegick, L. Williams, J. Osborne and M. Vouk,

“Prioritizing software security fortification through code-

level metrics”, In Proceedings of the 4th ACM workshop

on Quality of protection, pages 31–38. ACM, (2008).

[10] K.-S. Joo and J.-W. Woo, “Development of object-

oriented analysis and design methodology for secure web

applications”, International Journal of Security and Its

Applications, vol. 8, no. 1, (2014), pp. 71–80.

[11] Y. Shin, A. Meneely, L. Williams and J. Osborne,

“Evaluating complexity, code churn, and developer

activity metrics as indicators of software vulnerabilities”,

IEEE Transactions on Software Engineering, vol. 37, no.

6, (2011), pp. 772–787.

[12] Wheeler, David A. and Rama S. Moorthy, “SOAR for

Software Vulnerability Detection, test and Evaluation,”

IDA paper P-5061, July 2014.

[13] I. Chowdhury and M. Zulkernine, “Using complexity,

coupling, and cohesion metrics as early indicators of

vulnerabilities”, Journal of Systems Architecture, vol. 57,

no. 3, (2011), pp. 294–313.

[14] I. Medeiros, N. F. Neves and M. Correia, “Automatic

detection and correction of web application

vulnerabilities using data mining to predict false

positives”, In Proceedings of the 23rd international

conference on World wide web, ACM, (2014), pp. 63–

74.

[15] Siviy J, Kirwan P, Marino L, Morley J. Maximizing your

process improvement ROI through harmonization. 2008;

Available from:

http://www.sei.cmu.edu/library/assets/multimodelExecuti

ve_wp_harmonizationROI_032008_v1.pdf [27 February

2009].

IJCATM : www.ijcaonline.org

