
International Journal of Computer Applications (0975 – 8887) 

Volume 157 – No 2, January 2017 

21 

A Review: TCP Variants with MANET 
Jaydevsinh B. Vala 

Master of Computer Engineering, 
Department of Computer Engineering 

Atmiya Institute of Technology & Science, 
Rajkot- 360005, 
Gujarat, India 

Hiren V. Mer 
Assistant Professor, 

Department of Computer Engineering 
Atmiya Institute of Technology & Science, 

Rajkot- 360005, 
Gujarat, India 

 

 

ABSTRACT 

TCP- Transmission Control Protocol is a connection oriented 

and reliable transport layer protocol of TCP/IP protocol suite. 

TCP provided process-to-process, stream and full duplex 

communication. TCP also provides flow control, error 

correction and congestion control. Congestion is the traffic 

jam of the packets in the network. It occurs when the load in 

the network is higher than of its capacity to handle. This paper 

explains basic congestion control mechanisms used by TCP. 

This paper also discuss some of the possibilities of future 

research work in TCP congestion control. This all TCP 

variants have been proposed to improve TCP congestion 

control mechanisms. This paper explores some of the most 

widely used TCP variants conceptually.  
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1. INTRODUCTION 
Congestion is situation in a computer network when the 

number of outstanding packets becomes difficult to handle by 

the internetworking devices. An intermediate device like 

router, switch has a limited amount of memory-buffer and 

processing capabilities. Congestion occurs when we force a 

network and its devices to work beyond their capacities. 

When a router is supplied more than of its capacity to process, 

router suffer from an traffic jam kind of situation which is 

called congestion. As a result, Router may discard few 

packets which is the side effect of it[1]. 

TCP variants can be broadly classified into two major 

categories based on their strategies of congestion control. 

Table 1 Categories of TCP Variants 

Reactive TCP Variants Proactive TCP Variants 

 

Based on Congestion 

detection. 

Based on congestion 

avoidance. 

Detect congestion after 

causing it. 

Detect congestion before 

causing it. 

Packet loss is the 

feedback signal. 

Packet delay is the feedback 

signal. 

Corse – grained timers. Fine-grained timers. 

TCP Tahoe, TCP Reno, 

TCP NewReno are 

examples. 

TCP Vegas is an example. 

Less accurate Round 

Trip Time estimation. 

More accurate Round Trip 

Time estimation. 

This paper explore reactive TCP-Tahoe, Reno, New Reno and 

proactive TCP-Vegas. Some of the most widely used TCP 

variants.TCP variants for adhoc networks are also discussed. 

 

2. TCP CONGESTION CONTROL 
TCP performs congestion control in three phases:- Slow Start, 

Congestion Avoidance, Congestion Detection. TCP uses 

acknowledgement to check packet loss and find packet delay. 

An Acknowledgement method can be either cumulative or 

selective. A cumulative acknowledgement with 2001 informs 

the sender that the bytes around 2000 sequence number have 

been received successfully.  Receiver may send a cumulative 

acknowledgement for few segments together to reduce 

acknowledgement overhead. A selective acknowledgement 

informs the sender about outorder delivery of segments and so 

sender can further send only the missing segments[2]. 

2.1 Sender Sliding Window 
TCP maintain two sliding windows variables - C_window-

congestion window and R_window-receiver’s advertised 

window. Sender estimate and change the size of C_window as 

per the congestion situation of the network. Receiver 

advertises the capacity at which it can receive segments in the 

form of R_window. Receiver sends R_window as a part of 

TCP header field called window size. Sender selects the 

minimum of C_window and R_window to reduce possibility 

of congestion as well as the possibility of overwhelming the 

receiver. 

Window = Min (C_Window, R_Window) 1) 

TCP sliding window is a byte oriented. Sender side it supports 

open, close operations while receiver side it supports open and 

close operation based on basis of sliding window concept. In 

our discussion we assume that R_window>>C_window for all 

the cases.  

So Window = C_Window[2]. 

2.2 Slow Start – Exponential Increase 
TCP starts the transmission with initially very small 

C_window,1-2 Sender Maximum Segment Size. The purpose 

of slow start is not to overwhelm the network without 

knowing the current situation. Slow start increases the size of 

C_window by 1 with every successfully received ACK-

acknowledgement. So after every RTT-Round Trip Time, 

C_window gets doubled. TCP sets ssthresh – Slow Start 

Threshold value. TCP continues in Slow Start until 

C_window ≥ ssthresh[2].  

2.3 Congestion Avoidance – Additive 

Increase 
TCP enters into congestion avoidance phase once C_window 

becomes greater than or equal to ssthresh. TCP still continue 

to increase the rate of sending by increasing C_window but 

not as fast as it does in slow start. In Congestion avoidance, 

TCP increments C_window by 1 with every RTT, So it is 

called additive increase. C_window= C_window + 
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1/C_window per Round. TCP continues in this phase until 

retransmission times out. On retransmission times out, TCP 

sets ssthresh to half of the C_window, sets C_window to 1 

and starts slow start phase again.  

The above policies were purposed in the initial standard of 

TCP; later on many TCP variants have modified them while 

keeping the basis intact[2]. 

3. TCP TAHOE 
TCP Tahoe has introduced a fast retransmission phase over 

the slow start and congestion avoidance. Tahoe states that it is 

possible to detect congestion even before RTO-

Retransmission Timer times out. Whenever receiver receives 

an out of order segment, it sends a duplicate ACK 

immediately. Sender Tahoe process counts the number of 

such duplicate ACKs. On receiving 3 same duplicate ACKs, 

Tahoe considers a packet loss and switches to slow start 

phase. This early retransmission is called fast retransmission. 

 

Figure 1. TCP Tahoe 

SS-Slow Start, CA-Congestion Avoidance 

TO-Time Out, FT- Fast Retransmission 

Initially ssthresh=16 and so on round 4, SS phase completes 

and CA phase is started. On round 8, retransmission time out 

occurs which sets ssthresh to half of the current C_window. so 

ssthresh becomes initially 10. On round 13, SS phase ends and 

CA round starts. On round 15, three duplicate ACKs cause 

fast retransmission in which ssthresh is set to 6 and SS phase 

starts. Tahoe treats time outs as well as 3 Duplicate ACKs 

same way. 

4. TCP RENO AND TCP NEW RENO 
Tahoe switched to slow start phase in both the cases, 

retransmission time outs and fast retransmission. 

Retransmission time out is stronger possibility of congestion 

and moving to slow start phase is required. But receiving 3 

duplicate ACKs is a weaker possibility of congestion. With 3 

duplicate ACKs, it is necessary to slow down the rate, but not 

completely because there are still packets are delivered in the 

network and so duplicate ACKs are received. TCP Reno 

focuses on this logic. Reno introduced a Fast Recovery phase 

other than of slow start, congestion avoidance and fast 

retransmission[3]. 

In case of Retransmission time out occurrence, ssthresh is set 

to half of the current C_window, C_window is set to 1 and 

new slow start phase starts. In case of 3 duplicate ACKs, 

ssthresh is set to half of the current C_window, C_window to 

ssthresh+3 and starts congestion avoidance phase. Here 

C_window is set to ssthresh+3 because 3 out of order 

segments are delivered which caused 3 duplicate ACKs. This 

phase is known as congestion detection with multiplicative 

decrease.  

Once Reno detects 3 duplicate ACKs, it immediately halves 

the C_window and starts fast recovery phase. Reno stays in 

the fast recovery phase until a fresh ACK, acknowledges 

some of the sent data and then switches to congestion 

avoidance phase. Fast recovery is something between slow 

start and congestion avoidance where Reno stays until it 

detects that receiver has started receiving something. 

 

Figure 2. TCP Reno 

SS-Slow Start, CA-Congestion Avoidance 

TO-Time Out, FT- Fast Retransmission, MD-Multiplicative 

Decrease 

Figure 2 shows behavior of Reno, Initially ssthresh=16 and so 

on round 4, SS phase completes and CA phase is started. On 

round 8, Reno receives 3 duplicate ACKs, which sets ssthresh 

to 10, C_window to 10 and starts congestion avoidance phase. 

On round 13, a conventional time out is detected which starts 

slow start phase and then congestion avoidance phase from 

round 17[3]. 

Reno performs good when it is one packet loss in a window of 

outstanding packets. This is because Reno comes out of the 

fast recovery phase once it receives a fresh ACK. Reno 

doesn’t care whether the new ACK, acknowledge all the 

outstanding packets or not. So if there are multiple packet 

losses in a single window,it not perform well. NewReno has 

modified fast recovery phase. NewReno stays in the fast 

recovery phase until all the outstanding packets are 

acknowledged successfully. Each ACK which acknowledges 

some of the packets in middle of the window is known as 

Partial ACK. An ACK which acknowledges all the 

outstanding packets of a window is a full ACK. Reno comes 

out of the fast recovery on receiving a partial ACK while 

NewReno considers partial ACK as a possibility of further 

loss of packets and keeps staying in the fast recovery phase 

until a Full ACK comes. 

Reno and NewReno perform very well as compared to Tahoe 

but they are able to detect only one packet loss per RTT. This 

limitation can be overcome with TCP SACK and TCP 

FACK[3]. 

5. TCP VEGAS 
Vegas is a proactive TCP variant, which detects congestion 

before congestion occurs. It uses packet delay as a primary 

feedback signal. Vegas performs 40% to 70% better than 

Reno in throughput as well as one half to one fifth of 

reduction in retransmission requirements. Vegas check the 

beginning of congestion by observing the difference between 

the expected rate and actual rate. Vegas is based on five 

techniques to improve performance by increasing throughput 

and decreasing spurious retransmissions[4].  

Accurate RTT Calculation 

Course grained timers are used one per connection and they 

are not accurate with reference of individual segments. It is 

based on using fine-grained timers. Whenever it  sends a 

segment, it stores current system clock as a time stamp for a 

segment. So it is possible to calculate exact RTT for each 

successfully acknowledged segment. its RTT calculation 
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provides more accurate time out calculation which can be 

used to decide whether to retransmit a segment or not more 

precisely. 

Retransmission Requirement Detection 

If Vegas specific retransmission detection fails, it follows the 

conventional time out and 3 duplicate ACKs based 

retransmission scheme. It extends the 3 duplicate ACKs based 

retransmission scheme as follow. 

1. On receiving 1st duplicate ACK, Vegas find the difference 

between the current time and the sent time stamp of a segment 

which is requested with duplicate ACK. If the difference is 

more than the coarse grained time out value, Vegas 

immediately retransmits the requested segment by a duplicate 

ACK without waiting for 2 more duplicate ACKs. When 

losses are too high or window is too small, sender will never 

receive 3 duplicate ACKs which will cause time out. This is 

one of the major issues of Reno which is solved by Vegas. 

2. on receiving a fresh ACK – non duplicate ACK, if it is 1st 

or 2nd ACK after a retransmission, Vegas checks whether the 

time interval since the segment was sent is larger than the 

time out or not. If it is,it retransmit the segment. This catches 

any other lost segment previous to the retransmission without 

waiting for a duplicate ACK. This strategy is used to identify 

multiple segment losses in a window. 

Later, sender sends segment 13. It gets lost and after some 

time sender gets ACK asking for segment 13. At this point the 

time difference between sent time of segment 13 and arrival 

time of acknowledgement asking for segment 13 is larger than 

time out time and so sender immediately resends segment 13. 

After retransmission of segment 13,Vegas checks the time 

difference between sent time of segment 15 which was lost 

and arrival time of acknowledgement asking for segment 15. 

As it is larger than time out time, Vegas immediately resends 

segment 15 too[4]. 

Reduction in Window Size 

The windows size should be decreased only if the losses have 

occurred due to current sending rate not because of any higher 

previous sending rate. Vegas compares the time of 

retransmission of last segment and time at which windows 

was modified last. When the retransmitted packet was sent 

before the decrease, it will not decrease window size on 

receiving any duplicate ACK for that segment because packet 

loss was with reference of previous window size. This scheme 

reduces unnecessary slow down of the sending rate[4]. 

Modified Congestion Avoidance 

Vegas compares measured throughput rate with the expected 

throughput rate. it believes that the number of outstanding 

bytes is directly proportional to the throughput. So if it 

increases windows size, number of outstanding bytes 

increases and subsequently throughput should.The primary 

goal of Vegas is to manage right amount of extra bytes. If 

Vegas sends too much extra bytes, it may cause congestion.  

Vegas calculates the BaseRTT which is RTT of a segment 

when there was no congestion. BaseRTT can be minimum of 

all the measured RTT times. Practically it is the RTT of the 

first segment sent on a connection. At any moment, expected 

throughput is, 

Expected = WindowSize / BaseRTT    (5) 

WindowSize is the current congestion window size which we 

assume to be equal to the number of bytes in transit. Vegas 

calculates the actual – current throughput per round as, 

Actual  = WindowSize / Average Measured RTT   (6) 

Expected throughput represents available bandwidth in 

absence of congestion. Actual throughput represents current 

bandwidth being used by the connection.  Vegas measures the 

difference between Expected and Actual throughputs and 

changes the congestion window C_window accordingly. Let,  

Diff = Expected – Actual   (7) 

Modified Slow Start 

The conventional slow start doubles the C_window every 

RTT which is quite aggressive way because of exponential 

increase. Being a proactive variant, Vegas doubles the 

C_window every other RTT only[4].  

6. TCP for MANETs 

TCP-F: 

TCP-F means TCP-Feedback. If any intermediate node 

detects route failure, it immediately informs the source to 

avoid unnecessary starting of congestion control using a RFN 

– Route Failure Notification message. RFN message is 

propagated towards the source. Mean while if any 

intermediate node finds an alternative route, it diverts packets 

to new path and discards RFN message. If no alternative route 

is available, RFN message reaches to the source. On receiving 

a RFN message, source immediately enters into the freeze – 

snooze state. In freeze state, source stops further transmission, 

saves the transmission status (window, RTOs etc) and starts a 

RFT – Route Failure Timer. TCP remains in the freeze state 

until it receives a RRN – Route Re-establishment Notification 

message or RFT times out. TCP changes its state from freeze 

to active on receiving a RRN message and continue with the 

transmission status which was saved earlier. TCP also 

changes its state from freeze to active on RFT time out but it 

retransmits all the unacknowledged packets immediately 

which may cause burst of traffic [5]. 

TCP with ELFN: 

 ELFN - Explicit Link Failure Notification based scheme is 

similar to TCP-F but it involves real interaction between TCP 

and routing protocol. When a node detects route failure, it 

sends a ELFN message to the source. ELFN message is 

similar to “host unreachable” message of ICMP – Internet 

Control Message Protocol. On receiving ELFN message, 

source enters into freeze – standby mode by pausing 

transmission. Source periodically get information about route 

reestablishment. If acknowledgement of probe message is 

received, TCP leaves the standby mode and resumes 

transmission. Route failure message of DSR- Dynamic Source 

Routing algorithm is piggybacked to carry route failure 

message information for TCP. ELFN message contains source 

and destination addresses and port numbers as well as TCP 

segment’s sequence number. ELFN performs poor when load 

is high because of probing based nature [5].   

TCP BuS: 

BuS Stands for Buffering Capability and Sequencing 

Information. TCP BuS uses a reactive ABR – Associative 

Based Routing protocol. TCP BuS is based on following four 

improvements [6]. 

1. Explicit Notification: - A node which detects route failure 

is called PN – Pivot Node. PN informs the source about route 

failure and route re-establishment with a ERDN - Explicit 

Route Disconnection Notification message and ERSN - 

Explicit Route Successful Notification message respectively. 
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On receiving ERDN message, source freezes transmission and 

on receiving ERSN message, source resumes transmission [6].  

2. Extending Timeout Values: - Route re-establishment 

process is called RRC – Route Reconstruction Phase. During 

RRC phase, all the packets which are at any node between 

source and PN are buffered. Source TCP may get timeouts for 

buffered packets due to lack of acknowledgements. So on 

receiving ERDN message, source TCP increases RTO (mostly 

doubles) for these buffered packets [7]. 

3. Selective Retransmission Requests: - There may be loss of 

some packets in the path from source to PN. These packets 

can be selectively retransmitted to buffer missing packets. 

Buffered packets are not forwarded until a new route is 

established between PT and destination [7]. 

4. Avoid Unnecessary Fast Retransmission: - There may be 

loss of some packets in the path from PN to Destination. 

There are already few next packets which are buffered in the 

path from source to PN. On new route establishment, 

destination informs source about the lost packets. The 

buffered packets reach to the destination before those 

retransmitted lost packets. Because of out-of order delivery, 

destination generates duplicate acknowledgements for fast 

retransmissions. Source avoids such unnecessary fast 

retransmission [8]. 

ECIA based TCP: 

ECIA stands for Exploiting Cross-layer Information 

Awareness. ECIA is an improvement over TCP – ELFN. Loss 

of data packets and acknowledgements may cause 

retransmission time outs. ECIA suggests two mechanisms 

called EPLN – Early Packet Loss Notification and BEAD – 

Best Effort Acknowledgement Delivery. Conceptually ECIA 

is similar to TCP BuS but it doesn’t focus on buffered 

packets. When an intermediate node detects a route failure, it 

informs the sequence number of every lost packet to the 

sender via EPLN. Source disables RTO for these packets and 

retransmits from lowest sequence numbered packet once new 

route is established. Similarly, intermediate node informs the 

destination regarding lost acknowledgements via BEAD. 

Destination resends the acknowledgement with the highest 

sequence number by following cumulative acknowledgement 

concept. The DSR – Dynamic Source Routing protocol is 

modified to implement ECIA based scheme [8]. 

Preemptive Routing Based Schemes: 

Preemptive routing tries to predicate route failure based on the 

signal strength variations. This prevents all of sudden 

disconnection and loss of packets. When an intermediate node 

detects signal strength which is below a primitive threshold, it 

informs source to start route discovery phase. Ping-pong 

based small messages are proposed to measure signal strength 

of a transmission between two nodes. DSR and AODV 

protocols are modified for preemptive routing. In signal 

strength based link management, a node can try to increase 

transmission range of a node so that the packets in transit can 

reach to the destination. RFP – Route Failure Prediction 

mechanism maintains history of signal strengths to find the 

speed at which two nodes are moving away from each other. 

This information is used to predicate by which time a route 

may get failed. To avoid all of sudden disconnection, source is 

informed in advance to start route discovery [8]. 

 TCP-F and ELFN based TCP both are based on route 

reestablishment after route failure. TCP – F allows 

intermediate node to continue with any alternative path if it 

knows while ELFN doesn’t. In both the schemes, it is possible 

that the new path is longer and so time out occurs. It is also 

possible that the bandwidth of new path is not suitable with 

the old value of congestion window which was calculated at 

the time of old path. TCP-F is non-probing based while ELFN 

is probing based. ELFN is simulation based on modification 

of DSR routing protocol while TCP-F scheme is emulation 

with any of the existing the routing protocol [10]. 

TCP BuS and ECIA based schemes try to avoid unnecessary 

fast retransmissions. TCP BuS focuses on managing the 

buffered packets while ECIA focuses on sharing information 

about lost packets and acknowledgements. While TCP-F and 

ELFN inform only source about the route failure, TCP Bus 

and ECIA inform both source and destination. Preemptive 

Routing Based Schemes focus on informing source about the 

route failure before it actually occurs [10]. 

C3 TCP: 

C3 stands for Cross-layer Congestion Control. In a wireless 

multi-hop network, source’s link layer buffers packets while 

other transmissions are going on.  Source has to wait for the 

channel access until the medium becomes free. Available 

wireless channel bandwidth is shared by all the nodes which 

are located in the transmission range of the source as well as 

of the destination. A node follows medium access mechanism 

with CSMA/CA protocol with addition of RTS-CTS signaling 

packets based MACA protocol [10].  

Source

Destination

Other Node

Data

RTS

CTS

Backoff Data

ACK

Tin Tout

Td Ttr

Packet Arrival Time Transmission Begin Time

Queuing + Medium Access Delay Actual Transmission Time

Tend
Transmission End Time

 

Fig. 3 Medium Access and Data Delivery Process 

Fig 3 shows medium access and data delivery process with 

reference of the link layer. Every node has a buffer queue 

where it stores incoming packets until medium becomes free 

to access. Packets may be originated by the same node or 

received for the forwarding purpose from the neighboring 

nodes. Suppose at time Tin, a new packet becomes ready to 

send. Source senses the energy of the channel and finds it 

busy because of other node’s communication. Source enters 

into the waiting state by following exponential backoff 

mechanism of CSMA/CA. after back off time out; Source 

finds the medium free and sends RTS-Request to Send to the 

destination. Destination sends CTS – Clear to Send back to 

the source. On arrival of CTS, source sends data frame and on 

receiving of data frame, destination acknowledges source. 

Based on this concept, C3 TCP estimates bandwidth and 

delay. This information is used for the congestion control 

purpose [9].  
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Adhoc TCP: 

The congestion window defines the tolerable transmission rate 

for a connection based on a route status through which it is 

associated. Route failures damage the relationship between 

congestion window and tolerable transmission rate. Adhoc 

TCP is a thin layer between IP and TCP [10]. Various states 

of Adhoc TCP are shown in figure  

Disconnected

Congested 

Connected

Loss

(1) (1) (1)

(2)

(2)

(3) (4)

(5)

(6)

(7)

Fig 4. Adhoc TCP 

1) Receive Destination Unreachable ICMP Message  

2) Receive ECN 

3) TCP Transmits a packet    

4) New ACK 

5) 3 Duplicate ACKs or RTO expiration   

6) Receive Duplicate or New ACK 

7) Retransmission 

Adhoc TCP has four states: Normal (Connected), Congestion 

Control (Congested), Persistent (Disconnected) and 

Retransmit (Loss). Adhoc TCP listens to ICMP – Internet 

Control Message Protocol messages to put sender TCP in 

persistent state (freeze state until a new route is established). 

Adhoc TCP listens ECN – Explicit Congestion Notifications 

to put sender TCP in congestion control state. On occurrence 

of 3 duplicate acknowledgements or RTO time out, sender 

TCP enters into the retransmission state [10].  

7. CONCLUSION 
In the client –server era, most of the research work is going on 

towards improving the performance at the sender side. Sender 

and receiver communicate using network. Sender focused 

improvement is easy to adopt by doing necessary changes at 

the servers without expecting clients-receivers to be upgraded. 

A novel scheme can be introduced in which user can use the 

four reserved bits of TCP header to send messages to the 

sender. Receiver assistant congestion controls schemes can be 

more advantageous in interactive applications. A perfect 

combination of all the three congestion control feedbacks – 

packet loss, packet delay and explicit notifications by 

intermediate routers improves the TCP performance 

drastically.here can do work on congestion control on 

MANET by different variants. 
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