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ABSTRACT  
Orthogonal Frequency Division Multiplexing (OFDM) is a 

method of encoding digital data on multiple carrier 

frequencies. It is a specialized form of Frequency Division 

Multiplexing (FDM) where the carrier frequencies are 

orthogonal to each other. It finds applications in wideband 

digital communication, DSL internet access and power line 

communication. Fast Fourier transform (FFT) processing is 

one of the key procedures in popular orthogonal frequency 

division multiplexing (OFDM) communication systems. 

Structured pipeline architectures, low power consumption, 

high speed and reduced chip area are the primary concerns in 

this VLSI and signal processing domain. A 16 point FFT 

processor is designed using Radix-2, Radix-4 and Split-

Radix algorithms and compare their performances in terms 

of power, delay, and Power delay product (PDP)). Vedic 

Multiplier and Kogge Stone adder helps in performing high 

speed multiplication and addition operations. The processor 

is implemented in RTL using Verilog HDL. Cadence 

environment is utilized for performing synthesis and for 

generating the chip layout. 

Keywords 
Radix 2, Radix 4, Split radix, Vedic Mathematics, Urdhva 

Triyakhbhyam, Kogge Stone Adder 

1. INTRODUCTION  
Discrete Fourier Transform (DFT) is an important operation 

in the field of Digital signal processing. The DFT differs 

from Discrete-time Fourier transform (DTFT) as both the 

input and output sequences are of finite length. Since it deals 

with finite amount of data, it can be easily implemented in 

digital systems. Application of DFT includes spectral 

analysis, data compression, filtering, digital communication   

(OFDM), radar etc. The equations for DFT and inverse DFT 

are given below: 

X k =  x n WN
knN−1

n=0             (1) 

x n =
1

N
 X[k]WN

−knN−1
k=0     (2) 

Direct computation of DFT is not efficient as it does not take 

into account the symmetry and periodicity properties of the 

twiddle factor. For an input sequence of length N, N
2 

complex multiplications and N(N-1) complex additions are 

involved in direct computation of DFT. The Fast Fourier 

Transform (FFT) is one of the most efficient algorithms for 

implementation of DFT as it reduces the number of 

arithmetic operations involved. The most commonly used 

FFT is the Cooley-Turkey algorithm. This algorithm uses a 

divide and conquers approach, recursively breaking down a 

larger DFT into several smaller DFTs. Other FFT algorithm 

includes Bruun’s FFT [1], Rader’s FFT [1], and Bluestein’s 

FFT [1] etc. 

Much new architecture for computation of FFT has been 

developed over VLSI platforms. In [2], a 16-point Radix-4 

FFT core was implemented using New Distributed 

Arithmetic (NEDA), which requires less hardware. Design in 

[3] uses Radix-4 CORDIC approach for generating twiddle 

factors used in computation of FFT. The design in [4] focuses 

on the programmability aspect of FFT architectures for 

FPGA implementation. 

This paper presents 16-point FFT architecture using radix-2, 

radix-4 and split radix algorithms. Vedic multiplier and 

Kogge Stone Adder are used for performing multiplication 

and addition operations with reduced latency, so that FFT 

computations are fast and feasible for real-time applications 

like Orthogonal Frequency Division Multiplexing (OFDM). 

The architecture are designed and implemented in cadence 

environment and analyzed with respect to number of gates, 

speed, power and PDP. 

The outline of the paper is as follows. Section II gives the 

brief overview of Radix-2,Radix-4 and split radix algorithms. 

Section III provides design of multiplier and adder used in 

the FFT architecture. Section IV presents the measurement 

result and section V concludes the paper. 

2. DESIGN AND WORKING OF 

DIFFERENT RADIX 

2.1  Radix-2 DIT-FFT Algorithm 
Consider the computation of an N-point DFT where N=2v 

and v is an integer. Applying the divide and conquer 

approach, the N point data sequence is split into two N/2 

point data sequences f1[n] and f2[n] which correspond to the 

even-numbered and odd-numbered samples of the input x[n] 

respectively.                    

f1 [n] =x [2n]                            (3) 

f2 [n] =x [2n+1]                                                (4) 

𝑊ℎ𝑒𝑟𝑒 𝑛 = 0,1,2,…… . ,
𝑁

2
− 1 

The N-point DFT is represented in terms of DFTs of the 

decimated sequences as follows: 

 

       X k =  x[n]WN
knN−1

n=0         for  k=0, 1, …, N-1    

(5) 

 

                  =  x n n even WN
kn  +  x n WN

kn
n odd  
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                =  𝐱 𝟐𝐧 𝐖𝐍
𝟐𝐧𝐤 +

𝐍

𝟐
−𝟏

𝐧=𝟎
 𝐱(𝟐𝐧 +

𝐍

𝟐
−𝟏

𝐧=𝟎

𝟏)𝐖𝐍
(𝟐𝐧+𝟏)𝐤

(6) 

 
After proper substitution, we finally get 

X k = F1 k + WN
kF2[k]      𝐤 = 𝟎,𝟏,… . .

𝐍

𝟐
− 𝟏      (7) 

and 

𝐗  𝐤 +
𝐍

𝟐
 = 𝐅𝟏 𝐤 −𝐖𝐍

𝐤𝐅𝟐 𝐊       𝐤 = 𝟎,𝟏,… .
𝐍

𝟐
− 𝟏 (8) 

Where F1[k] and F2[k] are DFTs of f1[n] and f2[n] 

respectively. This decimation process is performed for each 

of the sequences f1[n] and f2[n], and then repeated again and 

again till the resulting sequence is a two-point sequence. 

Thus, the total number of complex addition is reduced to N 

log2N. The number of complex multiplication is (N/2)log2N. 

There are N/2 butterflies per stage of computation and Log2N 

stages. 

The basic butterfly computation in the decimation in time 

(DIT) FFT algorithm is shown in Fig 1. 

 
Fig 1: Butterfly structure for Radix-2 DIT- FFT 

There are some important observations in this algorithm. 

Firstly, once a butterfly operation is performed, there is no 

need to store the inputs. Hence the same memory locations 

can be used to store the outputs. Therefore, for an N-point 

DFT, 2N storage locations are needed in order to store the 

results (N complex numbers). The same 2N locations are 

used throughout the computation and hence computations are 

said to be done in place [4]. Secondly, the input sequence 

x[n] is in bit reversed order while the resulting DFT X[k] is 

in normal order. If we do not consider the requirement that 

computations be done in place, then both the inputs and 

outputs can be in normal order [5]. 

2.2   Radix -4 FFT Algorithms 
Computation of N-point DFT where N=4v, is done using 

Radix-4 FFT algorithm. The N point DFT is divided into four 

N/4 point DFTs for implementation of radix 4 FFT [6]. The 

basic butterfly signal flow structure of radix 4 FFT is shown 

in fig2.   

 
Fig 2: Basic butterfly structure for Radix-4 FFT 

The Number of stages for radix 4 FFT is given by log4N. 

Thus, a 16-point radix-4 FFT requires 2 stages. Each stage 

consists of four radix-4 butterfly structures.  Each butterfly 

consists of four inputs and four outputs. The inputs to the 

radix 4 FFT are given in the bit reversed order. The radix-4 

butterfly structure requires 4 complex multiplication and 12 

complex addition/ subtraction modules. 

A 16-point radix-4 FFT requires four butterfly structures for 

the first stage of computation where the inputs are given in 

bit reversed order. The second stage of computation requires 

another four butterfly structures multiplied by appropriate 

twiddle factors and the outputs are taken in normal order. 

The inputs to first stage are x(n),x(n+4),x(n+8),x(n+12) 

where n=0,1,2,3 for 1st butterfly, 2nd butterfly ,3rd butterfly 

and 4th butterfly. These inputs are processed and their 

outputs are available as inputs for the second stage. 

In the second stage, the output from each butterfly structure 

in the first stage is given as input to the first butterfly. For the 

second butterfly, second output from each butterfly structure 

in first stage is given as input and so on.  

2.3 Split radix FFT Algorithm 
Split-Radix FFT (SRFFT) algorithm is a modification of the 

Cooley-Turkey algorithm which uses both Radix-2 and 

Radix-4 decompositions in the same algorithm. In Radix-2 

algorithm, the even numbered points   and the odd numbered 

points of the DFT can be calculated independently. Thus, 

there is a possibility of using different methods for 

independent parts of the algorithm, to reduce the total 

number of arithmetic operations involved. Split-Radix FFT 

exploits this idea by using both Radix-2 and Radix-4 

decompositions in the same algorithm [7]. It represents an N-

point DFT in terms of one N/2-point DFT and two N/4 point 

DFTs, where N=2v. It combines the simplicity of Radix-2 

algorithm with the lesser computational complexity of 

Radix-4 algorithm to achieve lowest number of arithmetic 

operations. 

Thus, the even numbered samples of the N-point DFT are 

computed using Radix-2 algorithm. 

X 2k =  (x n + x
N

2
−1

n=0 [n +
N

2
])WN/2

nk
      

(9)  𝑊ℎ𝑒𝑟𝑒 𝑘 = 0,1,2,…… . ,
𝑁

2
− 1                     

Radix-4 algorithm is used for the odd-numbered samples, 

and the following N/4 point DFTs are obtained. 

X 4k + 1 =  { x n − x n + N/2  − j(x[n +
N

4
−1

n=0 N/4] −

x[n + 3N/4])}WN
nWN/4

kn    (10) 
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X 4k + 3 =  {
N

4
−1

n=0 (x[n] − x[n + N/2]) + j(x[n + N/4] −

x[n + 3N/4])}WN
3nWN/4

kn   (11) 

The butterfly used in Split-Radix FFT is shown in fig.3 

 

Fig 3:Basic butterfly Structure for Split Radix FFT 

2.4. Number Representation and Complex 

Arithematic Operations 
Consider two complex numbers (a+jb) and (c+jd). Each of 

the numbers has been represented using fixed point 

arithmetic. The first bit is the sign bit followed by 8 bits for 

the integer part and 8 bits for the fractional part. The 

equations for complex addition and subtraction are as shown: 

 a + ib +  c + id =  a + c + i(b + d)                (12) 

 a + ib −  c + id =  a − c + i(b − d)                (13) 

The complex adder is designed using 2 adders. Equation for 

a complex multiplier is as shown: 

 a + ib ∗  c + id =  ac − bd + i(ad + bc)        (14) 

Complex multiplier is designed using 4 multipliers, one 

adder and one substractor module. 

 

Fig 4: Fixed point number representation 

3. DESIGN AND WORKING OF THE 

VEDIC MULTIPLIER AND KOGGE 

STONE ADDER USED IN 

PROPOSED DESIGNS 

3.1 Vedic Multiplier 
The term Vedic originates from the word “Veda” which 

means “Store House of Knowledge” [8]. Vedic mathematics 

can be used to optimize the algorithms used in conventional 

mathematics for faster operations. Vedic mathematics is 

described by 16 sutras. It finds application in various fields 

of mathematics. One such application of Vedic mathematics 

is design of a multiplier. The Vedic multiplier used in the 

proposed design utilizes Urdhva-tiryakbyham (UT) sutra. 

The literal meaning of UT is “vertical and crosswise” [8]. 

The operation of 2-bit Vedic multiplier is shown in Fig 5. 

 
Fig 5: Architecture of a 2x2 Vedic Multiplier 

Consider two numbers A and B of 2 bits each. The operation 

of multiplication using UT sutra is shown below. 

S[0] = A[0]B[0]                                                    (15) 

C[1]S[1] = A[1]B[0] + A[0]B[1]                          (16) 

C[2]S[2] = C[1] + A[1]B[1]                                  (17) 

The Same principle can be used for design of Vedic 

multiplier with increased bit length. 16-bit Vedic multiplier 

is used for realization of complex multiplication in FFT. The 

architectural view of 16 point Vedic multiplier is shown in 

Fig 6.  

 
Fig 6: Architecture of 16 x 16 Vedic Multiplier 

The 16-bit Vedic multiplier is realized using four 8-bit Vedic 

multiplier and three 16 bit Adders. 

3.2 Kogge Stone Adder (Ksa) 
Kogge stone adder, a parallel prefix form of  carry look-

ahead adder is incorporated for addition of partial products 

generated in vedic multiplier and complex addition in FFT. 

KSA is used as fastest adder in high speed design because of 

minimum logic depth and bounded fan-out. The main reason 

for high speed is that the carries are computed parallelly. The 

time for generation of carry signals is of the order of O(log 

n). The prefix network in KSA has built in redundancy which 

finds application in fault tolerant designs [9]. 

The operation of KSA is explained in three different stages: 

i. Pre-processing (P and G generation) 

ii. Look-ahead carry generation (CPi and CGi 

generation) 
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iii. Post processing (Computation of Sum)  

1. Pre-Processing 

The generate(Gi) and propagate(Pi) signals are computed 

depending on inputs by the Pre-Processing stage. The logic 

equations are as follows 

Pi=Ai XOR Bi 

Gi=Ai AND Bi 

2. Look-ahead Carry generation(LCG) 

High speed of the KSA is achieved by the LCG stage. LCG 

stage computes carry in parallel and hence achieves high 

speed.  The carry propagate and generate signals are used as 

input to  intermediate stage. The logical equations are shown 

below: 

CPi:j= Pi:k+ 1 and Pk:j                                             (18)                              

CGi:j= Gi:k+ 1 or (Pi:k+ 1 and Gk:j)             (19)           

3. Post-Processing 

Post processing stage is responsible for generation of sum 

bits. Post processing stage is incorporated by all carry look 

ahead adder. The logic equations are shown below:   

Ci– 1 = (Pi and Cin) or Gi                                  (20)                 

Si = Pi x or Ci– 1                                                     (21) 

 

Fig 7: Structure of 8-bit Kogge Stone Adder 

 

Fig 8: Components of Kogge-Stone Adder 

4. LAYOUT AND MEASUREMENT 

RESULTS 
Radix-2, Radix-4 and split Radix are designed, simulated and 

synthesized in Cadence environment. 

Fig 9 shows the simulation waveform of the 16-point split 

Radix FFT. 

Table1 shows the values of Area, Power and timing obtained 

for radix-2 radix-4 and split radix FFT algorithms. Fig 11 

shows the plot for timing, power, and PDP for the three 

algorithms. From the timing comparison plot, we infer that 

split radix takes less computation time compared to radix-2 

and radix 4. PDP is less for split radix algorithm compared to 

the Radix-2 and Radix-4 algorithm  

Table1.  The Experimental results of the proposed 
designs 

Radix 

Design Gates 

Area 

(um
2
) 

Power 

(mw) 

Timing 

(ns) 

PDP 

(mwns) 

Radix-

2 32118 57470.364 3.350 2.9 9.716612 

Radix-

4 78891 139779.504 5.957 2.1 12.51054 

Split-

Radix 33221 54351.273 2.366 1.5 3.550118 

 

Fig 9:Simulation result for 16-point FFT 

 

Fig 10:Chip Layout for FFT processor 
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Fig 11: Delay, Timing and PDP comparison of FFT 
algorithms 

5. CONCLUSION 
The present paper reported architecture of 16-point split 

radix FFT core by using Vedic multiplier and kogge stone 

adder for multiplication and addition respectively. 

Proposed design is efficient in terms of power, speed and 

power delay product compared with Radix-2 and Radix -4 

algorithms. The proposed design occupies a chip area of 

54351.273µm2 for 45nm technology. Power consumption is 

2.366mW. 
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