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ABSTRACT 
Here in this paper the discovery of Vulnerabilities in the 

Source Codes is proposed. The Proposed Methodology 

applied is based on the Concept of Fuzzy Based Decision 

Tree. The Methodology adopted here for the Checking of 

Codes Vulnerabilities provides efficient discovery of 

Vulnerabilities and hence provides improved performance and 

high precision and Recall. The Proposed Methodology Audits 

the source code and searches the possible vulnerabilities on 

the basis of Rules generated Fuzzy Decision Tree. Various 

Experimental results are achieved on numerous datasets and 

shows that the proposed methodology provides better 

accuracy in comparison. 
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1. INTRODUCTION 
As gradually more secure the ease of information technology 

the security of computer systems is becoming a developing 

apprehension. To present it secure network protocols structural 

designs and cryptographic algorithms are essential. Due to the 

lack of ability of a program to recognize non-trivial properties 

of another program, the generic problem of ending software 

vulnerabilities is undecidable. However, the efficiency of 

traditional fuzz testing tools is usually very poor due to the 

blindness of test generation. As working [1] as on involuntary 

fuzzing organization for software vulnerability detection, this 

combines fuzzing with symbolic execution and taint analysis 

techniques to tackle the above problem. As a consequence, 

modern represents for marking security flaws are either 

inadequate to specific types of vulnerabilities or build on 

deadly and manual auditing. Particularly, securing large 

software projects, for example an operating system kernel, 

look likes a scaring job as a single flaw may challenge the 

security of the complete code base. Even though some classes 

of vulnerabilities reoccurring all the way through the software 

background exist for a long time, for example buffer overflows 

and format string vulnerabilities, automatically detecting their 

incarnations in specific software projects is often still not 

possible without significant expert knowledge [2]. The 

techniques that have been proposed include source code 

auditing, static program analysis, dynamic program analysis, 

and formal verification [3- 5]. However, many of the methods 

lie on dangerous conclusions of the range concerning the cost-

effectiveness as represented in Figure 1.1. Static sequence 

investigates are utilized by many developers to test their 

programs because they are efficient in discovering some trivial 

bugs that can be trapped by the laws that describe security  

Breaches with very tiny store. On the other hand, they are in 

adequate in that the presentation is only good as the laws. 

 

Figure 1: Software Bug Ending Systems Diagram 

Mutual system used by many sanctuary scholars is a sequence 

challenging system called fuzzing. Fuzzing finds bugs in a 

target program by natively executing it with randomly mutated 

or generated inputs while monitoring the execution for 

abnormal crashes. Fuzzing is good at quickly exploring the 

program code in depth for the reason that it runs the objective 

program inhabitant with concrete inputs. On the other hand, 

due to its scenery, fuzzing often suffers from low code 

reporting trouble. Symbolic execution is another method that 

has in recent times gotten the awareness of security 

researchers. On the contrary to fuzzing, representative 

performance tests a program by pleasuring the program’s input 

as symbols and understanding the program over these symbolic 

inputs. In presumption, symbolic execution is assurance to be 

effectual in accomplish high code coverage yet this usually 

needs exponential reserve which is not realistic for many real-

world programs. Our purpose is to discover more bugs faster 

than conventional approaches. With the purpose of achieve this 

aim; we need to obtain high code coverage in reasonable 

resource bound (e.g. computing power and time). High code 

reporting implies both breadth and depth in exploration of the 

program. Although not achieve the best code coverage or 

speed, Aim to find the sweet spot in cost-effective way to gain 

higher code reporting than the fuzzer and higher speed than the 

representative executor as shown in Figure 1.1. 

Naturally, security researchers have been dynamically 

designing automated vulnerability analysis methods. Many 

approaches subsist dropping into three main classes: static, 

active, and concolic examination schemes. These approaches 

have various advantages and disadvantages. Static analysis 

systems can give verifiable assurances – that is a static analysis 

system can demonstrate with confidence that a given piece of 

binary code is protected. On the other hand, such schemes have 

two basic problems: they are inaccurate resulting in a huge 

quantity of false positives and they cannot give “actionable 

input” (i.e., an illustration of a specific input that can trigger a 
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detected liability). Dynamic analysis systems, for example 

“fuzzers”, check the inhabitant execution of an application to 

recognize flaws. When flaws are distinguished these systems 

can give actionable inputs to trigger them. On the other hand, 

these schemes suffer from they require for “input test cases” to 

constrain implementation. Without an comprehensive set of 

test cases, which needs significant guidebook attempt to 

produce, the usability of such schemes is imperfect. Finally, 

concolic execution engines use program understanding and 

restriction solving methods to produce inputs to travel around 

the circumstances gap of the binary in an effort to accomplish 

and trigger vulnerabilities. On the other hand, because such 

schemes are capable to trigger a large amount of paths in the 

binary (i.e., for a conditional branch, they often produce an 

input that physically security researchers have been 

dynamically planning automated vulnerability analysis 

methods. Many approaches subsist, dropping into three main 

classes: static, active, and concolic investigation systems. 

These approaches have various advantages and disadvantages. 

Static analysis systems can provide provable guarantees – that 

is, a static analysis system can demonstrate with assurance that 

a given piece of binary code is protected. On the other hand 

such systems have two essential disadvantages: they are 

inaccurate resulting in a huge amount of false positives and 

they cannot make available “actionable input” (i.e., an example 

of a specific input that can trigger a distinguished 

vulnerability). Dynamic analysis schemes, such as “fuzzers”, 

monitor the inhabitant execution of an application to recognize 

flaws. 

When flaws are detected these methods can give actionable 

inputs to trigger them. On the other hand, these methods suffer 

from they require for “input test cases” to drive execution. 

Without incomprehensive set of test cases which needs 

significant instruction manual attempt to produce the usability 

of such schemes is inadequate. To conclude, concolic 

execution engines operate program understanding and restraint 

solving methods to produce inputs to investigate the state space 

of the binary in an effort to accomplish and trigger 

vulnerabilities. On the other hand, because such schemes are 

proficient to trigger a large number of paths in the binary (i.e., 

for a conditional branch, they frequently generate an input 

conditions 

In this work, here we focus on vulnerabilities in software, and 

how they occur and for this reason the schemes regard as are 

software systems. Additionally, they prohibit vulnerabilities in 

operation and management from the study to give attention to 

completely on those flaws observable and fixable in program 

code i.e., vulnerabilities in a program's design and completion 

With these constraints in mind, here they focused on 

vulnerabilities are described to be a subset of flaws making 

understandable that determining flaws can be think a first step 

in vulnerability discovery. On the other hand, constrict in on 

those flaws that infringe security policies is equally significant 

consequently, in bare distinction to techniques for the detection 

of defects expanded in software engineering [6, 7], the focus 

lies on recognizing flaws that are extremely feasible to give the 

attacker with a certain increase and that can in information be 

triggered by an attacker. 

2. PROPOSED METHODOLOGY 
The technique implemented here for the Auditing of Source 

Codes is based on the concept of feature selection using PSO-

SVM and then classification of these features can be done 

using decision tree generated using Fuzzy logic. The proposed 

methodology works in the following phases: 

2.1 Fuzzy based Decision Tree Classifier 
A Decision tree is a recursive form of tree consisting of nodes 

and leaves on the basis of which a decision is taken from the 

dataset. It is constructed on the basis of attributes dependency 

value in which the root node is the most dependent attribute of 

the dataset. A decision tree is also used for the classification 

of the dataset. Here Fuzzy Logic is used as the superset of 

Boolean logic that is used for the identification and 

classification of classes from the dataset.  

2.1.1 Proposed Algorithm 
Fuzzy Decision Tree (T, F , O) 

T- Training Dataset Features  

F- PIMA Indian Input Dataset features selected from PSO-

SVM 

O- Output classified features 

1. Initially an empty Tree ‘t’      

2. For each of the training features or attributes present in 

the dataset 

3. Compute Information & Entropy using 

          
  

       
    

  

       
 

 
  

       
     

  

       
  

Where I denotes Information of the dataset based on classes C1 

& c2. 

4. Compute Gain using 

                                          

Where, I is information & E is the entropy of the attribute 

5. Select the attribute with highest information gain 

6. Update the tree‘t’ the attribute as the root node to ‘t’. 

7. Remove the attribute from the relation set  

8. End 

 
Figure 2.1: Fuzzy Decision Tree Algorithm 

Now we propose our algorithm to generate a decision tree in 

the following way. 

3. EXPERIMENTAL RESULT 
Describes the execution details and parameter detail used in 

work and results are shown and analysed. Results are 

compared with fuzzy decision tree algorithm based on Particle 

Swarm Optimism (PSO)-Support Vector machine (SVM)  

techniques. 

3.1 Formula Used in Result 
The classification algorithms based on Precision, Recall, F-

measure, and Area Under Curve (AUC) or ROC (Receiver 

Operating Characteristics) as argues that AUC is the best 

measure to report the classification accuracy.  

Precision measures how many of the vulnerable instances 

returned by a model are actually vulnerable. The higher the 

precision is, the fewer false positives exist.  

Recall measures how many of the vulnerable instances are 

actually returned by a model. The higher the recall is, the 
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fewer false negatives exist. 

 F-Measure is the harmonic mean of Precision and Recall.   

A binary classifier, which makes two possible errors: 

1. False positive (FPR)  

2. True Positive(TPR)  

False Positive Rates (FPR): A correctly classified vulnerable 

class is a False positive (FP). 

                                FP=FP/(FP+TP) 

True Positive Rates (TPR): A correctly classified non-

vulnerable class is a True positive(TP).  

                               TP=TP/(TP+TP) 

Receiver Operating Characteristic (ROC) Curve: 

It is a graphical approach for displaying the trade off between 

true positive rate (TPR) and false positive rate (FPR) of a 

classifier. 

TPR = positives correctly classified/total positives. 

FPR = negatives incorrectly classified/total negatives. 

Experimental Setup 
The following software require to an implementation of the 

proposed system. 

Software Requirement: 
The planned work is implemented on Netbeans-6.9-ml 

windows. All analysis and graphs are planned in using 

Netbeans. Netbeans provides tools to accumulate, analyse, 

and visualize information, sanctioning you to realize insight 

into your information in a fraction of the time it would take 

using spreadsheets or traditional programming languages. 

Additionally document and results sharing through plots and 

reports or as revealed Netbeans code is also possible in 

Netbeans. 

The Datasets 
This is a Promise Software Engineering Repository data set 

made publicly. Available in order to encourage repeatable, 

refutable, verifiable, and/or  Improvable predictive models of 

software engineering. If you publish material based on 

PROMISE data sets then, please follow. The acknowledgment 

guidelines posted on the PROMISE repository web page 

http://promise.site.uottowa.ca/SERepository. 

a. Title: AR1 /Software Defect Prediction 

b. Date: February, 4th, 2009 

c. Data from a Turkish white-goods manufacturer 

d. Donated by: Software Research Laboratory     (Soft 

lab),  

e. Bogazici University, Istanbul, Turkey 

Description: 

1. Embedded software in a white-goods product. 

2. Implemented in C. 

3. Consists of 121 modules (9 defective / 112 defect-

free) 

4. 29 static code attributes (McCabe, Halstead and 

LOC measures) and 1 defect information(false/true) 

5. Function/method level static code attributes are 

collected using  

4. RESULTS ANALYSIS 
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Datasets Correctly Classified Instances 
Mean Absolute 

Error 

TP 

Rate 

FP 

Rate 
Precision  Recall 

F-

Measure 
ROC 

ar1 99.17% 0.0083 0.889 0.111 0.991 0.889 0.941 0.944 

ar3 100% 0 1 0 1 1 1 1 

ar4 81.31% 0.1869 1 0 0.813 1 0.897 0.5 

ar5 77.77% 0.22 1 0 0.778 1 0.875 0.5 

ar6 85.15% 0.1485 1 0 0.851 1 0.92 0.5 

 

5. CONCLUSION AND FUTURE WORK 
The paper deals with the basic concept of software auditing 

and various techniques implemented for auditing as well as 

finding their advantages and limitations. A major cause of this 

is that many developers are not equipped with the right skills 

to develop secure code. Because of limited time and 

resources, web engineers need help in recognizing vulnerable 

components. The proposed Methodology adopted here for the 

Auditing of Source codes using Fuzz based Decision Tree 

provides better results in terms of Precision and Recall and 

Accuracy. 
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