
International Journal of Computer Applications (0975 – 8887)

Volume 157 – No 7, January 2017

22

VLSI Implementation of Split-radix FFT for High Speed

Applications

Arunkumar P. Chavan
Department of Electronics and

Communication
R. V. College of Engineering

Bengaluru-59

Sowmya Nag K.
Department of Electronics and

Communication
R. V. College of Engineering

Bengaluru-59

Sujata Priyambada
Mishra

Department of Electronics and
Communication

R. V. College of Engineering
Bengaluru-59

ABSTRACT
Orthogonal Frequency Division Multiplexing (OFDM) is a

method of encoding digital data on multiple carrier

frequencies. It is a specialized form of Frequency Division

Multiplexing (FDM) where the carrier frequencies are

orthogonal to each other. It finds applications in wideband

digital communication, DSL internet access and power line

communication. Fast Fourier transform (FFT) processing is

one of the key procedures in popular orthogonal frequency

division multiplexing (OFDM) communication systems.

Structured pipeline architectures, low power consumption,

high speed and reduced chip area are the primary concerns in

this VLSI and signal processing domain. A 16 point FFT

processor is designed using Radix-2, Radix-4 and Split-

Radix algorithms and compare their performances in terms

of power, delay, and Power delay product (PDP)). Vedic

Multiplier and Kogge Stone adder helps in performing high

speed multiplication and addition operations. The processor

is implemented in RTL using Verilog HDL. Cadence

environment is utilized for performing synthesis and for

generating the chip layout.

Keywords
Radix 2, Radix 4, Split radix, Vedic Mathematics, Urdhva

Triyakhbhyam, Kogge Stone Adder

1. INTRODUCTION
Discrete Fourier Transform (DFT) is an important operation

in the field of Digital signal processing. The DFT differs

from Discrete-time Fourier transform (DTFT) as both the

input and output sequences are of finite length. Since it deals

with finite amount of data, it can be easily implemented in

digital systems. Application of DFT includes spectral

analysis, data compression, filtering, digital communication

(OFDM), radar etc. The equations for DFT and inverse DFT

are given below:

X k = x n WN
knN−1

n=0 (1)

x n =
1

N
 X[k]WN

−knN−1
k=0 (2)

Direct computation of DFT is not efficient as it does not take

into account the symmetry and periodicity properties of the

twiddle factor. For an input sequence of length N, N
2

complex multiplications and N(N-1) complex additions are

involved in direct computation of DFT. The Fast Fourier

Transform (FFT) is one of the most efficient algorithms for

implementation of DFT as it reduces the number of

arithmetic operations involved. The most commonly used

FFT is the Cooley-Turkey algorithm. This algorithm uses a

divide and conquers approach, recursively breaking down a

larger DFT into several smaller DFTs. Other FFT algorithm

includes Bruun’s FFT [1], Rader’s FFT [1], and Bluestein’s

FFT [1] etc.

Much new architecture for computation of FFT has been

developed over VLSI platforms. In [2], a 16-point Radix-4

FFT core was implemented using New Distributed

Arithmetic (NEDA), which requires less hardware. Design in

[3] uses Radix-4 CORDIC approach for generating twiddle

factors used in computation of FFT. The design in [4] focuses

on the programmability aspect of FFT architectures for

FPGA implementation.

This paper presents 16-point FFT architecture using radix-2,

radix-4 and split radix algorithms. Vedic multiplier and

Kogge Stone Adder are used for performing multiplication

and addition operations with reduced latency, so that FFT

computations are fast and feasible for real-time applications

like Orthogonal Frequency Division Multiplexing (OFDM).

The architecture are designed and implemented in cadence

environment and analyzed with respect to number of gates,

speed, power and PDP.

The outline of the paper is as follows. Section II gives the

brief overview of Radix-2,Radix-4 and split radix algorithms.

Section III provides design of multiplier and adder used in

the FFT architecture. Section IV presents the measurement

result and section V concludes the paper.

2. DESIGN AND WORKING OF

DIFFERENT RADIX

2.1 Radix-2 DIT-FFT Algorithm
Consider the computation of an N-point DFT where N=2v

and v is an integer. Applying the divide and conquer

approach, the N point data sequence is split into two N/2

point data sequences f1[n] and f2[n] which correspond to the

even-numbered and odd-numbered samples of the input x[n]

respectively.

f1 [n] =x [2n] (3)

f2 [n] =x [2n+1] (4)

𝑊ℎ𝑒𝑟𝑒 𝑛 = 0,1,2,…… . ,
𝑁

2
− 1

The N-point DFT is represented in terms of DFTs of the

decimated sequences as follows:

 X k = x[n]WN
knN−1

n=0 for k=0, 1, …, N-1

(5)

 = x n n even WN
kn + x n WN

kn
n odd

International Journal of Computer Applications (0975 – 8887)

Volume 157 – No 7, January 2017

23

 = 𝐱 𝟐𝐧 𝐖𝐍
𝟐𝐧𝐤 +

𝐍

𝟐
−𝟏

𝐧=𝟎
 𝐱(𝟐𝐧 +

𝐍

𝟐
−𝟏

𝐧=𝟎

𝟏)𝐖𝐍
(𝟐𝐧+𝟏)𝐤

(6)

After proper substitution, we finally get

X k = F1 k + WN
kF2[k] 𝐤 = 𝟎,𝟏,… . .

𝐍

𝟐
− 𝟏 (7)

and

𝐗 𝐤 +
𝐍

𝟐
 = 𝐅𝟏 𝐤 −𝐖𝐍

𝐤𝐅𝟐 𝐊 𝐤 = 𝟎,𝟏,… .
𝐍

𝟐
− 𝟏 (8)

Where F1[k] and F2[k] are DFTs of f1[n] and f2[n]

respectively. This decimation process is performed for each

of the sequences f1[n] and f2[n], and then repeated again and

again till the resulting sequence is a two-point sequence.

Thus, the total number of complex addition is reduced to N

log2N. The number of complex multiplication is (N/2)log2N.

There are N/2 butterflies per stage of computation and Log2N

stages.

The basic butterfly computation in the decimation in time

(DIT) FFT algorithm is shown in Fig 1.

Fig 1: Butterfly structure for Radix-2 DIT- FFT

There are some important observations in this algorithm.

Firstly, once a butterfly operation is performed, there is no

need to store the inputs. Hence the same memory locations

can be used to store the outputs. Therefore, for an N-point

DFT, 2N storage locations are needed in order to store the

results (N complex numbers). The same 2N locations are

used throughout the computation and hence computations are

said to be done in place [4]. Secondly, the input sequence

x[n] is in bit reversed order while the resulting DFT X[k] is

in normal order. If we do not consider the requirement that

computations be done in place, then both the inputs and

outputs can be in normal order [5].

2.2 Radix -4 FFT Algorithms
Computation of N-point DFT where N=4v, is done using

Radix-4 FFT algorithm. The N point DFT is divided into four

N/4 point DFTs for implementation of radix 4 FFT [6]. The

basic butterfly signal flow structure of radix 4 FFT is shown

in fig2.

Fig 2: Basic butterfly structure for Radix-4 FFT

The Number of stages for radix 4 FFT is given by log4N.

Thus, a 16-point radix-4 FFT requires 2 stages. Each stage

consists of four radix-4 butterfly structures. Each butterfly

consists of four inputs and four outputs. The inputs to the

radix 4 FFT are given in the bit reversed order. The radix-4

butterfly structure requires 4 complex multiplication and 12

complex addition/ subtraction modules.

A 16-point radix-4 FFT requires four butterfly structures for

the first stage of computation where the inputs are given in

bit reversed order. The second stage of computation requires

another four butterfly structures multiplied by appropriate

twiddle factors and the outputs are taken in normal order.

The inputs to first stage are x(n),x(n+4),x(n+8),x(n+12)

where n=0,1,2,3 for 1st butterfly, 2nd butterfly ,3rd butterfly

and 4th butterfly. These inputs are processed and their

outputs are available as inputs for the second stage.

In the second stage, the output from each butterfly structure

in the first stage is given as input to the first butterfly. For the

second butterfly, second output from each butterfly structure

in first stage is given as input and so on.

2.3 Split radix FFT Algorithm
Split-Radix FFT (SRFFT) algorithm is a modification of the

Cooley-Turkey algorithm which uses both Radix-2 and

Radix-4 decompositions in the same algorithm. In Radix-2

algorithm, the even numbered points and the odd numbered

points of the DFT can be calculated independently. Thus,

there is a possibility of using different methods for

independent parts of the algorithm, to reduce the total

number of arithmetic operations involved. Split-Radix FFT

exploits this idea by using both Radix-2 and Radix-4

decompositions in the same algorithm [7]. It represents an N-

point DFT in terms of one N/2-point DFT and two N/4 point

DFTs, where N=2v. It combines the simplicity of Radix-2

algorithm with the lesser computational complexity of

Radix-4 algorithm to achieve lowest number of arithmetic

operations.

Thus, the even numbered samples of the N-point DFT are

computed using Radix-2 algorithm.

X 2k = (x n + x
N

2
−1

n=0 [n +
N

2
])WN/2

nk

(9) 𝑊ℎ𝑒𝑟𝑒 𝑘 = 0,1,2,…… . ,
𝑁

2
− 1

Radix-4 algorithm is used for the odd-numbered samples,

and the following N/4 point DFTs are obtained.

X 4k + 1 = { x n − x n + N/2 − j(x[n +
N

4
−1

n=0 N/4] −

x[n + 3N/4])}WN
nWN/4

kn (10)

International Journal of Computer Applications (0975 – 8887)

Volume 157 – No 7, January 2017

24

X 4k + 3 = {
N

4
−1

n=0 (x[n] − x[n + N/2]) + j(x[n + N/4] −

x[n + 3N/4])}WN
3nWN/4

kn (11)

The butterfly used in Split-Radix FFT is shown in fig.3

Fig 3:Basic butterfly Structure for Split Radix FFT

2.4. Number Representation and Complex

Arithematic Operations
Consider two complex numbers (a+jb) and (c+jd). Each of

the numbers has been represented using fixed point

arithmetic. The first bit is the sign bit followed by 8 bits for

the integer part and 8 bits for the fractional part. The

equations for complex addition and subtraction are as shown:

 a + ib + c + id = a + c + i(b + d) (12)

 a + ib − c + id = a − c + i(b − d) (13)

The complex adder is designed using 2 adders. Equation for

a complex multiplier is as shown:

 a + ib ∗ c + id = ac − bd + i(ad + bc) (14)

Complex multiplier is designed using 4 multipliers, one

adder and one substractor module.

Fig 4: Fixed point number representation

3. DESIGN AND WORKING OF THE

VEDIC MULTIPLIER AND KOGGE

STONE ADDER USED IN

PROPOSED DESIGNS

3.1 Vedic Multiplier
The term Vedic originates from the word “Veda” which

means “Store House of Knowledge” [8]. Vedic mathematics

can be used to optimize the algorithms used in conventional

mathematics for faster operations. Vedic mathematics is

described by 16 sutras. It finds application in various fields

of mathematics. One such application of Vedic mathematics

is design of a multiplier. The Vedic multiplier used in the

proposed design utilizes Urdhva-tiryakbyham (UT) sutra.

The literal meaning of UT is “vertical and crosswise” [8].

The operation of 2-bit Vedic multiplier is shown in Fig 5.

Fig 5: Architecture of a 2x2 Vedic Multiplier

Consider two numbers A and B of 2 bits each. The operation

of multiplication using UT sutra is shown below.

S[0] = A[0]B[0] (15)

C[1]S[1] = A[1]B[0] + A[0]B[1] (16)

C[2]S[2] = C[1] + A[1]B[1] (17)

The Same principle can be used for design of Vedic

multiplier with increased bit length. 16-bit Vedic multiplier

is used for realization of complex multiplication in FFT. The

architectural view of 16 point Vedic multiplier is shown in

Fig 6.

Fig 6: Architecture of 16 x 16 Vedic Multiplier

The 16-bit Vedic multiplier is realized using four 8-bit Vedic

multiplier and three 16 bit Adders.

3.2 Kogge Stone Adder (Ksa)
Kogge stone adder, a parallel prefix form of carry look-

ahead adder is incorporated for addition of partial products

generated in vedic multiplier and complex addition in FFT.

KSA is used as fastest adder in high speed design because of

minimum logic depth and bounded fan-out. The main reason

for high speed is that the carries are computed parallelly. The

time for generation of carry signals is of the order of O(log

n). The prefix network in KSA has built in redundancy which

finds application in fault tolerant designs [9].

The operation of KSA is explained in three different stages:

i. Pre-processing (P and G generation)

ii. Look-ahead carry generation (CPi and CGi

generation)

International Journal of Computer Applications (0975 – 8887)

Volume 157 – No 7, January 2017

25

iii. Post processing (Computation of Sum)

1. Pre-Processing

The generate(Gi) and propagate(Pi) signals are computed

depending on inputs by the Pre-Processing stage. The logic

equations are as follows

Pi=Ai XOR Bi

Gi=Ai AND Bi

2. Look-ahead Carry generation(LCG)

High speed of the KSA is achieved by the LCG stage. LCG

stage computes carry in parallel and hence achieves high

speed. The carry propagate and generate signals are used as

input to intermediate stage. The logical equations are shown

below:

CPi:j= Pi:k+ 1 and Pk:j (18)

CGi:j= Gi:k+ 1 or (Pi:k+ 1 and Gk:j) (19)

3. Post-Processing

Post processing stage is responsible for generation of sum

bits. Post processing stage is incorporated by all carry look

ahead adder. The logic equations are shown below:

Ci– 1 = (Pi and Cin) or Gi (20)

Si = Pi x or Ci– 1 (21)

Fig 7: Structure of 8-bit Kogge Stone Adder

Fig 8: Components of Kogge-Stone Adder

4. LAYOUT AND MEASUREMENT

RESULTS
Radix-2, Radix-4 and split Radix are designed, simulated and

synthesized in Cadence environment.

Fig 9 shows the simulation waveform of the 16-point split

Radix FFT.

Table1 shows the values of Area, Power and timing obtained

for radix-2 radix-4 and split radix FFT algorithms. Fig 11

shows the plot for timing, power, and PDP for the three

algorithms. From the timing comparison plot, we infer that

split radix takes less computation time compared to radix-2

and radix 4. PDP is less for split radix algorithm compared to

the Radix-2 and Radix-4 algorithm

Table1. The Experimental results of the proposed
designs

Radix

Design Gates

Area

(um
2
)

Power

(mw)

Timing

(ns)

PDP

(mwns)

Radix-

2 32118 57470.364 3.350 2.9 9.716612

Radix-

4 78891 139779.504 5.957 2.1 12.51054

Split-

Radix 33221 54351.273 2.366 1.5 3.550118

Fig 9:Simulation result for 16-point FFT

Fig 10:Chip Layout for FFT processor

International Journal of Computer Applications (0975 – 8887)

Volume 157 – No 7, January 2017

26

Fig 11: Delay, Timing and PDP comparison of FFT
algorithms

5. CONCLUSION
The present paper reported architecture of 16-point split

radix FFT core by using Vedic multiplier and kogge stone

adder for multiplication and addition respectively.

Proposed design is efficient in terms of power, speed and

power delay product compared with Radix-2 and Radix -4

algorithms. The proposed design occupies a chip area of

54351.273µm2 for 45nm technology. Power consumption is

2.366mW.

6. REFERENCES
[1].R.Nevin,“Application Of The Rader-

Brenner Fft Algorithm To Number-Theoretic

Transforms” Ieee Transactions On Acoustics, Speech,

And Signal Processing Volume 25 Issue 2, 1977.

[2] Abhishek Mankar, Ansuman Diptisankar Das And N

Prasad,”Fpga Implementation Of 16-Point Radix-4

Complex Fft Core Using Neda”, Students Conference

On Engineering And Systems (Sces), 2013.

[3] Edwin Joseph, Rajagopal A, Karibasappa K,”Fpga

Implementation Of Radix-2 Fft Processor Based On

Radix-4 Cordic”, ,Nirma University International

Conference On Engineering (Nuicone),2012.

[4] Saikat Kumar Shome,Abhinav Ahesh, Durgesh Kr Gupta,

Srk Vadali,”Architectural Design Of A Highly

Programmable Radix-2 Fft Processor With Efficient

Addressing Logic”,International Conference On

Devices, Circuits And Systems (Icdcs), 2012.

[5] Beard J,”An Inplace Self Recordering Fft”, Ieee

International Conference On Acoustics, Speech, And

Signal Processing, Icassp '78,Volume:3.

[6] Zhijian Sun, Xuemei Liu , Zhongxing Ji ,”The Design Of

Radix-4 Fft By Fpga”,International Symposium On

Intelligent Information Technology Application

Workshops, 2008. Iitaw '08.

[7] Rashmi M J, G S Biradar, Meenakshi Patil,”Efficient Vlsi

Architecture Using Dit-Fft Radix-2 And Split Radix Fft

Algorithm”,International Journal For Technological

Research In Engineering ,Volume 1, Issue 10, June-

2014.

[8] Honey Durga Tiwari, Ganzorig Gankhuyag, Chan Mo

Kim, Yong Beom Cho,”Multiplier Design Based On

Ancient Indian Vedic Mathematics”, International Soc

Design Conference, 2008.

[9]Mangesh B Kondalkar,Arunkumar P Chavan,P

Narashimaraja ,” Improved Fault Tolerant Sparse

Kogge Stone Adder“ International Journal Of Computer

Applications (0975 – 8887) Volume 75– No.10, August

2013.

IJCATM : www.ijcaonline.org

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.R.%20Nevin.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1162928&newsearch=true&queryText=rader%20fft%20
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1162928&newsearch=true&queryText=rader%20fft%20
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1162928&newsearch=true&queryText=rader%20fft%20
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=29
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=29
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=29

