
International Journal of Computer Applications (0975 – 8887)

Volume 156 – No 4, December 2016

32

Study of Mobile Agent Server Architectures for

Homogeneous and Heterogeneous Distributed Systems

Rahul Singh Chowhan
M.E. Scholar, Dept. of C.S.E.
M.B.M. Engineering College

Jodhpur, India

Rajesh Purohit, PhD
 Professor and Head, Dept. of C.S.E.

 M.B.M. Engineering College
Jodhpur, India

ABSTRACT

Mobile agents are becoming pre-eminent by not only

outperforming in comparison with the conventional techniques

such as RMI, RPC etc. but also by surpassing their loopholes.

They promise to solve many major issues of high network

bandwidth consumption during communication, bottleneck

problem of centralized system, even can act as intrusion

detection agents, and may also be used as monitoring of

various nodes in multifarious domains like e-commerce

services, for load balancing in cluster, health care monitoring

systems, air traffic control systems, and many more. In this

paper, the agent server required to allow mobile agents on any

machine in network are compared for homogenous and

heterogeneous nodes. The homogeneity and heterogeneity of

nodes is defined at the hardware level and type of OS

installation. Basically, a mobile agent is moving the code to

data rather data to code. Agent and agent server are two

different parts, in which agent is a computational, operational

and communicative entity while the agent server takes care of

fundamentals execution and security features. To all intents

and purposes, these agent servers help mobile agents to interact

and engage with the underlying system acting as an execution

environment for them. Agent servers, also called as agency or

agent runtime environment, may differ for different platforms

and this contrast lies in the software architectural components

which they contribute being a middle layer in between the

mobile agents and system platform. This paper focuses on

architectural dissimilitude between agencies of heterogeneous

and homogeneous distributed systems.

Keywords
component; mobile agents; software architecture; distributed

systems; agent migration; marshling; agent trasnfer protocol

1. INTRODUCTION
Mobile Agents are traveling intelligence that adds up a new
level of abstraction between clients and requested resources, yet
maintaining the autonomy and transparency while
communicating at remote hosts. This notion of mobile agent has
influenced diverse field of disciplines like: computer science &
networks, information technology, machine learning, object-
oriented programming, applied artificial intelligence, robotics &
software engineering, human-computer interaction, distributed
and parallel systems, mobile & control systems, data extraction
and mining, decision-making systems, information retrieval, e-
commerce, big-data management, SaaaS and many more [1][2].

Any mobile agent platform has segregation into: mobile agent
and runtime environment. The mobile agent is the software code
on move while runtime system is the mobile agent server that
approves the execution, communication, migration and
cooperation of mobile agents. Each runtime environment runs
atop the operating system as a middleware. It serves the
execution environment for agent programs running itself on the

top of the Java virtual machine (JVM) specified for the
particular machine.

The software architecture of mobile agent server must continue
to abide on all network nodes to which agents can accost. This
means that mobile agent can be allowed on any node for
execution only after installation of mobile agent server [3]. This
serves the mobile agents with a runtime environment on the
current machine. When a mobile agent needs to migrate from
current context to destination context, it simply requests the
local runtime system then runtime system migrates the mobile
agent to new runtime environment carrying its data state,
execution state and implementation along with it [4].

Broadly, the requisites to concede the mobile agents on remote
hosts or across the network of connected nodes for
communication, migration, storage and security purposes are as
follows [5]:

 Standard Execution Platform/Language

 Agent Persistence

 Inter-agent and Agent-agency Communication
Mechanism

 Cooperativeness and Collaboration in Multi-agent
Systems

 Agent Authorization and Security

Apart from above mentioned the mobile agents also need the
mobile agent server/agency for local interaction with the
underlying execution environment [6]. In distributed systems,
clients can have different capabilities of resources available
with them it might also happen that clients are not stationary at
a location. Secondly, the client hosts might be situated or has
moved to a distant location with less network connectivity. [1]

Customarily, mobile agent is defined as a self-sustaining and
standalone software entity which does its work on behalf of a
user. An agent may even continue to run involuntarily
regardless of its owner’s direct connectivity and is capable to
execute on multiple nodes in the network. Substantially, this
mobility feature further improves the outcome of each
computing element participating in the network. This enables
the whole computing domain to handle a number of tasks.
Mobile agents have been put forward as a middleware
technology to deal with challenges like high latency,
intermittent connections, asynchronous and autonomous
execution, huge transfers and disconnected operation. [7]

2. AGENT EXECUTION PLATFORM

AND TRANSFER PROTOCOL
Agent execution platform comprises of agent server that is also
runtime environment and container for mobile agents. It allows
the management, monitoring, execution and other life cycle
events of all mobile agents residing on the system [8]. In single
agent system, many agents can execute independent of each

International Journal of Computer Applications (0975 – 8887)

Volume 156 – No 4, December 2016

33

other whereas multi-agent runtime system allows execution as
well as communication of multiple agents with each other. The
existing agent execution platform also provides with some kind
of communication mechanism like request/reply mechanism,
publish/subscribe mechanism [9], push/pull mechanism [10],
etc. Each agent can access the fundamental methods by
invoking APIs provided by runtime system it is residing on
currently. The agent uses the go command only rest of required
functioning is carried by the agent server. It halts the execution
of agent, serialized and marshals it to send it to destination via
network communication protocol like TCP/IP, HTTP etc. On
the receiver side, agent reconstituted and started again. Apart
from this execution platform may also have introduce a mobile
agent tracking and locating techniques such as central servers
scheme, broadcast/multicast scheme, forwarding pointer scheme
and hierarchical scheme [11].

The transport layer takes care of migration of an agent from
current host to the destination host in stream of bytes that
contains class implementations as well as the serialized
data/execution state of the mobile agent. This layer is specified
as an API (Application Programmable Interface) and is called as
Agent Transfer and Communication Interface (ATCI) [9] [12].

Figure-1 Agent Migration Parameters

It qualifies the agents’ runtime environment/agent server to use
the transport layer independent of protocol. The implementation
of ATCI is responsible for establishing a communication
between agents as well as their sending/receiving on current
context. The current Agents implementation uses the Agent
Transfer Protocol (ATP) [13].

ATP is an application-level protocol for transmission of mobile
agents in distributed agent-based systems. ATP is modeled on
the top of HTTP protocol which is used to deploy the content of
an agent in an agent-system-independent manner. ATP proffers
a simple, platform-independent and individualistic protocol for
transferring agents between networked computers and also
supports message passing. Mobile agents may be programmed
in many different languages and for diverse vendor specific
agent runtime environment [14].

ATP extends the scope of employing agent mobility in a general
and uniform way:

 A machine hosting agents has an ATP-based agent
service, which is a component capable of receiving and
sending agents from remote hosts via the ATP protocol.
The agent service is identified by a unique address,
independent of the specific agent platforms supported
by the machine. A machine can run multiple agent
services.

 The agent runtime system supports the migration of the
agent, halting its execution and then marshaling the

agent data items to the destination via the underlying
communication protocol, e.g., TCP channel, HTTP
(hyper text transfer protocol), and SMTP (simple mail
transfer protocol). [13]

 A machine can host different types of mobile agents,
provided it supports the compatible agent platforms.
Any agent platform should include a handler of ATP
messages.

 An ATP message carries sufficient information to
identify the specific agent platform at the receiver host
so that ATP handler can be called to handle the
message.

 The ATP protocol works in a request and response
manner in between ATP services.

 ATP service A establishes a connection with ATP
service B then sends a request to B and waits for the
response. Thus, A and B act as a sender and receiver
respectively. An agent host machine can support more
than two agent systems, which may be provided by
different vendors.

 A request includes a request line, specifying the request
method, the protocol version, and the required resource,
followed by a MIME-like message containing request
modifiers, sender information, and possible content in
its body.

 A response includes a status line that specifies the
protocol version, a success or error code ensued by a
MIME-like message containing response modifiers,
sender information, and possible content in its body.

 The implementation of ATP needs no creation of a new
thread altogether to handle an incoming connection
request. Instead, ATP does thread pooling and it simply
puts out an available thread from it to assign it to client
request. This possibly allows handling multiple requests
efficiently and every agent has its own threads of
control or execution thread [15].

3. AGENT MARSHALING AND

MIGRATION
Mobile objects and their data values from a running entity
cannot be straightaway transferred over the network to other
machines. Firstly, the transformation of internal data on the
current machine is required to be represented in external data
form such as in the string of bytes or in the binary form. That is
why, marshaling and un-marshaling of mobile agents is required
to be carried out before their migration [16].

Marshaling is the process of collecting memory representation
of an object data and assembling them into a data format
suitable for transmission or storage purpose. Typically, this is
carried out when object or data is required to move from one
program to another, within different parts of program or in
between the machines. While process of un-marshaling happens
on the other node that acts as a recipient. This involves the
disassembling of received data to produce an equivalent
collection of meaningful data items at the recipient. The
conversions are possibly achieved through serialization and de-
serialization of object on current and remote hosts. Serialization
and marshaling has a thin line lying as difference between them
such that marshaling can record the state and codebase, i.e. an
URL list needed to load the object code, of local as well as
remote object while serialization happens to convert the
marshaled object into stream of bytes but codebases and remote
object cannot be serialized [17]. This process is shown in figure-
1.

Agent Details (agented, agent_system,

stream_of_bytes etc.)

Agent Execution Environment

Agent Transfer Protocol

TCP/IP

MA

MA

MA

MA

Agent Execution Environment

Agent Transfer Protocol

TCP/IP

MA

MA

MA

MA

Incoming Outgoing Incoming Outgoing

Stream

of Bytes

Stream

of Bytes

Node1 Node2

International Journal of Computer Applications (0975 – 8887)

Volume 156 – No 4, December 2016

34

The process of marshaling and un-marshaling the agent object is
carried out by mobile agent server/agent runtime environment.
The sender mobile agent server marshals the mobile agents and
transfers it to receiver mobile agent server using via media or
communication channel, then the mobile agent server at the at
receiver end, receives the bytes and un-marshals the mobile
agent. This sequential process of transferring the mobile agent is
called as mobile agent migration.

Figure-2 Migration of Agent between Node1 & Node2

4. PROPERTIES OF MOBILE AGENT

AND AGENT SERVER

4.1 Notions of Mobile Agent Migration on

Agent Server
Both the terms “mobile” and “agent” are of Latin origin which
means “something that’s on move” and “react to situation”
respectively. On the other side, code moves sluggishly when
transported on a diskette or tape. In its most primitive form,
somewhat faster, code was moved via the FTP mechanism but it
still involved manual intervention of user.

Examples of this type of migration are remote batch jobs and
the use of postscript to control printers. Fairly fast channel is
www; again it requires active participation of user. The next
shift happened with the arrival of Java applets and JavaScript in
www. They keep the network connection alive even when the
user is inactive. Email is quite a fast channel because the emails
are handled automatically by the mail servers, and one email
can travel around the world in a couple of minutes. For sure, the
fastest channel is direct TCP/IP, or UDP, which can be even
faster in some cases for example in live video streaming where
security is of not much concern [17] [18].

Agent migration in code mobility involves two notions to allow
the migration of mobile agents to and from mobile agent server:
Weak Migration and Strong Migration [19].

1. Weak Migration

a) When moving, a mobile agent carries code

implementation and data state.

b) Data State: global or instance variable.

c) On moving, execution has to start from the

beginning. Runtime environment needs to call the

methods explicitly to restart the execution of agent

all over again.

2. Strong Migration

d) When moving, a mobile agent carries code

implementation, data state and its execution state.

e) Data State: global or instance variable.

f) Execution State: program counter, local variables,

saved registers and threads.

g) Before moving to new host, agent is suspended,

marshaled, trasnferred, unmarshaled and resume its

execution continuing from the point it stopped on the

previous host.

4.2 Executability Feature

Any business logic or data written in specific programming

language that is understandable by underlying system via an

IDE can be called executable for that environment. There are

degrees of executability involved that includes:

1. Text contains information that is readable by humans

only. An AI program might understand it, but it contains

no structured information.

2. Marks can be instructions inside the text denoting how to

interpret it. Usually, this is just a few characters, such as

how to write a word in bold text. In LaTeX it is

\textbf{\textit {Marks}}.

3. Macros are instructions that can generate a piece of text.

For example, a macro like <date> would generate today’s

date and insert it into the text.

4. Controls are instructions for how data should be

interpreted. They can declare conditional text, define

variables, and change them. Basically, they have taken

over the control of the interpretation of the data.

5. Scripts are written in complete interpreting programming

languages, which are Turing machine equivalent. To put it

simpler, any program can be made in this language. The

execution point can be controlled with loops and jumps.

They can even access many system functions.

6. Byte code is virtual machine code that is interpreted in a

virtual processor. At this point the code is really not

readable by humans.

7. Machine code is instructions for the processor in the

computer. Machine code is often the result of a

compilation. This level is usually the lowest, even though

in some processors it is possible to write micro codes,

which are instructions for the gates and subsystems inside

the processor.

4.3 Dependency of Agent Autonomy on

Mobile Agent Server
Once the mobile agent is allowed to run on machine via mobile
agent server it can start acting on its own without any outside
control. It is responding, reacting, or developing independently
of the environment autonomously. A mobile agent is self-
contained while navigation but for it is dependent on the
underlying server for communication, computation and
execution. A mobile agent should be aware of its itinerary, i.e.
about all participating nodes, when transporting through the
heterogeneous and dynamic arrangement of network nodes and
where to go to look for available resources in the network. A
piece of programming code and data is enclosed as an
encapsulated entity that contains implementation, data and
execution state in single unit. The execution state is the current
state of mobile agent with its variables and bindings to
resources for example it may be a reference to a database or a
local printer [20].

Degrees of agent autonomy include:

1. Mobile Autonomy: It is the capability of self-

navigation using navigation modes: serial or parallel,

=Mobile Agent = Marshaled Mobile

Agent

network

Mobile Agent Server

JVM

Operating System

MA

MA

MA

MA

MA

MA

Marshaling

Unmarshaling

Mobile Agent Server

JVM

Operating System

MA

MA

MA

MA

MA

MA

Marshaling

Unmarshaling

MA

Node1 Node2

International Journal of Computer Applications (0975 – 8887)

Volume 156 – No 4, December 2016

35

decision making and docking at time of unreachable

destinations or broken connections, like

disconnection of a laptop etc., of mobile agents

through the underlying runtime environment.

Whenever there is an availability of multiple

resources, a mobile agent can clone itself and assign

a subtask to each of its duplicates for execution of a

distributed task concurrently. The division of a task

into multiple subtasks in form of agents can benefit

the whole system with simultaneous and co-

existential execution of subtasks. Finally, the results

from various subtasks of different clones of mobile

agents is combined as one result. So autonomous

mobile agents are network-aware entities that are

dynamic and reusable on which Web applications

can be constructed.

2. Computational Autonomy: It is that a mobile agent

can get enough computational functions making use

of all kinds of computational resources to accomplish

an assigned distributed task. A mobile agent can call

for various functions residing on its visiting nodes

via mobile agent server into its process to execute

them when required. Even other way round, a mobile

agent can as well complete a distinctive

computational task by executing its own carried

functions on current agent server when visiting a

network node with desirable resources.

Communicational Autonomy: This allows a mobile agent to

send and receive messages in an asynchronous, anonymous and

indirect way. This is more the property of mobile agent server

than to the mobile agent itself. Mostly, communicational

autonomy is high in multi-agent systems as they require inter-

agent and agent-agency communication to accomplish

cooperative tasks in distributed environment. Secondly, Agent-

hosting execution environment interactions are required when a

mobile agent make use of resources and services in a local

environment of network nodes it visits [21][22]. ATP defines

following four standard request methods for agent services:

1. Dispatch an Agent: To dispatch an agent from an agent

service A to an agent service B, A sends a dispatch

request to B. The agent goes along with the request. When

B receives the agent, a response to A will be send

containing a status code.

2. Retract an Agent: To retract an agent from an agent

service B to agent service A, the latter calls a retract

request method to B. The acknowledgement from B is

actually a response with a status code and the specified

agent in its body.

3. Fetch a Class: For execution of an agent, the agent's

origin i.e. the service A needs to send an executable code

to agent service B. To achieve this, B initiates a fetch

request to A. The reply from A is a response with a status

code and the required executable code in its body.

Figure-3 Standard Methods for Agent Services

4. Send a Message: To send a message from an agent in

agent service A to an agent in agent service B, A sends B

a message request, containing that message. The reply

from B is a response with a status code.

5. ARCHITECTURAL VIEW OF

MOBILE AGENT SERVERS
Mobile agents need a platform to run over any host in a

heterogeneous or homogeneous network. This is a software

program at each site which handles the incoming and outgoing

agents dealing with their execution and is often called an

“Agency”. The agency is a mobile agent server which can be

built differently depending on which type of agent system is

needed and every node in the network must have this server.

Agency is also responsible for sending messages between

agents and does some authentication if necessary. The

heterogeneity and homogeneity of mobile agent server is

dependent on hardware configuration and operating system of

the underlying machine. In homogeneous system arrangement

all system has similar resource capabilities so no prior

information is required about the hardware resource

availability is required to figure out. But the current state or

load information of machine is necessary to be known to use it

for various purposes like load balancing, e-commerce etc. This

information is collected by using monitoring mobile agent. In

heterogeneous system arrangement, the node capabilities are

different for every node and not known as prior information in

homogeneous system arrangement. This scenario may also

include thin and thick clients with varying configuration.

The generalized software architecture of mobile agent server

for homogeneous distributed systems has various components

that include:

1. Communication Module: It handles incoming and

outgoing agents, as well as the messaging between non-

local agents. There can be security functionality too, such

as encryption/decryption mechanism to encrypt outgoing

agents and decrypt incoming agents.

2. Repository Module: It performs authentication, also sets

priorities and queues up agents for later execution.

3. Executer/ Interpreter Module: It has an interpreter and can

sometimes run agents written in different languages.

Dispatch (Agent)

Retract (Agent)

Fetch (Agent)

Message (Object)

Respond (Status+Code)

ATP

System
ATP

System

Agent System1

Agent System2

Agent System1

Service1 Service2

International Journal of Computer Applications (0975 – 8887)

Volume 156 – No 4, December 2016

36

Figure-4 Mobile Agent Server for Homogeneous Systems

4. State Engine: This contains the current state of the agency

and can have some kind of rule or inference engine that

decides what to do with the agents. It also handles local

inter-agent communication.

5. Directory Database: Data about agents are stored or

retrieved in this directory. Also agents can access the

database to write their state status.

6. Security Module: This act as a kind of sandboxing

environment that keeps track of what the agents are

allowed to do. It also monitors the agency for any

malicious activities.

The mobile agent server for heterogeneous systems allow

various types of client that may be thin or thick client. The

client capabilities are not known prior to the submission of

mobile agent, so for client side information transport channels

such as email or HTTP-download. The architectural

components of mobile agent system for heteregeneous systems

include [22]:

1. Agent Initiator: For the first time when client connects to

the agent server it needs to share the client device

capabilities in terms of execution memory, CPU speed,

storage and installed version of JDK, JRE and JVM to

allows serialization of Java based mobile agents. The

installed initiator follow installation, configuration &

initiation of initiator, and installation of agent client. If

any characteristics of the client are changed like installing

a new version of JVM or the agent system itself changes

then agent server may initiate a client update process. So

with the new installations mobile agent system could

become more CPU and/or memory efficient than the

obsolete version.

2. Services: Tracking of all services like registering new

agents, maintaining life cycle events, taking care of

execution etc are maintained at this level. This also takes

care of serialization and deserialization of agent objects by

activating and deactivating them from underlying

persistent storage. With object serialization, mobile agents

can save and load the state of objects to the disk or over a

network which can be restored at a later time, and even a

later location. Object being available on persistent storage,

can be moved from one computer to another in a network

maintaining its state.

3. Agent Joiner/Splitter: This module works only for the thin

clients. These are the clients that don’t have enough

capabiliies to run the mobile agent server locally.

Joiner/splitter does this by seperating the code part from

data out of which data part moves on with mobile agent

while the code part is remains on the server machine’s

agency which is reconstituted on arrival on mobile agent.

4. Agent Dispatcher: The job of dispatcher is to send off the

mobile agentss to the respective destinations. As

connections proliferate, network topologies necessarily

become more and more dynamic. Devices may move from

place to place, or maintain intermittent connections, or

change their relationships to the network and their peers

on the fly. Mobile Agent dispatcher may use dynamic

routing algorithm which is applicable in current networks

with a large scale, a large amount of switching nodes and

high traffic. Dynamic routing uses a dynamic routing

protocol to automatically select the best route to put into

the routing table.

Figure-5 Mobile Agent Server for Heterogeneous Systems

6. CONCLUSION
Mobile agents are functional in various fields of distributed and

parallel environment based applications like information

retrieval, advanced web search, data filtering, e-commerce, etc.

The real-time convention of free roaming mobile agents

involves numerous mechanisms to inform server and that too

reducing the server communication overhead. Mobile agents

have been starting to be widely accepted in various domains

because of their autonomous execution and mobility feature.

For many properties like security, execution, communication

etc, they are dependent on the mobile agent server. This server

Network

OS/Hardware

Communication and Messaging

Module

MA

Repository
Executer

State

Engine

Directory

Database
Security

MA

Server

MA

Server

MA Server

Thick/ Thin Clients

Agent Initiator Agent

Joiner/Splitter

Agent
Dispatcher

Services: Registration, Tracking, Lifecycle,

Execution etc.

Agent Info

Client Capabilities

Client Capabilities

Thick/Thin Clients

Client Data

Mobile Agent/ Agent State

 Agent State +

Client Info

Mobile Agent + Client

Info Mobile Agent +

Client Info

Agent Client Data

International Journal of Computer Applications (0975 – 8887)

Volume 156 – No 4, December 2016

37

for homogeneous and heterogeneous distributed systems may

vary as per the client capabilities available with the machines.

7. REFERENCES
[1]. Youssef M. Essa, Gamal Attiya, and Ayman El-Sayed.

"Mobile agent based new framework for improving big

data analysis." In Cloud Computing and Big Data

(CloudCom-Asia), 2013 International Conference on, pp.

381-386. DOI: 10.1109/CLOUDCOM-ASIA.2013.75,

IEEE, 2013.

[2]. Gaoyun Chen, Jun Lu, Jian Huang, and Zexu Wu. “Saaas-

the mobile agent based service for cloud computing in

internet environment.” In 2010 Sixth International

Conference on Natural Computation, vol. 6, pp. 2935-

2939. IEEE, 2010.

[3]. Feng, Xinyu. “Design and analysis of mobile agent

communication protocols.” PhD diss., Nanjing University,

China, 2002.

[4]. Anne Nguyen, Ian Stewart, Xinfeng Yang, “A mobile

Agent: Applications for E-Commerce”, AusWeb01, the

Seventh Australian World Wide Web Conference, 21st-

25th April, Opal Cove Resort, Coffs Harbour, NSW.©

2000.

[5]. Tina Setter, Andrea Gasparri, and Magnus Egerstedt.

“Trust-based interactions in teams of mobile agents.”

In 2016 American Control Conference (ACC), pp. 6158-

6163. DOI: 10.1109/ACC.2016.7526637, IEEE, 2016.

[6]. Satoh Ichiro, “Building reusable mobile agents for

network management.” Systems, Man, and Cybernetics,

Part C: Applications and Reviews, IEEE Transactions

on 33.3 (2003): 350-357.

[7]. Schoeman, Marthie, and Elsabé Cloete. “Architectural

components for the efficient design of mobile agent

systems.” Proceedings of the 2003 annual research

conference of the South African institute of computer

scientists and information technologists on Enablement

through technology. South African Institute for Computer

Scientists and Information Technologists, 2003.

[8]. Lange, Danny B., Mitsuru Oshima, Günter Karjoth, and

Kazuya Kosaka. "Aglets: Programming mobile agents in

Java." In Worldwide Computing and Its Applications, pp.

253-266. Springer Berlin Heidelberg, 1997.Robert Gray,

David Kotz, Saurab Nog, Daniela Rus, George Cybenko,

“Moblie Agents: The Next Generation in Distributed

Computing”, Deptt. Of CSE, Dartmouth College, 1997,

IEEE.

[9]. Ahila, S. Sobitha, and K. L. Shunmuganathan. “Overview

of mobile agent security issues—Solutions.”

In Information Communication and Embedded Systems

(ICICES), 2014 International Conference on, pp. 1-6.

IEEE, 2014.

[10]. Rajesh Kumar, S Niranjanr, and Yashpal Singh, “A

Review on Mobile Agent Technology and Its

Perspectives.” Journal of Computer Sciences and

Applications, vol. 3, no. 6 (2015): 166-171. DOI:

10.12691/jcsa-3-6-11.

[11]. Pandey, Mr Rajesh, Mr Nidheesh Sharma, and Mr

Ramratan Rathore. “Aglets (A Java Based Mobile Agent)

And Its Security Issue.” International Journal of Emerging

Trends & Technology in Computer Science (IJETTCS)2.4

(2013).

[12]. Gray, Robert, David Kotz, Saurab Nog, Daniela Rus, and

George Cybenko. “Mobile agents: The next generation in

distributed computing.” In Parallel

Algorithms/Architecture Synthesis, 1997. Proceedings.

Second Aizu International Symposium, pp. 8-24. IEEE,

1997.

[13]. Lange, Danny B., Mitsuru Oshima, Günter Karjoth, and

Kazuya Kosaka. “Aglets: Programming mobile agents in

Java.” In Worldwide Computing and Its Applications, pp.

253-266. Springer Berlin Heidelberg, 1997.

[14]. Mitsuru Oshima, Guenter Karjoth, “Aglets Specification”,

Departamento de Lenguajes y Sistemas Informáticos

Universidad de Sevilla, Copyright © 1997, 1998 IBM

Corp.

[15]. Mitsuru Oshima, Guenter Karjoth, “Aglets Specification”,

Departamento de Lenguajes y Sistemas Informáticos

Universidad de Sevilla, Copyright © 1997, 1998 IBM

Corp.

[16]. Shigeki Shiokawa, “Performance analysis for use of

mobile agent in wireless multihop networks.” In 2016

Eighth International Conference on Ubiquitous and Future

Networks (ICUFN), pp. 827-832.

DOI: 10.1109/ICUFN.2016.7537153, IEEE, 2016.

[17]. Lange, Danny B. “Mobile objects and mobile agents: the

future of distributed computing?.” In ECOOP’98—

Object-Oriented Programming, pp. 1-12. Springer Berlin

Heidelberg, 1998.

[18]. S. Sobitha Ahila, and K. L. Shunmuganathan., “Overview

of mobile agent security issues—Solutions.”

In Information Communication and Embedded Systems

(ICICES), 2014 International Conference on, pp. 1-6.

IEEE, 2014.

[19]. Ma, Lu, and Jeffrey JP Tsai. “Security modeling and

analysis of mobile agent systems” Vol. 5. World

Scientific, 2006.

[20]. Li, Wei, and Minjie Zhang. “MAT: a mobile agent system

for supporting autonomous mobile agents.” Journal of

Research and Practice in Information Technology 33.3

(2001): 211-227.

[21]. Li, Wei, and Minjie Zhang. “Distributed Task Plan: A

Model for Designing Autonomous Mobile Agents.” In IC-

AI, pp. 336-342. 1999.

[22]. H. M. Eldegwi, M. B. Badawy, and Hamdy M. Kelash.,

“Building a Secure Decentralized Energy System with

Remote Monitoring Using Mobile Agents.” In 2015 Fifth

International Conference on e-Learning (econf), pp. 263-

268. DOI: 10.1109/ECONF.2015.80, IEEE, 2015.

IJCATM : www.ijcaonline.org

http://dx.doi.org/10.1109/CLOUDCOM-ASIA.2013.75
http://dx.doi.org/10.1109/ACC.2016.7526637
http://dx.doi.org/10.1109/ICUFN.2016.7537153
http://dx.doi.org/10.1109/ECONF.2015.80

