
International Journal of Computer Applications (0975 – 8887)

Volume 157 – No 4, January 2017

15

An Improved Approach for Analysis of Hadoop Data for

All Files

Heena Jain

Dept. of Information technology
SATI

Vidisha(M.P)

Ajay Goyal
Dept. of Information Technology

SATI
Vidisha (M.P)

ABSTRACT

Here in this paper an efficient Framework is implemented for

Hadoop Platform for almost all types of Files. The Proposed

Methodology implemented here is based on various

algorithms implemented on Hadoop Platform such as Scan,

Read, Sort etc. Various Workloads are used for the Analysis

of the Algorithms of small and big size such as Facebook,

Co-author, and Twitter. The Experimental results show the

performance of the proposed methodology. The

Methodology provides efficient Running Time, NameNode

Memory and Throughput as compared to the existing

methodology.

Keywords
Hadoop, HDFS, NameNode, SFReduce, MapReduce,

Facebook, Twitter.

1. INTRODUCTION
Hadoop is such an open-source Big Data framework utilized

for storing, supervision and evaluating a huge volume of

information it is planned to permit distributed processing and

storage of information across thousands of machines. The

Hadoop environment consists of numerous projects. Two of

these Hadoop projects, the distributed computational

structure MapReduce [1] and the distributed storage layer

Hadoop Distributed File System (HDFS), form the extremely

establishment of the Hadoop ecosystem. The Hadoop

Distributed File System [2] is an open-source replica of the

Google File System (GFS) [4] that is planned to make

available high throughput and fault-tolerant storage space on

low-cost commodity hardware. In comparison to

conventional POSIX distributed file systems (e.g., Lustre,

PVFS, AFS, Ceph), HDFS is planned to sustain write-once-

read-many (WORM) type of workloads with optimizations

for streaming access and huge data sets (e.g., MapReduce

[1]). While ordinary HDFS uses replication of data blocks to

defend beside hardware failures there are also try to use

removal coding methods to make available fault tolerance [3,

5]. MapReduce is a programming model and an connected

accomplishment for processing and producing huge data sets.

Under this representation, each application is applied as a

series of MapReduce operations consisting of a map phase

and a decrease phase that procedure a huge number of

independent data items.

Big amount of distributed file systems be inclined to split the

metadata administration from file read/write operations so

that make difficult metadata right to uses will not be in the

I/O serious path to block ordinary file I/O operations which

also allows parallel executions of meta-data and file I/O

operations. HDFS also decouples the metadata supervision

from file I/O by means of two self-determining functional

parts: a single NameNode that runs the file system

namespace and multiple DataNodes that accumulate the real

file block data and are dependable for allocation read and

write requests from Clients. The single NameNode structural

design conversely has long been thinker as the Achilles‟ heel

of HDFS as it not only signifies a single-point-of-failure but

also is a most important restrictive factor for the scalability

of the complete HDFS cluster. Hadoop [1], an open-source

implementation of Google MapReduce, is the most accepted

system. It is proposed to run parallel processing on thousands

of computing nodes and provide a fault-tolerant and scalable

storage service. In Hadoop there are two basic elements,

Hadoop MapReduce and Hadoop Distributed File System

(HDFS). Hadoop MapReduce uses extremely comparable

methods explained in Google MapReduce. HDFS is also an

open-source completion of Google File System. Hadoop is

not a easy copy of proposals from Google. When Hadoop

was released it was extensively utilized not only in industry

but also in academy. Such huge scale information is very

complicated to development and examine with relational

database systems and desktop statistic software‟s. Both

industry and academy require some advancement to deal

with this complexity. Google publishes three papers to

initiate the associated methods utilized in its own cluster,

MapReduce [6], BigTable [7] and the Google File System

(GFS) [4].

An essential hypothesis Hadoop system (HDFS) is based on,

“moving computation is economical than moving data”. It

represents that presenting calculations on nodes is more

capable than storing the huge data locally. HDFS gives

excellent presentation on “commodity” clusters which are

economical in environment with comparatively slow network

fabrics [8]. HDFS cluster uses a master-slave design

consisting of a single NameNode i.e. the master and multiple

DataNodes i.e. the slaves frequently one per node in the

cluster anticipating high throughput of data right to use to a

certain extent than low latency of data access. The

NameNode deal with the file method namespace and controls

right to use to files by clients, whereas the DataNodes are

responsible for serving read and write demands from the file

system‟s clients. In conventional Map/Reduce situations

input and output data are accumulated on the HDFS as

referred in Figure-1,with transitional data stored in a

neighborhood, temporary file method on the Mapper nodes

and shuffled as required (via HTTP) to the nodes running the

Reducer jobs [9].

International Journal of Computer Applications (0975 – 8887)

Volume 157 – No 4, January 2017

16

Figure-1: MapReduce Architecture [10]

Two main techniques utilized to put into practice

responsibility tolerance in HDFS: i) Data duplication and ii)

Checkpoint and recovery [11]. Data duplication consists in

duplicating the information in multiple DataNodes as they

are distributed. To mark a file to the HDFS client first make

contact with the NameNode and then the NameNode

proposes a number of i.e. three by default DataNodes

exploited to repeat the data. The number of duplications can

be enlarged, improving the fault tolerance and the bandwidth

in understanding the file. The checkpoint and recovery

methods are comparable to the idea of rollback. If a failure

take places the scheme rollbacks to the most recent saved

synchronization point and the transaction initiates again. This

technique is slower than data duplication but alternatively it

requires fewer extra resources.

Figure-2: Hadoop Ecosystem

The MapReduce paper available in the OSDI conference,

initiates a parallel processing system running on Google

cluster. In this paper, authors present the interrelated

methods about MapReduce programming model, data type,

elements of the scheme, fault tolerance and so on. Map and

reduce functions do not become visible first in this paper. In

point of fact, map and reduce functions are much admired

functions in mainly functional programming languages. Map

function executes filtering and sorting. The reduce function

executes a review operation. With map and reduce functions

clients can simply execute multiple types of conventional

operations, such as Wordcount, sort and so on.

Approximately Hadoop, groupings of companies engage to

extend abundance controlling structures.

Famous IT companies, such as IBM, Facebook, Twitter,

Yahoo, Google, Baidu, and soon. Startup companies

concentrated on Cloud Computing, such as Cloudera,

Hortonworks, MapR, and so on. In Figure 2, we can find that

there are four levels in Hadoop ecosystem. They are

application level, access level, processing level, and storage

level, respectively. Storage level is responsible for keeping

and maintaining the data in cloud. Processing level is used to

run parallel processing programs in a specified programming

model. In access level, developers and users can directly use

the frameworks in this level to implement some concrete and

high-level operations on the data. The jobs submitted in

access level finally are divided into the different jobs running

in the processing level. Application level provides users

much easier way to execute the operations they need. Users

can focus on their needs without concerning about the

implementation inside the cloud environment. Before and

after using Hadoop, users should use some tools to help load

into and extract from Hadoop storage level. In this area, the

famous tools include Sqoop, Flume, and so on. In the next

subsections, we will introduce some famous and important

frameworks in the finer classifications including file system,

programming model, SQL, and so on.

2. LITERATURE SURVEY
In this paper [12], they propose a Small File MapReduce

Framework (SFMapReduce) that can solve these problems

systematically. Two techniques are introduced in our

framework, which includes Small File Layout (SFLayout)

and Customized MapReduce (CMR). SFLayout is an

innovative file layout designed to use in HDFS for solving

the storage problem of small files. SFLayout combines small

files into an integrated file, which decreases the memory

pressure of NameNode. In addition, we design several useful

operators to manage the files stored in SFLayout. In order to

process the files stored in the form of SFLayout, CMR is

proposed to run the related MapReduce jobs. Moreover,

CMR avoids the extra overhead and improves the

MapReduce performance, compared with the conventional

Hadoop. The cost of creating and closing a container keeps

constant for any size of files. However, traditional Hadoop

MapReduce generates containers for each small file. The cost

of containers cannot be ignored in this situation. CMR is

proposed to avoid the extra overhead and improve the

MapReduce performance. CMR provides two customized

components to transfer a SFLayout file to traditional

Key/Value pairs in the processes of map and reduce phases.

This approach reduces the overhead in running MapReduce

programs with lots of small files. CMR also holds a selector

that is utilized to choose precise files from SFLayout based

on special conditions. SFMapReduce is designed to combine

small files into an integrated file with a new layout and then

run MapReduce programs based on the new layout.

International Journal of Computer Applications (0975 – 8887)

Volume 157 – No 4, January 2017

17

Fig. 3: SFMapReduce Architecture [12].

The experiments‟ results illustrate [12] the robustness of our

framework. SFMapReduce provides better loading

throughput than the original MapReduce and HAR file layout

by 2.78x and 2.99x, respectively. At the same time,

SFMapReduce provides better retrieving throughput than

these two frameworks by 1.64x and 1.13x. Furthermore,

SFMapReduce also outperforms the MapReduce‟s

processing performance by 14.5x and 20.8x for different

benchmarks on average.

In Hadoop MapReduce, reduce tasks issue massive remote

I/O operations to copy the transitional effects of map jobs.

The operations origin enormous isolated data access

interruptions which humiliate the scheme presentation. To

feel this difficulty here they propose an execution engine of

decrease jobs. The engine separations the execution of

reduce jobs into two stages. In the first stage, the engine

chooses the nodes to run reduce jobs and then arrange the

nodes to prefetch transitional results for the reduce jobs. In

the second stage, the preferred nodes assign calculating and

memory resource to the reduce jobs and execute these jobs.

Due to the fact that transitional results have been prefetched

reduce jobs can right to use these results from local nodes

and the remote access interruption of the results can be

concealed. Here they have employed the engine in Hadoop-

0.20.2. They estimated the engine in a Linux cluster. The

results give you an idea about that the engine optimized the

presentation of Hadoop in most cases.

Tian and Chen [13] propose predicting a given MapReduce

application performance from a set of test runs on small

input datasets and a small Hadoop cluster. By executing a

variety of 25-60 test runs the authors create a training set for

building a model of a given application. Once derived, this

model is able to predict the future performance of the same

application when executed on a larger input and a larger

Hadoop cluster. The limitation for this model is that the

model it closely tired with the application characteristic,

when given a new application, the model has to be rebuilt

using another training set created with the new application.

Valvag et al. [14] developed a high-level declarative

programming model and its underlying runtime, Oivos,

which aims at handling the applications that require running

several MapReduce jobs. This framework has two main

advantages compared with MapReduce. First, it handles the

overhead associated with such type of applications including

monitoring the status and development of each work

influential when to re-execute a failed situation or initiate the

next one and identifying a suitable execution order for the

MapReduce jobs. Second, it eliminates the additional

synchronization when these applications are performed using

the conventional MapReduce structure, i.e., every reduce job

in one situation should complete before any of the map tasks

in the next job can start.

Potisepp [15] discussed the processing small/regular

images of total 48675 by aggregating them into huge

data set and development them on Hadoop using

MapReduce as sequential files comparable to the one

addressed by HIPI. In addition, offered achievability learning

as a proof-of-concept test for a particular huge image as

blocks and be relating pixels for non-iterative algorithms

image processing. on the other hand, no plan, or

explanation, or method has been recommended to each

to Hadoop or MapReduce for either Image Processing

applications or for any other area so that the method efforts

for accessible in addition to novel representations under

concern.

The above works focused on small files problem by

combining the smaller images into large bundle like HIPI

does, or they are good for handling the images and lack

in performing the image related spatial filters applications

as the overlap data among the adjacent blocks is not

available. They compared the performance of the single

PC system with the Hadoop based clusters, and do not

address the data handling and processing mechanisms

using Hadoop effectively. In this paper, the issues

related to processing large remote sensing images which

run into several Megabytes to Gigabytes are addressed,

along with the several issues related to data association

over HDFS, and processing them by MapReduce using

extended HDFS and MapReduce called as XHAMI library.

Our proposed XHAMI is applied for describing the

applications for remote sensing or geo sciences data

perspective. However, the same could be either readily

applied or can be extended for other domains such as

medical imaging where such similar data dependencies exist

in processing.

3. PROPOSED METHODOLOGY
The Proposed Methodology implemented here consists of

following steps to be performed for any type of Workload in

BigDataBench.

1. First of all Choose BigDataBench Workloads with

the following set of assumptions such as a) Paying

equal attention to different types of applications:

online service, real-time analytics, and offline

analytics; b) Covering workloads in diverse and

representative application scenarios; c) Including

different data sources: text, graph, and table data;

d) Covering the representative big data software

stacks.

2. Selection of Different Workloads including

Wordcount, Scan, Sort, Read, PageRank, Index.

International Journal of Computer Applications (0975 – 8887)

Volume 157 – No 4, January 2017

18

3. On the basis of Different Workloads such as

Wordcount Semantic Similarity using Cosine

Similarity is computed and hence applying

Resource Allocation using MBFD is done.

4. Consider a cloud Computing Environment with

𝐷𝑖 as the number of data centers 𝐵𝑖 is the number

of Brokers of the cloud 𝐻𝑖 is the number of hosts

and 𝑉𝑖 is the number of physical virtual machines

with N number of Cloudlets 𝐶𝑖 and Resources 𝑅𝑖 .

1. Cloud consumers can submit their requests for the

access of resources to the brokers. Each of the requests

from the cloudlets is allocated to their respective

brokers who can process their requests.

2. Virtual machines can be dynamically started and

stopped on a single physical machine according to the

incoming requests, hence providing the flexibility of

configuring various partitions of resources on the same

physical machine to different requirements of service

requests. Multiple VMs can concurrently run

applications based on different operating system

environments on a single physical machine. By

dynamically migrating VMs across physical machines,

workloads can be consolidated and unused resources

can be switched to a low-power mode, turned off or

configured to operate at low-performance levels (e.g.

using DVFS) in order to save energy.

3. The underlying physical computing servers provide the

hardware infrastructure for creating virtualized

resources to meet service demands.

Currently, resource allocation in a Cloud data center aims to

provide high performance while meeting SLAs, without

focusing on allocating VMs to minimize energy

consumption. To explore both performance and energy

efficiency, three crucial issues must be addressed. First,

excessive power cycling of a server could reduce its

reliability. Second, turning resources off in a dynamic

environment is risky from the QoS perspective. Due to the

variability of the workload and aggressive consolidation,

some VMs may not obtain required resources under peak

load, and fail to meet the desired QoS. Third, ensuring SLAs

brings challenges to accurate application performance

management in virtualized environments. All these issues

requires effective consolidation policies that can minimize

energy consumption without compromising the user-

specified QoS requirements.

Allocation of Virtual Machines

Here the allocation of virtual machines is based on the

entrance of new requests for the provisioning of Virtual

Machines and then allocating of virtual machines on hosts

and then optimization of the current allocation of virtual

machines. The proposed algorithm implemented here uses

Bin backing algorithm which is based on Modified Best Fit

Decreasing (MBFD) algorithm in which sorting of all VMs

in decreasing order of their current CPU utilizations, and

allocate each VM to a host that provides the least increase of

power consumption due to this allocation. This allows

leveraging the heterogeneity of resources by choosing the

most power-efficient nodes first.

Algorithm: Modified Best Fit Decreasing (MBFD)

Input: HostList & VmList

Output: Allocation of VM‟s

1. First of all sort the list of virtual machine lists in

decreasing order of their Utilization.

2. For each of the Virtual machine repeat

3. manpower  MAX

4. allocatedHost  NULL

5. for each of the host in HostList do

6. if host has enough resource for VM then

7. power  estimatePower(host,VM)

8. if power < manpower then

9. allocatedHost  host

10. manpower  Power

11. if allocatedHost NULL then

12. allocated VM to allocatedHost

13. return allocation

 Data content similarity (SimC)
It is the Cosine similarity between the term frequency vectors

of d1 and d2:

𝑺𝒊𝒎𝑪 𝒅𝟏, 𝒅𝟐

=
𝑽𝒅𝟏 ∗ 𝑽𝒅𝟐

 𝑽𝒅𝟏
 ∗ 𝑽𝒅𝟐

(1)

Where Vd is the frequency vector of the terms inside data

unit d, ||Vd|| is the length of Vd, and the numerator is the

inner product of two vectors.

 Number of Common Neighbors
It is defined as the total number of nodes that are connected

directly in relationship with node x and y for unweighted

network,

𝐶𝑁 𝑥, 𝑦 = 𝜑 𝑥 ∩ 𝜑(𝑦) (2)

Where, 𝜑 𝑥 is the set of neighbors of node x.

 𝜑(𝑦)is the set of neighbors of node y.

To calculate link prediction between nodes for unweighted

network common neighbors can be calculated as,

𝐶𝑁 𝑥, 𝑦 = 𝑤 𝑥, 𝑧 + 𝑤 𝑦, 𝑧

𝑧∈𝜑 𝑥 ∩𝜑 𝑦

(3)

 Jaccard Coefficient

It is defined as the highest proportion of common neighbors

to the total number of neighbors in the network. The Jaccard

Coefficient can also defined for weighted as well for

unweighted network.

For unweighted network,

𝐽𝐶 𝑥, 𝑦

=
𝜑(𝑥) ∩ 𝜑(𝑦)

𝜑(𝑥) ∪ 𝜑(𝑦)

4)

For weighted network,

𝐽𝐶 𝑥, 𝑦 =
𝑤 𝑥, 𝑧 + 𝑤(𝑦, 𝑧)

 𝑤 𝑎, 𝑥 + 𝑤(𝑏, 𝑦)𝑏∈𝜑(𝑦)𝑎∈𝜑(𝑥)
𝑧∈𝜑(𝑥)∩𝜑(𝑦)

 (4.5)

International Journal of Computer Applications (0975 – 8887)

Volume 157 – No 4, January 2017

19

Predict the most valuable words from the text documents

having most similarity between words.

Skewness algorithm for the avoidance of overload

Here Skewness algorithm is applied for the avoidance of the

overload by applying the predicting the unevenness in the

allocations of resources. The „N‟ number of resources

allocation with „R‟ number of resources can be applied to

their respective servers P on the basis of:

𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 𝑃 = (
𝑟𝑖
𝑟

)2

𝑛

𝑖=1

Where, 𝐫 is the average utilization of all the resources for

the‟N‟ number of resources for Servers P. Finallly the

mitigation of resource can be done by comparing the

threshold. The Utilization for each of the resource can be

allocated on the basis of load on each of the server.

4. RESULT ANALYSIS
Table 1. Analysis of NameNode Memory

 NameNode Memory (MB)

Set ID Original Hadoop Proposed Work

1 5 3

2 50 38

3 800 690

4 7000 6500

5 13000 11500

Table 2. Analysis of Running Time

 Running Time (s)

SetID Original Hadoop Proposed Work

1 1 1

2 800 500

3 1200 1000

4 1900 1500

5 2500 2000

6 3000 2500

7 3500 3000

8 4000 3500

9 4500 4000

10 5000 4500

Table 3. Analysis of Memory Usage in Namenode

 NameNode Memory (KB)

Data Size Existing Work Proposed Work

10 10 5

20 50 20

30 70 30

40 80 50

50 90 65

60 100 75

Table 4. Analysis of Loading and Retrieving Throughput

 Throughput (MB/Sec)

 Existing Work Proposed Work

Load 40 45

Retrieve 80 83

Figure 4. Comparison of NameNode Memory

Figure 5. Comparison of Running Time fo Seperated Files

0

2000

4000

6000

8000

10000

12000

14000

1 2 3 4 5

N
am

e
N

o
d

e
 M

e
m

o
ry

 (
M

B
)

SetID

Comparison of
NameNode Memory (MB)

Original
Hadoop

Proposed
Work

0
1000
2000
3000
4000
5000
6000

1 3 5 7 9

R
u

n
n

in
g

Ti
m

e
 (

s)

SetID

Comparison of Running
Time for Seperated Files (s)

Original
Hadoop

Proposed
Work

International Journal of Computer Applications (0975 – 8887)

Volume 157 – No 4, January 2017

20

Figure 6. Comparison of NameNode Memory

Figure 7. Comparison of Loading & Retrieving

Throughput

5. CONCLUSION
Hadoop is a powerful and widely used framework to handle

large scale of data. Users and developers can easily use

Hadoop to parallelize the processes of data in an available

and scalable cloud environment. The demands and

requirements vary dramatically in the practical world. One of

the most significant demands is to add features to efficiently

store and process small files in Hadoop. As we discussed in

background section, both HDFS and MapReduce in the

original Hadoop cannot support small files well. In order to

solve these problems, we propose a new adaptation

framework for the analysis of Small and Big Size Files. The

various Experimental results shows the Performance of the

Proposed Methodology.

6. REFERENCES
[1] J. Dean and S. Ghemawat. Mapreduce: simplified data

processing on large clusters. OSDI‟04, Berkeley, CA,

USA, 2004. USENIX Association.

[2] Apache.org. Hadoop distributed file system.

http://hadoop.apache.org.

[3] B. Fan, W. Tantisiriroj, L. Xiao, and G. Gibson.

Diskreduce: Raid for data-intensive scalable computing.

In Proceedings of the 4th Annual Workshop on

Petascale Data Storage, PDSW ‟09, pages 6–10, New

York, NY, USA, 2009. ACM.

[4] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google

file system. SIGOPS Oper. Syst. Rev., (5), 2003.

[5] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G.

Dimakis, R. Vadali, S. Chen, and D. Borthakur. Xoring

elephants: novel erasure codes for big data. In

Proceedings of the 39th international conference on

Very Large Data Bases, PVLDB‟13, pages 325–336,

2013.

[6] J. Dean and S. Ghemawat. Mapreduce: Simplified data

processing on large clusters. In OSDIn'04, pages 137-

150, 2005.

[7] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D.

A.Wallach, M. Burrows, T. Chandra, A. Fikes, and R.

E. Gruber. Bigtable: A distributed storage system for

structured data. ACM Transactions on Computer

Systems (TOCS), 26(2):4, 2008.

[8] V.S.Patil, P.D.Soni, Hadoop Skeleton & Fault

Tolerance in Hadoop Clusters,International Journal of

Application or Innovation in Engineering &

Management, Volume 2, Issue 2;February 2013,pp.247-

250.

[9] J. Evans, Fault Tolerance in Hadoop for Work

Migration, Technical Report CSCI B534 (Survey

Paper), Indiana University;November 2011.

[10] J.Dean, S.Ghemawat, MapReduce: Simplified Data

Processing on Large Clusters,Communication of The

ACM;Jan. 2008,pp. 107-113.

[11] I.Goiri,F. Julià,J.Guitart, J.Torres, Checkpoint-Based

Fault-Tolerant Infrastructure for Virtualized Service

Providers. IEEE/IFIP Network Operations and

Management Symposium,IEEE. Osaka, Japan;April

2010,pp. 455-462.

[12] Fang Zhou Hai Pham Jianhui Yue Hao Zou Weikuan

Yu, “SFMapReduce: An Optimized MapReduce

Framework for Small Files, IEEE 2015.

[13] Fengguang Tian and Keke Chen. Towards Optimal

Resource Provisioning for Running MapReduce

Programs in Public Clouds. In Proceedings of the 2011

IEEE 4th International Conference on Cloud

Computing, CLOUD ‟11, pages 155–162, 2011.

[14] Steffen Valvag and Dag Johansen. Oivos: Simple and

Efficient Distributed Data Proessing. In IEEE 10th

International Conference on High Performance

Computing and Communications, pages 113–122, Sept.

2008.

[15] K. Potisepp, Large Scale Image Processing Using

MapReduce, MSc. Thesis, Institute of Computer

Science, Tartu University, 2013.

0

20

40

60

80

100

120

10 20 30 40 50 60

N
am

e
N

o
d

e
 M

e
m

o
ry

 (
K

B
)

Data Size

Comparison of NameNode
Memory (KB)

Existing
Work

Proposed
Work

0

20

40

60

80

100

Th
ro

u
gh

tp
u

t
(M

B
/S

e
c)

Comparison of Throughput

Existing Work

Proposed Work

IJCATM : www.ijcaonline.org

