
International Journal of Computer Applications (0975 – 8887)

Volume 156 – No 4, December 2016

12

Review of Software Maintenance Problems and

Proposed Solutions in IT consulting firms in Mauritius

Sokappadu
V. S. B. N

Dept. of Computer
Science and Engineering

University of Mauritius

Mattapullut Gopaul
S. D.

Dept. of Computer
Science and Engineering

University of Mauritius

Rughoobur Paavan
Dept. of Computer

Science and Engineering
University of Mauritius

Ramdoo Vimla Devi
Dept. of IT

Charles Telfair Institute
Mauritius

ABSTRACT

Software maintenance is often a challenging and hectic

process for both software engineers and IT consultancy firms.

Software maintenance is considered as the longest phase in

software‟s lifecycle as it starts as soon as the software is

deployed at the client-side and ends till the software goes

obsolete. This paper sheds light on the various problems and

challenges encountered by IT consulting firms in Mauritius

during their software maintenance phase. A cause-analysis

diagram has been used to illustrate the various problems along

with their root causes. The paper then proposes some

counteracting plans and solutions in order to alleviate those

problems.

General Terms

Software maintenance problems, IT consulting firms in

Mauritius, cause-analysis of software maintenance and

solutions to software maintenance problems

Keywords

Software maintenance problems in Mauritius, solutions to

software maintenance

1. INTRODUCTION
IT consulting firms are often faced with several problems

during the maintenance phase where software developed

becomes increasingly difficult to maintain and presents a set

of new challenges, such as obsolescence and leaving staff.

This paper is an advancement of a previous paper, namely “A

Review on Software Maintenance Issues and How to Reduce

Maintenance Efforts” [1] and is going to focus on the causes

of maintainability problems in IT consulting firms of

Mauritius.

2. SOFTWARE MAINTENANCE
Software maintenance process is very dense and usually

comprises of more than half of the development process [15].

Software maintenance is the modification of a software

product after delivery which includes correcting faults and

failures [15]. Software Maintenance typically occurs as the

last phase in most models (Refer to Figure 1 for the traditional

Waterfall Model).

2.1 IT Consulting Firms
The Software Industry comprises a large segment of

companies which come under the IT consulting umbrella.

These companies enable organizations in achieving their

business objectives using IT systems & often deploying

software solutions which are custom-built according to the

requirements of the client, following the maintenance phase.

Last decade has witnessed the boom of IT consulting firms

emerging and establishing themselves in Mauritius with both

local companies such as The State Informatics Ltd and

multinational companies such as Accenture (Delivery

Centres). As such, much of the software projects ongoing in

Mauritius follow the IT consulting model whereby software

engineers develop and/or maintain solutions for their

respective clients.

2.2 Maintenance in IT Consulting Firms
The maintenance phase in IT consulting firms start after a

project has gone live, that is the project has already been

deployed. Firms have different policies regarding the bearing

of the costs of subsequent changes. Some firms provide a

warranty period during which costs are maintained free of

charge such as the State Informatics Limited in Mauritius

charges a yearly fee for maintenance post release.

2.3 Problems during Maintenance Phase
Worldwide, IT consulting firms are faced with a number of

challenges and this is applicable in the Mauritian context as

well. For instance, the problems are compounded in software

system that are deployed overseas, and the maintenance

engineers are in Mauritius (e.g. Accenture Delivery Centre in

Mauritius where many projects are of the type “Maintenance

Outsourcing”). In addition to the usual common causes of

maintenance problems, factors such as time-zone differences,

language barriers and local factors add on to the existing list.

3. COMMON CAUSES OF

MAINTENANCE PROBLEMS
1. Technical Problems

Program/code comprehension: Software maintenance

in IT consulting firms mainly includes changes that are

of types adaptive and preventive in software systems. In

order to make any change happen correctly and easily,

International Journal of Computer Applications (0975 – 8887)

Volume 156 – No 4, December 2016

13

the system attributes need to be understood by the

maintenance engineers. Program/code comprehension is

necessary for any change and it has been reported that

this phase consumes more than half of maintenance

resources available [2].

2. Change impact analysis: It is the process by which

maintenance engineers assess the consequences and

impact of each change on the components of the system

[1]. This process leads to determining the overall cost of

carrying out the change along with its feasibility issues.

However in IT consulting firms, this analysis process is

difficult to put into practice since the overall impact and

coupling of system components is unknown or partly

knowledgeable to maintenance engineers.

3. Change implementation and propagation: After

impact analysis and feasibility study in the maintenance

phase, the required change can be implemented on a

specific component of the system. However, this change

can have a regression effect on other components of the

system that are interlinked, hence causing malfunctions

elsewhere in the system. Thus, this may trigger

additional changes to be applied to interlinked

components, causing a chain reaction to occur. This

chain reaction is called change propagation which may

cause the system to be inconsistent to a certain extent if

implementation of changes and/or testing are incomplete

[2].

4. Regression testing: During maintenance, since changes

are done in components of the system, regression testing

becomes crucial. The purpose of regression testing is to

ensure that changes made to the software, such as adding

new features or modifying existing features, have not

adversely affected other existing features of the software.

Regression testing is usually performed by running some,

or all, of the test cases created to test modifications made

in the software. To ensure that all programs behave as

expected, tests generated at earlier stages needs to be re-

run.

However, as a program evolves, the regression tests set grow

larger since old tests are also included, and hence the cost of

regression testing increases. Due to pressure of time and

budget constraints, repeating all previous test cases after each

minor software revision or patch is often impossible and is not

carried out in current practices [4].

5. Database size: During maintenance, engineers may as

well make modifications to the structure and/or data of

the database interconnected to the software system

undergoing maintenance. In case whereby the database is

of consequent size, repetitively applying these changes

can be very risky and tedious since the maintenance

engineers may not likely be trained to use contents and

handle large databases [3].

6. Product/system quality: The existing quality of the

system can be a maintenance problem. The problems

mainly are quality of programming and design issues

such as non-compliance to standards.

7. System age and obsolescence: Older systems can pose

several problems in maintenance process due to lack of

maintenance teams‟ knowledge, product quality and

programmer time. Older systems may also require

frequent hardware and software changes as compared to

recently deployed software systems [3].

8. Operating environment: These are the hardware,

software reliability, software failure, data integrity and

documentation of the software system. A large system is

more error prone since a larger database requires a

greater amount of change in data and files, as well as a

greater need for hardware and software upgrades. With

technological advances, old operating environments are

more complex to maintain [3].

9. System size and complexity: They are measured by the

number of program modules and the number of source

statements contained in the system [1]. Hence

maintenance in large system can be very complex and

tedious in cases where the software system is highly

complex.

10. . Legacy software: A legacy system is described as a

software system based on outdated technologies and

preceding generation computer languages, which are still

in service and very critical to the daily organizational

operations. There are a lot of such systems still in use in

IT consulting firms and handling such systems includes

many challenges not limited only to high capital

investment in the initial system development but also

inadequate maintenance documentations and lack of

software supporting tools. A legacy software often

requires many bug fixing, modifications, and updates

along its life cycle. As the gap between the updated

codes and outdated documentation broadens,

maintenance becomes increasingly difficult in terms of

effort and cost.

11. Types of frameworks and building blocks used: The

type of framework used in the development of a software

can cause an issue in the maintenance of the software in

the future. One of the most common cause of

maintenance problem software firms have to face is that

they are unable to find enough support or skilled

resources to maintain their software due to poor decision

on framework choice at the moment the software was

developed.

12. Restructuring for change: During the maintenance

process, changes may require restructuring to be done,

since the architecture in place do not support the

changes.

a. Managerial (Non-Technical) Problems
1. Programmer’s availability: In IT consulting firms, the

maintenance team has to work on several projects

simultaneously. Hence the maintenance programmers have

the time restriction on each request for change in each project.

2. User’s demands and expectations: Software user

knowledge contribute to the factors of maintenance problems

in IT consulting firms. One case is that users can have limited

knowledge of the system due to lack of training and can have

high expectations from the maintenance team through their

change demands which can be out of the software domain or

out of the boundaries of the maintenance team. Another

problem from user expectation is that they expect their

changes to be implemented and deployed in a short lapse of

time, and this may not be feasible for the already overburden

maintenance team.

3. Staff size: It describes the number of people who are

engaged in the development process of software under

application development. After delivering the project,

customers surely need some changes and then the software

team which is also engaged in the other development projects,

International Journal of Computer Applications (0975 – 8887)

Volume 156 – No 4, December 2016

14

is assigned the additional work. This increases the efforts of

the development staff. Software team cannot assign the work

of maintenance to other free developer because the other

developers are completely unaware of the delivered project,

which is under maintenance. If software organisation assigns

the maintenance work to new developers or programmers then

the organisation needs to provide training to the programmer,

which leads to the increment in time, cost and efforts for the

maintenance [1].

4. Staff turnover: Maintenance problem includes staff

turnover as well. In case there is a high staff turnover in the

maintenance team, the new replacement members of

maintenance team will not have the sufficient knowledge in

dealing with changes in software systems [1]. Hence more

time should be dedicated in the training of the new team

members, thereby increasing maintenance cost alongside.

5. Maintenance budget: It is the amount of money

earmarked by a company to be spent on maintaining its

current system. A limited budget signifies deficient

maintenance and inadequate testing which may result in new

bugs cropping up in the system.

6. Documentation quality: The documentation available

during the maintenance process in IT consulting firms are

more than often of poor quality and non-compliant to

standards. It can also happen to have various versions of the

same feature documented in different documents. This in turn

results to high costs in terms of maintenance effort in order to

find and correct faults in the system.

7. Development experience of maintenance staff: More

often in IT consulting firms, the maintenance team and the

development team are two separate teams. Due to inadequate

training and less interactions with the software during its

implementation phase, the maintenance team has limited

knowledge on the system. It can also happen that the

maintenance process is outsourced to a maintenance team

from another IT consulting firm. This leads to limited

commitment from the development team during the

maintenance process.

8. Project management issues and failures: Poor project

management and development can also lead to poor software

maintenance. Very often, stakeholders and management are

reluctant in allocating budget for maintenance of a project

which they were not involved in or encountered several

problems during its development phase.

9. Lack of skilled labour: Lack of skilled resources is

another major cause of poor or prolonged software

maintenance. It has been found that firms are very resource

dependent for some particular software maintenance as it will

be very costly to train new resources for the maintenance of

these software.

4. CAUSAL ANALYSIS
Carrying out a causal analysis process reveals the cause-and-

effect relationship among all the enumerated factors discussed

in Section 3 (See Figure 2 for the cause-analysis diagram).

The causes encased in rectangles refer to normal causes.

Asking the cause(s) (“Why?” question) by inference leads to

other causes with the final root causes enlisted in the

hexagons.

1. Program comprehension problems, that is the difficulty in

understanding the software to be maintained can be caused by

a set of factors including poor product quality (Product

quality factor), complex and less known frameworks used

(Types of frameworks and building blocks used). For example,

program comprehension problem may arise if maintenance

engineers are themselves unable to understand the inner

workings of the software being maintained.

2. Effort in change impact analysis: Program

comprehension problems can in turn cause more time taken to

estimate the impact of changes, increasing the effort in

change impact analysis.

3. Difficulties in change implementation can be caused by

poor product quality problems (Product quality factor), high

program complexity (System size and complexity factor) and a

small maintenance budget (Maintenance budget factor).

While a products of inferior quality or high complexity may

result in high effort (even after the software has been well

understood), small budgets allocated for the project impose

time constraints thereby reducing time for quality activities.

4. Over-regression can be a problem where too much

regression testing is done to ensure the software is still stable

after a modification, and is often the result of poor program

comprehension (Program comprehension factor). The impact

of a change is unknown and though it may not impact several

other modules or pathways, they are all tested for fear of

introducing breaking code-changes.

5. Limited programmer time availability is another problem

which can delay maintenance requests or lead to inferior

quality. This is typical of several IT consulting firms where

maintenance engineers are Software Developers on other

projects which are in the software development phase.

Common causes for these are Staff Size, Small Maintenance

Budgets and Project Management issues.

6. Limited user knowledge is a problem caused commonly

by poor training of the users and poor documentation manuals

(Poor product quality factor).

International Journal of Computer Applications (0975 – 8887)

Volume 156 – No 4, December 2016

15

7. User demands and expectations may seem relatively very

high in proportion to what the maintenance project can offer

due to reasons such as poor program comprehension, poor

product quality, reduced staff size and reduced maintenance

budget. For instance, changes which seem relatively simple at

a functional level can be extremely difficult to change within

the software due to high complexity of the software or

unavailability of adequate staff to service the request. As a

result, for example, a change request taking a 1-day man

effort may be stretched beyond a week to get serviced.

8. The relationship of the software product and the

environment has been identified as a root cause in the graph

(see Figure 1.) When the software has an inherently non-

adaptive relationship with the operating environment or the

contemporary context in which it is being evaluated, this has a

detrimental effect on its use and acceptance. For example, an

ERP software developed by X company but customized and

sold by ITZ company and which is no longer supported by X

company has lower chances of being successfully maintained

in the long run.

9. The relationship of software product and the

stakeholders has been identified as an effect of 2 causes in

the graph (see Figure 1.) A product of inferior quality elicits

poor response from its users. A wrong managerial approach to

enforce the use of a software among the users can demotivate

its use. Engineers who have had a negative experience

developing the software, despite the product itself being of

good quality might be less willing to undertake work

regarding such software. These both factors affect the

perception and the type of relationship the stakeholders have

with the product and may affect the willingness to ensure

proper maintenance.

10. A large database schema can be a result of a very

complex product (System size and Complexity). A large

database (in terms of definition rather than the size of data

stored) is the effect of a highly complex system. An

application connecting to 2 tables may be easier to maintain

and manage rather than one connecting to hundreds of tables.

A foreign key constraint change for example, can break

applications and the impact is higher if the extent of

interconnectedness is greater.

11. Product quality has been identified as a root cause as it

can be quantified using metrics or can be simply an opinion

based on some evaluation criteria. For example, a software

system that does not have a Help System can be perceived to

be a product of lower quality. A software that has a very high

crash recovery time is similarly of inferior quality. McCall‟s

Model and FURPS+ are among several models can be used to

define the quality of a product.

12. System age and software obsolescence occurs due to the

fact that a software is too tightly coupled with its environment

and is unable to adapt to new environments (Relationship of

the software with the environment factor). For example a

International Journal of Computer Applications (0975 – 8887)

Volume 156 – No 4, December 2016

16

software whose lowest level instructions are heavily

dependent on the types of registers and underlying hardware

used, such software may be difficult to maintain once the

underlying hardware is upgraded to a newer version.

13. Limited staff size is an effect of unavailability of skilled

labour or a high staff turnover as well. Limited staff can

create a “lower transparency” effect on the servicing of

maintenance requests. For example, a service request may be

estimated to be an hour in terms of budget. While one would

expect the request to be service in a short period of time, the

request itself may finally be serviced after several days, owing

to the fact that the personnel are busy servicing other requests

in the queue. Such incidents can contribute to a negative client

experience.

14. Staff turnover has been identified as a root cause as it

essentially contributes to a domino effect in software projects

contributing to an overall poor maintenance effort. Staff

turnover is itself an effect of several issues such as poor

management practices and retention effort, job market and so

on. A high staff turnover implies that considerable time is

being spent in training new employees. Despite external

factors, smart companies should be able to mitigate this

problem or take steps to maintain a consistently skilled pool

of individuals at all times.

15. Unfavourable operating environment can be a product

of a highly complex system (System size and complexity).

System can be coupled with a lot of software, hardware

components and might be heavily dependent on other

systems. Alternatively it can be a part (subsystem) of a bigger

system. In such cases, changes may require a significant

amount of regression testing or create unforeseen changes

within the system as a whole.

16. System size and complexity has been identified as a root

cause as system complexity can be quantitatively measured

using metric such as McCabe‟s Cyclomatic Complexity. For

instance a software have only one flow of execution is much

simpler to change and maintain as compared to a software

with hundreds of permutations of flows of execution where

rework and testing may take higher time. A highly complex

system is problematic to maintain as it is more difficult to

comprehend.

17. Small maintenance budget has been identified as a root

cause since tight budgets are usually being allocated for

maintenance phases by the IT consulting firms. This arises

due to an erroneous assumption that the maintenance phase is

the least important phase of the Software Development Life

Cycle (SDLC) or that very little effort is needed to maintain

already developed and deployed software projects.

18. Documentation quality is not a standalone cause on its

own. Though identified in previous research [1] as a separate

cause, it is a subset of the attributes of a product of inferior

quality (Product quality factor).

19. Restructuring for change becomes difficult if the system

is of complex nature (System size and complexity factor) or

the system is of inferior quality (Poor product quality). A

highly complex software system is more resistant to changes

as there is an inherent tendency not to disturb systems which

are already working well. It is also difficult to introduce

changes into a system that is of poor quality. For instance a

poorly documented and commented program required more

time for comprehension in order to bring changes to the

codes. (Program comprehension)

20. The limited overall skill or development experience of

maintenance staff may seem to be very low due to reasons

such as low Staff size and high Staff turnover. As such the

required knowledge to service certain requests raised by the

client may even be inexistent. A maintenance project

servicing a highly critical application but staffed only by 2

inexperienced developers with a high turnover rate (1 per

month) may have high chances of failure than a similar

project with at least 1 experienced developer with a lower

turnover rate.

21. Legacy software issues are caused by System

age/software obsolescence factors. Some legacy software

problems caused by aging software include adaptability

problems, dependencies on older technologies and

infrastructure, and even a growing lack of professionals

undertaking training in the legacy technology using which the

software was conceived.

22. Types of frameworks and building blocks used has

been identified as a root cause as some frameworks may be

much lesser known than the others or less widely used. In turn

resources such as learning material, questions and answers

regarding bugs and troubleshooting may be not be available.

23. Project management issues has been identified as a root

cause as they include a myriad of issues ranging from

sensitive people related issues to hard technical problems

arising from maintaining the software. This root cause

essentially enlists all the failures and shortcomings on the

project manager‟s and higher management‟s side which pose

problems in software maintenance projects. One project

management issue could be the very low priority and as a

result, negligence towards software maintenance projects

which result in effects, such as resources constantly moving to

higher priority projects, or the lack of responsiveness to

problems escalated to the manager. Software maintenance

projects often suffer as a result since blocking points and

choke points are delayed by the sluggishness with which such

projects are inherently handled.

24. Lack of skilled labour has been identified as a root cause

as it gives rise to several human resource and staffing related

issues such as lack of skills within the project team or a small

staff size. Lack of skilled labour is a management, more

specifically a human resource management problem along

with contemporary issues prevailing in the country for

example political stability, economic growth, and education

policies which affect the job market. Such problems are often

alleviated through the hiring of resources from overseas. In

the case of Mauritius, countries such as India, Madagascar

and Cameroon remain good labour pools from which skilled

professionals are brought. Skilled labour deficiency may also

be attributed to poor retention policies, poor working

conditions and factors coming from locally and from within

the company.

5. CAUSES OF MAINTENANCE

PROBLEMS SPECIFIC TO

MAURITIUS
Software maintenance problems in IT consulting firms in

Mauritius have other root causes other than the

aforementioned common problems.

International Journal of Computer Applications (0975 – 8887)

Volume 156 – No 4, December 2016

17

b. Geographical Location and Country-

Specific Factors for Overseas Projects
These reasons are especially relevant for software projects

which have foreign clients or have been outsource to

Mauritius.

5.2.1 Time zone differences
Several IT consultancy firms, such as Accenture, work with

clients abroad from a wide range of regions including Europe

(France) and Canada. The time zone differences, although at

times advantageous, may be disastrous in other scenarios. For

example if a critical bug occurred in a France-based project at

around 17 00 at the same time in Mauritius (19 00 or 20 00

based on summer-time daylight savings) the maintenance

team would have been functioning with minimal resources

since it is past the normal working hours locally. The

Mauritian team may therefore not be prepared to respond to a

critical downtime as it should in normal working hours.

5.2.2 Geographical barriers
As maintenance consultants, it is much easier to intervene at

the client site physically to fix a bug or for normal

maintenance rather than having to do it remotely, often with

the assistance of technicians or infrastructure engineers

abroad over a TCP/IP network connection.

5.2.3 Language Barriers
Communication problems may arise due to differences in

dialect and accent. Although two individuals from different

countries are communicating and may be well-versed in the

same language, misinterpretations may crop up in

documentation or even verbal communication, leading to even

further delays.

5.2.4 Organization Culture
Day-to-day habits may introduce problems and time lags in

response time or treatment time of issues. For example,

French organizations and Mauritian organizations may have

different lunch cultures and durations. Mauritius may have

public holidays because of Hindu festivities while Canada

does not.

6. PROPOSED SOLUTION PLAN FOR

PROJECTS IN MAINTENANCE

PHASE

c. Maintenance Issues and Quality
In an ideal scenario with perfect project management

processes in place, the software produced should be bug-free.

Maintenance issues are therefore reflective of a software's

quality especially corrective maintenance.

d. Checklist Approach
The following table enumerates solutions for different types

of problems in the Software Maintenance phase (See Table 1).

The check-list employed helps to clarify which activities

should be carried out and by whom and lists solutions which

can be employed for different types of problems identified.

Individual solutions are elaborated below.

Table 1. Table captions should be placed above the table

Root Cause

Addressed Question Solution Type of

Solution

Product

Quality

Is

Documentation

right?

Re(Documenta

tion) Technical

Is Unnecessary

Code present?

Eliminate

Dead Code
Eliminate

Cloned Code

Technical

Is Code

Buggy?
Eliminate

Bugs Technical

Is Code ugly? Refactoring Technical

Product

Quality,

Complexity,

Building

blocks

Design

Changes

needed?
Restructuring Technical

Product

Quality,

Complexity,

Building

blocks,
Product/Env

relationship

Is restructuring

not enough?
Re-

engineering Technical

Human

Resource

problems

Do we have

good enough

people? Do we

have enough

good people?

Technical

Training,

Outsourcing,

Recruitment

Managerial

Are problems

due to country-

specific

reasons?

Apply Project

Management

Practices.(Lea

dership),
Training(Lang

uage)

Managerial

Without documentation, a programmer spends 21.5% time in

understanding of code. With documentation, 12% of cost of

maintenance could have been saved [1]. Maintenance cost can

be reduced by (re)documentation using Computer Aided

Software Engineering (CASE) tools in automated

documentation [14]. LOWER CASE tools support the

implementation and maintenance phases of the systems

development life cycle [14].

CASE tools helps in:

• Substantial savings in resources required for

software development,

• Shorter time to market,

• Substantial savings in resources for maintenance,

• Greater reuse due to increased standardization of the

software systems, and

• Reduced generation of defects coupled with

increased „interactive‟ identification of defects

during development [13].
The main component of CASE tools is the repository which

stores all changes and information of the project from

development to maintenance phase [14].

CASE documentation generator tools can also be used as it

simplifies production of technical and user documentation and

contains master templates to verify that documentation

conforms to all stages of SDLC [14]

e. Dead Code Elimination
Dead code is a section in the source code of a program which

is executed but whose result is never used in any other

computation [11]. The execution of dead code wastes

International Journal of Computer Applications (0975 – 8887)

Volume 156 – No 4, December 2016

18

computation time and memory. Software systems may contain

significant proportions of dead code which can go as high as

30 percent according to the Omnext white paper that was

published on March 2010 namely “How to save on software

maintenance costs”. [16]

IT projects often contain dead code segments which been

added by developers for future reference (for example

showing how to perform a particular operation or use a

particular function), future use (upon subsequent adding of

functionalities), or for performing a simple rudimentary test

(to see whether a variable has the correct value). Often this

type of code, if uncommented, can lead to confusion as to

why it was included – finding out the reasons for its presence

can lead to the unnecessary waste of effort.

Dead code stripping/elimination/removal is usually a compiler

optimization to remove code which does not affect program

results. Dead code elimination removes unnecessary lines of

code that reduces overall size and complexity of the software.

6.3.1 Duplicate/Cloned Code Elimination
Duplicate code refers to the repetitive occurrence of a

sequence of code more than once in a program or in several

programs belonging to the same entity. There is a limit to the

amount of code that can be repeated beyond which is

considered as a duplicate. The duplicate sequences are usually

known as code clones or clones and the process of finding

them code clone detection. Duplicate code may happen

because of a number reasons:

• Copy-Paste programming or scrounging, that is

where a segment of code is copied and pasted

because “it works”. This is typical of IT consulting

firms which operate on tight budgetary constraints

and schedules. Often there is a tendency to write

code “that gets the work done” rather than

optimized and readable code. Copy-pasted code

may contain redundant operations which may not be

needed for the program into which it is being

copied.

• Rewriting same functions again: A programmer

redefines a segment of code which already exists in

another place either knowingly or unknowingly.

- Generated codes, which is code generators may

generate duplicate code because it is simpler.

Project teams may adopt this method because of

speed, despite the redundancy problem.

• Inappropriate code duplication may reduce

maintenance costs [17].

Research shows that large software systems can contain from

10% to 25% of redundant code [1]. Removal of redundant

code would make the software simpler to understand and thus

would help to reduce the effort needed to learn and maintain

the system.

6.3.2 Bug Detection and Elimination
Bugs in software are costly and difficult to find and fix.

Techniques and tools have been developed for automatically

finding bugs by analysing source code [1]. For instance the

problem of syntax errors can be eliminated through the use of

compiled languages rather than interpreted languages.

6.3.3 Software Refactoring
Refactoring is a preventive maintenance practice that intends

to improve or refine software, thus slowing down its

degradation. It is a continuous process that improves the non-

functional attributes of the software without changing its

external functionality. It contributes to improving the

structure of a program, reduction of code complexity and

increase of usability. Refactoring therefore directly improves

program comprehension and reduces system complexity.

Simpler program structure and more readable code are easier

to maintain and consume less man-hours. Refactoring is

however not a standalone practice but is constituted of

practices discussed above such as Dead Code Elimination,

Cloned Code Elimination and Bug Elimination.

6.3.4 Re-engineering
Software Re-engineering constitutes 2 processes namely

reverse engineering and forward engineering. Reverse

engineering can be defined as “the process of analysing a

subject system to identify the system‟s components and their

relationship and to create system in another form or at a

higher level of abstraction [10]. Reverse engineering tools

extract data, architectural, and procedural design information

from an existing program [1]. The reengineering process uses

this extracted information for analysis and redesign and tries

to identify the components that have to be reused and the parts

that need to be redesigned or replace. After the final design

has been created in the reengineering process the forward

engineering process takes over in implementing this design

and finally testing the new modified system [12].

International Journal of Computer Applications (0975 – 8887)

Volume 156 – No 4, December 2016

19

f. Software Maintenance Flowchart
Although problems in software maintenance projects or any

form of software projects can never be removed, a reduction

in number of issues is possible. Figure 2 shows the following

procedure that are being proposed for handling software

maintenance projects.

The process model offers a mode of operation of software

maintenance projects especially adequate for IT consulting

firms in Mauritius with small dedicated teams performing

only software maintenance. The model incorporates the

resolution of problems while it also depicting how the project

may use idle time for quality-related activities.

• A software maintenance project team may either be

in 2 general types of states: Idle or Working. When

a project has begun, the team may be idle and

awaiting work. In such a scenario, the team may

itself initiate a system testing phase to recover and

anticipate defects and if possible fix them. The

activities undertaken follow a shallow-to-deep

approach. System testing is carried out to eliminate

defects which are most likely to be caught through

general use. Following system testing, subsystem

testing activities are carried out, and after that unit

testing-provided that the project allows the team to

descend to such low levels of granularity.

• In the event the team receives work, for example in

the form of an adaptive maintenance request, the

request may be fulfilled. In such cases if the change

is suspected to have impacted other areas within the

system, a regression testing phase may be

introduced. Otherwise, the team may resume its

normal exploratory testing activities.

• The flowchart indicates that whenever a team has

work it switches to the assigned tasks to be

completed and in case it does not it switches to the

completion of system testing. This guarantees that at

no point the team is idle.

• After testing activities have been completed, and the

team is scheduled to be idle under normal

circumstances, the flowchart introduces a “Plan for

Evolution/Refinement” phase during which the

team may undertake the improvement of the

software without external intervention. Again the

checklist solution provided can be referred to for

International Journal of Computer Applications (0975 – 8887)

Volume 156 – No 4, December 2016

20

applying software improvement practices such as

re-engineering/re-factoring. Alternatively the team

can undertake training sessions for improving the

standard of quality provided.

The proposed flowchart therefore helps to maximize human

resource usage for a software maintenance project and

provides guidance regarding how a team should ideally

operate.

g. Solutions Specific to Mauritius
1. Global team operation facilities – companies and project

teams operating should put in place systems and project

management tools which allow easy collaboration and

communication within projects. For example, source code

versioning tools can help track code changes. Putting into

place reporting and status tools can help dissipate important

information regarding project status immediately.

Putting into place flexible timing systems, VPN access

facilities, and encouraging high bandwidth communication are

some measures which can reduce the disparity created due to

time zone differences between Mauritius and abroad.

2. Overcoming labour shortage and language barriers

through education – Skillset mismatch and shortage of

labour can be overcome by conducting courses most relevant

to contemporary IT industry. For example, language courses

and coaching offered by Ministry of Education could help

alleviate certain problems due to communication gaps.

Encouraging tertiary institutions to offer B.Eng courses in IT-

related streams such as Computer Science and Engineering

could help produce significant labour to overcome labour

shortage problem. Relaxing immigration laws could also help

bring more labour to meet the skillset shortage gaps.

h. Further Recommendation
Some practices seem to offer better advantages than others,

for instance including a member of the original development

team in the maintenance team as a member of the actual

software development team has first-hand knowledge of the

software product and can be said to have more expertise than

new maintenance engineers. The maintenance engineer can

therefore easily resolve various problems encountered.

7. CONCLUSION
The different problems relating to software maintenance

affecting IT consulting firms in Mauritius have been

addressed in this paper along with an attempt to distinguish

the relationship between the different factors. Solutions have

been proposed in order to alleviate the different problems

encountered. Nevertheless, after so many years, it is found

that the software industry is still fighting with the same issues

in software maintenance and sustainable solutions is yet to be

found and implemented.

8. REFERENCES
[1] Kaur, U. and Singh, G (2015). A Review on Software

Maintenance Issues and How to Reduce Maintenance

Efforts. International Journal of Computer Applications

on 118-1: 0975-8887.

[2] Bennett, K.H. and Rajlich, V.T., 2000, May. Software

maintenance and evolution: a roadmap. In Proceedings

of the Conference on the Future of Software Engineering

(pp. 73-87). ACM.

[3] Palvia, P., Patula, A. and Nosek, J., 1995. Problems and

issues in application software maintenance management.

Journal of Information Technology Management, 6

(pp.17-28).

[4] Wong, W.E., Horgan, J.R., London, S. and Agrawal, H.,

1997, November. A study of effective regression testing

in practice. In Software Reliability Engineering, 1997.

Proceedings, The Eighth International Symposium (pp.

264-274). IEEE.

[5] Sannella, M.J., 1994. Constraint satisfaction and

debugging for interactive user interfaces (Doctoral

dissertation, University of Washington).

[6] Forman, G., 2003. An extensive empirical study of

feature selection metrics for text classification. Journal

of machine learning research (pp.1289-1305).

[7] Leonard D. Brown, Hong Hua, and Chunyu Gao. 2003.

A widget framework for augmented interaction in

SCAPE. In Proceedings of the 16th annual ACM

symposium on User interface software and technology

(UIST '03). ACM, New York, NY, USA, 1-10.

[8] Yu, Y.T. and Lau, M.F., 2006. A comparison of MC/DC,

MUMCUT and several other coverage criteria for logical

decisions. Journal of Systems and Software, 79(5),

pp.577-590.

[9] Spector, A. Z. 1989. Achieving application requirements.

In Distributed Systems, S. Mullender, Ed. Acm Press

Frontier Series. ACM Press, New York, NY, 19-33.

[10] Canfora, G., Cimitile, A. and Lucarelli, P.B., 2000.

Software maintenance.Handbook of Software

Engineering and Knowledge Engineering, 1, pp.91-120.

[11] Debray, S.K., Evans, W., Muth, R. and De Sutter, B.,

2000. Compiler techniques for code compaction. ACM

Transactions on Programming languages and Systems

(TOPLAS), 22(2), pp.378-415.

[12] Kidambi, P.C. 2003. Maintenance Issues in Software

Engineering. Department of Computer Science Louisiana

Tech University.

[13] Galin. 2004. Case tools and their Effect on software

quality in SQL from theory to implementation, eds

Pearson Education limited, Chapter 13.

[14] Hoffer, JA, George JF & Valacich JS. 2005. Automated

Tools for Systems Development in Modern Systems

Analysis And Design,4th edn, Pearson/Prentice Hall,

Appendix 2.

[15] Parul, DK. 2014. Challenges during Software product

maintenance, International Journal of Computer Science,

vol. 2 (3).

[16] Engelbertink, F.P. and Vogt, H.H., 2010. How to save on

software maintenance costs. Omnext White Paper.

[17] Kapser, C. and Godfrey, M.W., 2006. Cloning

considered harmful considered harmful, 13th Working

Conference on Reverse Engineering (pp. 19-28). IEEE.

IJCATM : www.ijcaonline.org

