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ABSTRACT The compound normal with gamma distribution model that

In this paper, the truncated compound normal  with
gamma distribution model is formally presented and its
density function has been derived for defining a mixture
model(TCNGM) based on this as an extension work to the
proposed compound normal with gamma mixture(CNGM)
model introduced in our earlier work for image segmentation.
Update equations for this model have been derived in the
context of maximum likelihood estimation(MLE) procedure
under Expectation Maximization(EM) framework.
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1. INTRODUCTION

In this paper, a formal treatment of the truncated
compound normal with gamma distribution model, its
density function, and a mixture model based on this(TCNGM)
is presented as an extension work to the proposed compound
normal with gamma mixture(CNGM) model introduced in
[1],[2] for image segmentation. A truncated distribution has
been introduced in [2] citing the reasons for truncation and the
problems that are sometimes solved using such a
distribution model.

1.1 Compound Normal With Gamma

Distribution
As given in [3] by Normal L. Johnson et al, a compound

normal with gamma distribution

A

or Normal(u, 0'2)0_ ,Gamma(cy?) is formed by ascribing a

distribution to o2 i.e., variance by considering it as a random
variable and fitting a new distribution. The corresponding
distribution is defined to have a density function given as

flx) =

o [r ()] [ zme] 06 expl-(aea) 202 -
m?lde~?

(1)

After some mathematical transformations and further
treatment, Equation (1) reduces to

1
fl) = cl/2B(1/2,v/2)

@

14 6 )z]—(wn/z

has been introduced has formed the basis for our work[1],[2]
and a mixture model for this is used to solve the image
segmentation problem.

1.2 Truncated Distributions

As stated in [4], truncated distributions are formed by
restricting the domain of some other probability distribution.
Truncated distributions are useful to solve problems where the
values lie above or below a given threshold or within a
specified range.

In general, if X is a random variable with density f,(.) and
cumulative distribution FE,(.), then the density of X truncated
on the left at a and on the right at b is given by[5]

fx ()

Fy(b)—Fy(a) ©)

For example, image segmentation problem may be viewed as
mixture density estimation problem and since gray level
images are spatially represented using an eight bit intensity or
pixel value, the pixels only take values ranging between 0 and
255, each representing a particular gray value ranging
between black and white. This strongly suggests to define a
truncated mixture model, with 0 < x < 255 in place of the
more general case of -co < X < 4o for the random variable x
that represents intensity value, for image segmentation
because truncated distributions model finite range data well in
comparison to the more general model.

1.3 Mixture Distribution

A brief introduction as given by Mood et al in [5] to the
concept of contagious distribution or a mixture is given here.
If (), i), ., f, (), ... isasequence of density functions
which are either all discrete density functions or all
probability density functions which may or may not depend
on parameters, and pg,p1, ., Pn, - IS @ sequence of
parameters satisfying p; =0 and X2, p; =1, then
Yizo pifi (x) is a density function, which is sometimes called
contagious distribution or a mixture.

Physical considerations of the random experiment at hand can
sometimes persuade one to consider modeling the experiment
with a mixture. The experimenter may know that the
phenomena that he is observing are a mixture; for example,
the radioactive particle emissions under observation might be
a mixture of the emissions of two, or several, different types
of radioactive materials [5].

For example, the current literature on statistical image
segmentation techniques mostly assumes the data describing


https://en.wikipedia.org/wiki/Probability_distribution

the image as a mixture of component distributions, as shown
in Fig. 1 [6].[7],[8].[9].
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Figure 1 An Example Mixture Distribution

1.4 Clustering As Mixture Density

Estimation Problem
Several researchers have viewed clustering as mixture density
estimation problem in the framework of probabilistic
modeling for cluster analysis. For example, image
segmentation may be thought of as a clustering problem. The
current literature on statistical image segmentation techniques
mostly assumes the image as of containing a mixture of
components each  of  which  following  normal
distribution(Normal or Gaussian Mixture) i.e., N(u, a?) with
some weight [6],[7],[8],[9]. In our previous work[1], we
assumed the image as of containing a mixture of components
each of which following compound normal with gamma
distribution(CNGM) ie.,

Normal(u,Gz)gézGamma(cx,f) with some weight. And

the whole image is thought of as following the weighted
distribution where weighted distribution implies weighted
average of the constituent components. In that work, we have
studied the feasibility of CNGM vis-a-vis normal
mixture(NM) model in consideration to variations of normal
distribution.

In this paper, we present the truncated version of compound
normal with gamma distribution as a viable model for solving
any problem that comes under the scope of cluster analysis. In
particular, the scope of this paper is to describe the process of
deriving the analytical expressions for model parameters in
the context of maximum likelihood estimation which involved
considerable mathematical rigor. The use of this model for
solving image segmentation or other similar problems will be
considered separately.

2. TRUNCATED COMPOUND
NORMAL WITH GAMMA MIXTURE
MODEL

We know that, for compound normal with gamma
distribution, the equality that is given below holds.

f&) =
_ (v+1)

1 +o0 (x—p)? 2 _
c1/2B(v/2,1/2) Lw [1 + c ] dx =1 “)

After transformations (See Appendix), the above equation
may be re written as
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B(l/;,v/z) fol t(gil) 1- t)(%fl)dt =1
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21—1
wheret=[1+27] =——andz= (x — )

c+z

For the above, the cumulative distribution may be obtained
[3], given a value for z = 0 or (x — u) = 0 (by choosing a
value for x) as

Pr[z, < z] =Pr[z, < 0] +Pr[0 < z, < 7]

(v+1)

_ 1 z y21” 2
= Prlz, < 0 + 575575 o [1+2] * ay

1 1 1 (2 14
= 3t DA W) (1 - w) G aw

1 1 t (2—1 1
2 2B(1/2,v/2) fo W(z ) a- W)(z )dw

>1-34(53)
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where I, (g %) is incomplete beta function ratio defined as

1
= -
2+

I, (3 1) ;ftw(g‘l)@ - W)G‘l) dw

2'2) T Bw/z1/2) o

U]

The cumulative distribution forz < 0or (x —u) <01is

1-(1-30 G ) =3G9

®)

The probability density function of Truncated Compound
Normal with Gamma Mixture(TCNGM) distribution after
choosing left and right truncating points as a and b is defined
as in Equation(3) where

(w+1)

(x—cﬂ)z]_T

1 . .
fx) = CI/ZB(U/ZJ/Z)[1+ is the density
function defined for the compound normal with gamma
distribution,

F) =1-31,(%.3) ©

is the cumulative distribution function for some x taking
value b such that x > u, and

F@= 10, 2.)
(10)

is the cumulative distribution function for some x taking value
asuch that x < u.

[

In the Equations (9) and (10), b; = oo and a; =
since t = H(;—_mz
Therefore, Equation (3) may be written as

w+1)
fGo = : 14+ &2

c/2B(v/2 ,1/2)[2—[1111 (g %)“bl (; %)”

(11)



or
_ 2

f(x) - Cl/Z[ZB(V/Z ,1/2)_[3‘11 +Bb1 ] [1 +

(v+1)
(x—u)z]_?

Cc
(12)

where B, (2 2) and By, (2 ;) are incomplete beta

functions. The f(x) in Equation (12) is the new density
function for the truncated compound normal with gamma
distribution with a and b as left and right truncation points.

3. ANALYTICAL EXPRESSIONS FOR
MODEL PARAMETERS, 6,(, c;,vy),
FOR TCNGM

In [1],[2], the steps involved in the maximum likelihood
estimation [10] of the model parameters under Expectation
Maximization framework [11] for a mixture density problem
have been formally treated in the context of compound normal
with gamma mixture model. In this section, the analytical
expressions for the maximum likelihood estimates for model
parameters, 6,( y;, ¢;, v;) which describe partly the parameter
set ® are derived in the context of the use of TCNGM under
EM framework. EM algorithm optimizes the expected value
of the complete data likelihood using expectation and
maximization steps iteratively until convergence is reached.
This optimization function is formally defined as

M N

0(0,0%) = ZZlog(amz(x 160) (LI, ©%)

1=1i=

Zz 1 2oy log(ay) p(llx;, ©7) +

I 2 log(pi(x:16))) p(llx;, ©9) (13)
where «; is the prior probability of Ith component of the
mixture, p;(x;|6;) is the conditional probability of x;
belonging to | and is defined for our model as in Equation (12)
, and p(I|x;, ®9) is the posterior probability of component |
given x; and current estimates of parameters ®7 and is
defined as

gy api(xil6)

UK O%) = S cedon (14

A similar treatment is also required for the truncated version
except that the modified version of the likelihood function
that uses the density function defined as in Equation (12) in
the previous section is used. This density function for Ith
component is nothing but p;(x;|6,) that appears in the second
term in Equation(13). Hence, in this section, the steps
involved for deriving analytical expressions for 6;(y;, ¢;, v;)
for the truncated version effected by the new density function
are only shown.

The partial derivatives with respect to the model parameters
u, ¢;, and vy, after equating them to zero[1],[2], are given as:

2

%[ i1 Zis [l PV P I P T P s [+

(V1+1)

Gl ]p(uxi,@g)

=0 (15)

9]

International Journal of Computer Applications (0975 — 8887)
Volume 157 — No 3, January 2017

2

9 [ym N
7e Yi=12i=1 [109 611/2[23(%),[19” (L D)8, (2 1)” [1 +

12”2 22

(vi+1)

—u)?1"
e Z]p(uxi,@g)
o]

=0 (16)

2
avl[Zl 1 2 1[1 0g v 1

/228 (3 5)~[Bas (F-) 480, (3 3]
(v+1)

—u)?1"
o] Z]p(uxi.@g)
Cl

=0 17)

Or, for component |, the above equations take the form as:

2

[ [ it [28(5 3)-[Bar (33480, (3 3)]

(wi+1)

[1+

G ]p(llxi@g) =0 (18)
1
a N 2
—Yin | 1
o [El_l [ P P R PR R T | [1+
) _(m+1)
i ]p(uxi,@g) =0 (19)
1
a N 2
= Al ) 1
[Z” [ e E T G
) _(m+1)
i ]p(llxi@g) =0 (20)

3.1 Derivation Of Expression For
Equation (18) can be rewritten as

[—[ 9.2 2) -, )

(vp+1)
By, (2 ]H +om log [1+ XX 2 ]p(l|xi,®g) =

+('Ul+

o B S i e e o) |
i=1 [23 v, 1 [Ba1 v, 1 Bb1 u, 1 ”
1) (";%‘“)] p(lx, ©%) = 0

In Appendix, we present the details for the second ‘log’ term
approximation and  derivation of, for example,

o B (33)
[
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EIEEEPNEENEE)|

v +1 vi+1

+(Vl+

1) (""C%‘")} p(l]x;, ©%) = 0
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=

3.2 Derivation Of Expression For ¢;
Equation (19) can be rewritten as

[——— oo 5.2) - (2.3)
(w+1)
Bb1 ” —log (xl #t) ] [H ]P(l|xi»®g) =0

N[ L e e G e G

=117 5" [ZB Vl 1) [Bal +3b1 vl 1 ]] l [ +

(v +1)

—uN21"
Gz “')] 2 ]p(l|xi,®g)=0
(4]

The details of the second ‘log’ term approximation and

o
2
Appendix. Therefore, the above equation changes to

- a 1 .
derivation of, for example, Py B, ( ’E) are presented in
l
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3.3 Derivation Of Expression For v
Equation (20) can be rewritten as

(22)
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Please see Appendix for the proof for i15'(2,1).
vy 272
Therefore, the above equation changes to
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1
.0 v 1\ _ 1 v 3
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for which, the proof is given in Appendix
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. [—B us [2 Tay (2 2) 15, (2 ]]

i=1 v 1 "l 1
[2 a1 a4z +1b1 ”

l]] p(Ulx, ©%) =0
Cl
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The above equation further leads to

N [ [1“1(2 2)+1b1(Vl 3)”
i=1 [(Vﬁ'l)[ _[ ( )_Hbl(vl 1)]] +

log [1 + %}] p(|x;,©8) =0

LBG)

EG Ny

Please refer to Appendix for the proof.

The above equation may be written as
(v, + 1)2 1log[l + & ’”) ] p(l|x;, ®8) =

[2 “1 1Jl3” N

v1 i=1
[2—a1 et (3 H

3
23)4 ()] IHEYIUERCD) _1
2
%)”bl 27 ” TX  log [1+ %} p(U]x;,08)
(23)

Therefore, the update equations for y;, ¢;, and v, after solving
Equations (18), (19), and (20) are

p(llxi' ®g)
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v+l v;+1
o [ [
+(a— +(b—
_ vaﬂxip(”’fi.@g) cvr(emm) evr(b-u)

MR s e () ]
(24)
=
(vz+1)Z?’;l(xi—uz)zp(llxi.@g)+
2, p(x;,08)
vl+1 17[+1
2011/2 (a—pp) CJr(TZ] +(b—up) m
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4. CONCLUSIONS

In this paper, a formal treatment of mixture density estimation
procedure for the truncated compound normal with gamma
mixture model is presented. The analytical expressions for the
maximum likelihood estimates for model parameters,
6,( uy, ¢, v;) which describe partly the parameter set ®, have
been derived since the derivation for these parameters
involved some added complexity than that for the un
truncated one. The derived expressions are similar in form to
compound normal with gamma mixture model except that
these include some additional terms due to the truncation done
with respect to the left and right truncation defined by ‘a’ and
‘b’ respectively. These expressions can be embedded into the
Expectation Maximization framework for solving mixture
density estimation problem. The EM framework for this
truncated mixture model that can be used to solve mixture
density estimation problems like image segmentation and
other clustering problems is considered as an extension to the
work presented in this paper .
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6. APPENDIX

I. To Take Linear Term As Approximation For
In z (Sections 3.1 and 3.2 of the paper have reference to
this)

Since for any real number z that satisfies 0<z<2, the
following formula holds:

E-1D* | -1  (@-D*
2 3 4

Inz=(z-1) -

Taking linear term as approximation,

Inz=(z-1)
(A1)
dlog B(1/2,v;/2) _ -1
Il. To Prove That ™ = 31D

(Section 3.3 of the paper has reference to this)

a
dlog B(1/2 v/2) _ avB1/21/2)

We know that ao0 = 52072

Since we know that beta function B(a, b) is defined as

10



B(a,b) = f, x*~'(1 - x)*"dx for a>0,b>0
(A2)
9 = (12 (1~ )12, w-2)/2
55 B(1/2,v1/2) = [ 5y (L= 207/ 2D 2y
(A3)
To solve the above equation, we have to first solve
9 w-2/2
6v1x :
Let y=xW2/2 5 ogy = logx™=2/2 =
G 1 og x
> g
1 _ logx d_y _ . logx
=>;dy— > dv, :dVl =y-,
20w - w2 (loﬂ)
6171 2

Hence Equation (A3) can be written as

log x

a 1
- - w-2)/2 (2~ — ¥)"1/2
55 80/2 /) fox ( : )(1 X)~1/2dx

Taking linear term as approximation of logx as (x — 1),
given by Equation (A1), the above equation becomes

x—1

1
i3(1/2 ,v/2) = J- xWi=2)/2 ( )(1 —x)"V2dx

Bvl 0
1
= —lf xW=D/2(1 — x)™1/2dx
2Jo
1t w, 3.,
:>——f x2 (1 —x)2 dx
2Jo
(Section 3.3 of

= -3B(W/2,3/2)
the paper has reference to this)

.‘.%3(1/2 ,v1/2) = —%B(Uz/z ,3/2)
(A4)

a
73(1/2 1/2)
Hence dlog B(1/2,v,/2) — av; _
v, B(1/2 v,/2)

—5Bw1/2,3/2)

B(1/2.v/2)
_ M@ rG) | 1rGr) TG) _
C O 2rER) tGIG) 2 r() rGen)
_1G) @) o

2r(3) ("lz“)r@%) T2+

r'(@)T(b)
I'(a+b)

Since B(a,b) = B(b,a) =
(A5)

and the gamma function, denoted by I'(.), is defined by
I = fooo x&Vexdx  fort>0
(A6)

The following definitions about gamma function are taken
from [5] as given by Mood et al.

I'(t) is nothing more than a notation for the definite integral
that appears on the right hand side of Equation (6). Integration
by parts yields

[(t+1) =tr)
(A7)
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and hence, if t = n(an integer), '(n + 1) = nl.

If n is an integer,

or(2) = Vi

I11. To Derive Partial Derivatives Of Incomplete
Beta Functions With Respect To u; , ¢;, and v; .
Here, the partial derivatives of incomplete beta functions with
respect to y;, ¢;, and v; for solving Equations (18), (19), (20)
related to the truncated normal with gamma mixture
distribution have been derived for the purpose of their use in
sections 3.1, 3.2, and 3.3 of the paper.

by = ;)2 and a; = ——— since t = details

[
1= c+(b—u c+(a—p)? c+(x—u)?’
of which can be seen sections 5.2 and 5.3 in the said chapter.
a 1 a

KR v 1\ _ 08 pap Yoq..  1g
a#[Bal(z ,2)— ando yr (—y)idy

€l
0 rejt(a—n)’ U 1
= ey T A -y dy
(A8)

The above equation is in the form of % Ow(x)f(x) dx , which
is equal to f (Y ()P (x)

Therefore, the solution for Equation (A8) is

i _1
[cl+(aq—m)2] a [1 - c,+(aCl—;4,)2] ’ diy, [cl+(:l—,ul)2]

g
[ 2 _ cl 2 2ci(a—p)
=>[Cz+(a—llz)2] [1 Cz+(a—#1)2] [ei+(a—p)?]?
since

i[ c ]= clert(a—pD?l-cler+(a—p)?]
dug Lep+(a—p)? le+(a—up?)?

': 2¢i(a—pp)
[ei+(a—p)?]?

Upon simplification, the above equation may be written as

vi+1

LIPRYCE W Y S
" *M\2 ’2 /2 Lej+(a—pp)?

(A9)

Similarly
9 u 1) -
ac, B, (2 ’2)

1
e R [
cr+(a—p))? a+(a—p)?l  dep leg+(a—p)?

v

-1 2
c 2 _ c 2 (a—p)
= [C1+(a—#l)z] [1 Cz+(a—#l)z] [ei+(a—p)?)?
since

i[ cl ]: Ci[cl+(a_#[)z]_cl[Cl+(a_l4l)2]': (a—pp)?
dey Lej+(a—up)? [+ (a—up?)? ler+(a—up?]?

Upon simplification, the above equation may be written as

v;+1
LB (ﬂ 1) G cl ] 2
dc; 41 \2 2 ciei? Lep+(a—p)?

(A10)

a 1 .
In respect of a—leal (% 'E) , Equation (A4) holds good.

. a v 1\ _ 1
- 3=B, (; 'E) = —2B,, (/2 ,3/2)

(A11)
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