
International Journal of Computer Applications (0975 – 8887)

Volume 157 – No 7, January 2017

47

Parallel Computing Approach to Solve Travelling

Salesman Problem

Harshala C. Ingole
Department of Computer Engineering

St. Vincent Pallotti College of Engineering and
Technology

Nagpur, India

Vivek B. Kute
Department of Computer Engineering

St. Vincent Pallotti College of Engineering and
Technology
Nagpur,India

ABSTRACT

Travelling Salesman Problem (TSP) is eminent in

combinatorial optimization problem. A typical problem in

computational mathematics, scientific and business

application such as VLSI chip design, social network analysis.

TSP, combinatorial optimization problem belongs to the class

of NP-Hard, and becomes significant method of verifying the

correctness and feasibility of new algorithm. With the

accuracy results and efficient cutting branch strategy of

branch and bound algorithm, it used to solve TSP. However,

branch and bound algorithm not suitable for large scale TSP

with sequential execution. In this paper parallel branch and

bound algorithm has been improved and proposed to solve the

symmetric TSP. This paper uses parallel program code based

on multithreading concept to verify TSP. The experimental

result shows our algorithm is efficient, and solves the large

scale TSP problem which cannot be solved by sequential

branch and bound.

General Terms

Parallel Computing, Combinatorial Optimization, Travelling

Salesman Problem

Keywords

Travelling Salesman Problem, Branch and Bound Algorithm,

Parallel Computing

1. INTRODUCTION
Travelling Salesman Problem (TSP), first expressed as

computational mathematics problem in 1930.TSP, extensively

studied problem in combinatorial optimization [1].Solution to

this problem cannot be find in polynomial time. On solving

optimization problem, requires to get the best possible

solution from all available solution spaces. The “best”

solution inferred that more than one solution available. The

travelling salesman problem results in more than one solution,

but the aim is to find the best possible solution for large scale

TSP amongst all available solution spaces in a polynomial

time and the performance also increased [2].TSP widely used

in VLSI chip design, network routing, robot control, gene

sequencing, vehicle routing [3]. And also finds its application

in the areas like logistics, transportation, and semiconductor

industries.

Methods of solving TSP can be categorized in two directions

such as exact algorithm and approximate algorithm. These

two methods give the solution but with certain issues, as

Exact algorithms search for the whole solution space tree and

obtain the global optimal solution. The global optimal

solution guarantees the exact solution to the problem but not

with the higher performance. E.g. branch-and-bound method,

linear programming method, and dynamic programming

method. As approximate algorithm finds as nearer as to the

optimal solution in a reasonable amount of time but the

solution does not guarantees the exact optimal solution to the

TSP problem. E.g. greedy algorithm, genetic algorithms,

simulated annealing algorithm, neural network algorithm and

ant colony algorithm [2].With the comparison of this two

methods of solving the TSP problem, the former one has

requires the exponential time to solve and difficult to acquire

the large scale problem. As Exponential algorithms have some

advantages as simple method, small amount of calculation

requires and so on. So feasible for small scale problem but as

size of nodes get increased it doesn’t give the nearer optimal

solution in polynomial time.

To solve TSP in an acceptable time the parallel computing

mechanism taken into account .The parallel computing in

which the computations carried out simultaneously ,the

principle behind that the computational task divides into

subtask and solves independently and after completion results

get combined.

This paper is organized as follows: Section II describes the

background of TSP and branch and bound algorithm and

related work. Section III describes the design and

implementation of parallel branch and bound algorithm. In

Section IV the branch and bound performance evaluation

results in parallel execution is presented. The last section is

our conclusion and future work.

2. BACKGROUND AND LITERATURE

SURVEY
This section starts with introduction to TSP, Branch and

Bound algorithm and then discusses literature survey.

2.1 TSP Introduction
Operation research and theoretical computer science addresses

the TSP as NP-Hard problem [4]. TSP used to find the

shortest path to travel through the given number of cities.

Travelling Salesman Problem states that given a number of

cities and the distances between them, salesman has to visit all

the given cities exactly once and return back to the city from

where he started with the minimized cost.

In TSP [5], given a complete undirected graph G = (V, E) that

has nonnegative integer cost c(u.v) associated with each edge

(u ,v) ϵ E ,and to find a Hamiltonian cycle (a tour) of G with

minimum cost path. As an extension of notation, let c(A)

denote the total coat of in the subset A ⊆ E :

International Journal of Computer Applications (0975 – 8887)

Volume 157 – No 7, January 2017

48

C (A) = ∑ c (u,v) (1)

 (u,v) ϵ A

Fig.1. Complete Graph with five vertices

Fig.2. An Optimized Tour

2.2 Branch and Bound
In mathematical and combinatorial optimization, Branch and

bound algorithm [6] used as a general algorithm for finding an

optimal solution of various optimization problem. It makes a

partition of the solution space of the given optimization

problem and solve. The entire solution space represents as

expansion tree, whose start point as root which is initially

unsolved problem. The children at each node represent the

subspaces obtained by branching, i.e. subdividing parent

node; and the leaves of the tree represent nodes that cannot be

subdivided any further, thus providing a final value of the cost

function associated to a possible solution of the problem. It

follows the non-exhaustive search for the solution space tree

until an optimal solution to the initial problem found or to

those that have possibility of being branched, becomes

exhausted [7].

Cost Path: Used to calculate the cost of searched path. Cost

path can be divided into two categories: one, cost of partial

path when the search process is in progress and another one,

the cost of total path when the search process is finished.

Objective Function Bound: Used to search the solution

space tree. It can be divided into two categories: One is

Objective Function Up Bound (OFUB), when cost of partial

path of some partial path is greater than OFUB, needs to

delete this path. Another one is Objective Function Low

Bound (OFLB), when cost of total path of some total path is

closest to OFLB, it is the best search path and that will be

considered as global optimal solution to that optimization

problem [3].

The branch and bound algorithm has two features: one is to

estimate the bound value in advance. The other one is to

search path while cutting branch and amending up bound

value. It can improve search efficiency and find solution with

higher performance.

2.3 Parallel Computing
Parallel computing implicitly coupled with the high speed and

high performance computation. The main objective of

implementing parallel computing is to reduce the time

required to solve the combinatorial optimization problem and

to improve the results performance. There are different

methods of parallel computing as distributed computing, inter-

process communication, message passing interface, p-threads,

parallel algorithm, etc. Parallel computing achieved by the

advanced hardware implementation, parallel implementation

of the algorithm on single CPU system (multi-core system).

2.4 Literature Survey
Paper [2] proposed the survey of different approaches for TSP

using Genetic Algorithm. With the literature survey found that

parallel Genetic Algorithm can be implemented on

Map/Reduce environment to solve the large scale problem and

to improve the quality of the result.

The paper [3] proposed the multi-core based parallel

computing approach to get the solution of Travelling

Salesman Problem, used Beehive as multi-core platform to

implement the problem. As Beehive architecture involved 16

cores with this only small scale TSP has been solved. In that,

due to the limitation of timer in Beehive the experiment

cannot the search time accurately when the nodes more than

15.Only test nodes is confined to 13.And again due to small

memory space of Beehive, only solve up to 13 node city TSP

problem and cannot solve the large scale TSP.

[7] Proposed the solution for travelling Salesman Problem

with the use of CPAN Branch and Bound algorithm .CPAN or

high level parallel composition is a set of parallel object of

three type one object manager, the stages and the collector

objects. In this paper, the real life example (TSP problem)

GoodMan and Hedetniemi 1977 solved with CPAN Branch

and Bound mechanism and compared, found the same result.

The proposed paper [8] uses branch and bound approach in

which code matrix uses to calculate the low bound value. In

this method, each branch needs a matrix and the child node

uses code matrix of its parents. These methods can improve

the traditional algorithm and improve the speed of cutting

branch. But these types of algorithms are more complexity

and get affected by the performance of the hardware. If the

hardware configuration is not high, algorithm speed up effect

not evident or the results cannot be obtained. On single core,

it can improve the performance but as the number of nodes

increased, the improved results are not obvious.

[10] In this paper the combination of genetic algorithm with

dynamic programming uses for solving travelling salesman

problem. In CGADP, the solutions obtained by genetic

algorithm selected for applying a local search based on DP.

The convergence rate of the solution found by CGADP is

faster than that of GA. But with larger size problem, the

running time is also increasing.

1

4 3

5 2

2

1

5

3 4

International Journal of Computer Applications (0975 – 8887)

Volume 157 – No 7, January 2017

49

 In [11], a simulated annealing algorithm performs better than

the metropolis algorithm for any fixed temperature. Although

the use of multi core technology can improve the efficiency of

algorithm on dealing with large-scale TSP problem, these

paper both refers to local optimal solution algorithm, e.g.

genetic algorithms, simulated annealing algorithms. They can

calculate the results quickly, but the results obtain for local

search space thus doesn’t get globally optimal solution.

In order to solve the above problems,try to use parallel

method to realize branch and bound algorithm. Branch and

bound algorithm is very suitable for distributed and parallel

computing as it can be divided into independent sub-

problems. The independent sub-problem or subtask can run

parallel and afterward combined results will give the global

optimal solution to the given TSP.

3. DESIGN AND IMPLEMENTATION
With the sequential execution of Branch and Bound algorithm

it is possible to solve the small scale TSP. But with the

increase number of nodes, the performance of the algorithm is

not meet requirement and improvement is not obvious. So the

realization of the algorithm environment should be changed to

parallel branch and bound algorithm to improve the results

and to solve for large scale problem.

The realization of parallel branch and bound algorithm

involves many factors as it must have hardware environment

to execute parallel programs, it can solve task allocation, load

balancing, it can write multithreaded program which can be

executed in parallel.

3.1 Parallel Implementation
This proposed work used the parallel branch and bound

algorithm as parallel computing method. Parallel algorithm

involves identifying the coding methods, making the code

scalable in multiprocessing environment. The challenge is to

design or redesign the code to run in parallel without making

the CPU of one part wait for data from another, while keeping

the resultant answer identical to the original coding. We use

the concept of multithreading of Java programming language

for the implementation of parallel branch and bound. As

multi-threading support for the parallel execution of the code.

Multithreading is the concept where the number of threads run

parallel and obtain the solution.

While implementation of branch and bound algorithm in

parallel B&B, it should be required that no data dependency.

The branch and bound algorithm is suitable for parallel

computing as it can be divided into independent sub-

problems. And that independent sub-problem can act as

independent thread and can run parallel and after the

execution of all threads at each branch level comparing with

bound value, the last global optimal solution obtained.

3.2 Pseudo Code for Parallel Branch and

Bound
The pseudo code for parallel branch and bound algorithm for

solving Travelling Salesman Problem is as follows:

Fig.3. Pseudo code for parallel branch and bound

The pseudo code for solving TSP using parallel branch and

bound algorithm uses the thread mechanism. Multiple threads

Input: City list file

1. Start {

2. Vector v1<- declare and initialization of

vector

3. PriorityQueue<Tour> () work <-declare

 PriorityQueue to get tour

4. For (k=0 to n)//first permutation vector

5. v1 [k]<- k;

6. Start<-Arrays.binarySearch(city, “city

name”) ;

 //starts from selected city

7. PriorityQueue<-work.add(tour) // get the

new

 generated tour and add into Queue

8. While (!work.isEmpty()) // branch and

bound

 loop ; do

9. Tour current <- get the tour ;

10. index <- get the current index ;

11. v1 <- get the current solution ;

12. If (index = n) //full permutation vector

13. { If ((wt[v1 [n-1]][v1 [0]]>0) && (

 current.dist < bestTour)) // is it return

edge and better than earlier ?

14. bestTour <- get the current distance ;

 //save the state in the list

15. If (DEBUG) then accepted bound

16. } else

17. Path too long and rejected bound ;} else

18. Thread thread1 <- new Thread(Runnable ()

19. { Run()

20. { if(lstIndicesWorked.contains(index))

return ;

21. for (k = index ; k < n ; k++)

22. {swap(v1, index, k);

23. If (wt[v1 [index-1]] [v1[index]]<0)

 continue ;

24. work.add(tour (v1,index+1,wt) ;}

 //restore original permutation

25. hold<-v1[index] ;

26. for (k = index+1 to n)

27. v1 [k-1] <- v1[k];

28. v1 [n-1] <- hold; });

29. thread1.run(); }

30. }

International Journal of Computer Applications (0975 – 8887)

Volume 157 – No 7, January 2017

50

run parallel at the same branch level and bound value

whichever obtained compare and proceed for next branch

level until all nodes of the problem get visited and obtained

the global optimized value i.e. the solution for that TSP.

4. EXPERIMENTAL RESULTS
The proposed parallel branch and bound algorithm uses

parallel program code of multi-threading concept to achieve

the parallel computing mechanism to solve combinatorial

optimization problem as TSP. It is implemented in java, all

experiments are conducted on Intel Core 2 Duo 2.10GHz

processor with 3.00GB RAM in windows 7 operating system.

Table I shows the execution time required for files consisting

of different number of cities of TSP problem. It contains

number of nodes and the time required for execution using

both sequential branch and bound and parallel branch and

bound algorithm. In case of sequential branch and bound for

TSP after 11 city problem it doesn’t give the solution.

Table I The Snapshot Execution Time

Number

of nodes
Time Required(millisecond)

 Sequential branch

and bound

Parallel branch

and bound

5 94
40

7 2058
51

9 115581
66

11 1334010
85

15 -
136

20 -
222

24 -
308

Fig.4 is the comparison of sequential branch and bound and

parallel branch and bound algorithm. X-axis indicates the

number of cities and y-axis indicates time (in millisec.)

required to get the result. Fig.4 proves the advantages of

parallel computing. So in the experimental analysis, it used

the same input file to be executed under sequential branch and

bound and parallel branch and bound to analyze their

execution time.

5. CONCLUSION AND FUTURE WORK
This paper proposed parallel computing approach for

Symmetric Travelling Salesman Problem as parallel program

code for branch and bound algorithm which uses a

multithreading concept. With the experimental results, we

demonstrate that our algorithm can solve large scale TSP

(more than 20 city) with the optimum cost path in minimum

time. This work has provided an approach for solving TSP

using branch and bound algorithm using parallel computing

mechanism. However, there are still some works not well

studied. In future, this work can be extended to higher

configuration systems. It can further evaluate for higher

number of the city's problem. The work can be extended and

evaluated for parallel and distributed environment.

Fig.4. Comparison of sequential and parallel branch and

bound

6. REFERENCES
[1] Anshul Singh, Devesh narayan “A Survey Paper on

Solving Travelling Salesman problem Using Bee colony

optimization” International Journal of Emerging

Technology and Advanced Engineering Website:

www.ijetae.com (ISSN 2250-2459, Volume 2, Issue 5,

May 2012). Tavel, P. 2007 Modeling and Simulation

Design. AK Peters Ltd.

[2] Anitha Rao, Sandeep Kumar Hegde “Literature Survey

On Travelling Salesman Problem” International Journal

of Advance Research in Eduation Technology (IJARET)

42 Vol. 2, Issue 1 (Jan. - Mar. 2015) Using Genetic

Algorithms.

[3] Kai Ma, Jiong Zhang “An Efficient Multicore based

Parallel ComputingApproach for TSP Problems” 978-1-

4799-3012-8/14 $31.00 © 2014 IEEEDOI

10.1109/SKG.2013.41.

[4] Klaus Meer, “Simulated Annealing versus Metropolis for

a TSP instance”, in Information Processing Letters,

vol.104, 2007, pp. 216- 219.

[5] Thomas H.Cormen,Charles E. Leiserson,Ronald L.

Rivest,Clifford SteinIntroduction To Algorithms (3rd

Edition).

[6] M MostaFizur Rahman,Muhammad Foizul Islam

Chowdhury, “Examining Branch and Bound Strategy on

Multiprocessor Task Scheduling” 12th International

Conference on Computers and Information Technology

2009

[7] Mario Rossainz Lopez Manuel , Capel Tunon “Design

and Use of the CPAN Branch and Bound For The

Solution Of Travelling Salesman Problem (TSP)”

Proceedings 19th European conference On Modelling and

Simulation Yuri Merkuryev,Richard Zobel,Eugene

Kerckhoffs 2005 ISBN 1-84233-112-4.

International Journal of Computer Applications (0975 – 8887)

Volume 157 – No 7, January 2017

51

[8] Laleh Haerian Ardekani, Tiru S. Arthanari, Matthias

Ehrgott, “Performance of the Branch and Bound

Algorithm on the Multistage Insertion Formulation of the

Traveling Salesman Problem”, Proceedings of the 45th

Annual Conference of the ORSNZ, November 2010, pp.

326-335.

[9] Paulo Henrique Siqueira, Maria Teresinha Arns Steiner,

Sergio Scheer, “Anew approach to solve the traveling

salesman problem” in Neurocomputing, vol, 70, 2007,

pp. 1013-1021.

[10] PHAM Dinh Thanh, HUYNH Thi Thanh Binh, BUI Thu

Lam “A Surveon Hybridizing Genetic Algorithm with

Dynamic Programming forSolving the Traveling

Salesman Problem” International Conference ofSoft

Computing and Pattern Recognition (SoCPaR), 2013.

[11] Yongsheng Pan, Yong Xia* “Solving TSP by

Dismantling Cross Paths” 2014 IEEE International

Conference on Orange Technologies (ICOT).

IJCATM : www.ijcaonline.org

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6942527
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6942527
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6942527

