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ABSTRACT
The aims of this paper is to give some new theorems in the field
of fixed point theory. For that, we establish a generalized result of
Caristi’s fixed point theorem by introducing a new type of func-
tions that will be called the LZ-functions. And since that theorem
is equivalent to Ekeland’s variational principle, we derive also an ε-
variational-type principle, which generalizes the latter. As applica-
tion, we study the existence of solution for a system of equilibrium
problem.
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1. INTRODUCTION
Fixed point theory has several applications in many domains. It has
applications in the study of market stability in economics. In dy-
namic systems it is used to deterministic timed systems on feedback
semantics, and in the theory of integral and differential equations to
demonstrate the existence and uniqueness of solutions [1, 2, 3, 4]
In 1922, the Polish mathematician Stefan Banach established a re-
markable fixed point theorem, the famous contraction principle [6],
which is one of the most important results of analysis. It is the most
widely applied fixed point result in different areas of mathemat-
ics and applications. It requires the structure of a complete metric
space with contractive condition on the map which is easy to test
in many situations. It has been generalized in many different direc-
tions [13, 14, 19, 21, 23]. Moreover, the proof of the Banach con-
traction principle gives a sequence of approximate solutions and
useful information as regards the rate of convergence toward the
fixed point.

There are in the literature many different versions of the well-
known theorems due to Banach [6] and Nadler [7] and Caristi [17],
concerning fixed points for single-valued and set-valued dynamic
systems, respectively, in complete metric spaces [8, 9, 10, 11, 12].
For instance, the problem of existence and uniqueness of fixed
points in partially ordered sets has been studied thoroughly because
of its interesting nature. In this direction, a result was given by
Turinici [5], where he extended the Banach contraction principle
in partially ordered sets.
One of its most important extensions of Banach contraction prin-
ciple is known as Caristi’s fixed point theorem, since it is closely
connected with the variational principle due to I. Ekeland [31].
The proofs given to Caristi’s result vary and use different tech-
niques [15, 16, 17, 18]. In 1977, Siegel [19] found that Caristi’s
fixed point theorem based on the work of Brondsted [21], which
implicitly use a partially order and ensure the existence of fixed
point as a maximal element.
Brézis and Browder [23] proved a very general principle concern-
ing order relations which include the Caristi’s [17] theorem. In
2007, À. Szàz [25] generalizes the Brézis-Browder principle in ab-
stract setting, and gives an abstract generalized of Caristi’s and Eke-
land’s theorem as well.
On the other hand, many authors have extend Ekeland variational
principle [26] in several directions, because of the important appli-
cations of this result in applied mathematics : control theory, con-
vex analysis, etc. [31, 27, 28, 29].
Following this direction of research, in this paper, we use the
Szàz principle in a metric space to give a more generalized ver-
sions of Caristi’s fixed point theorem. For that, we introduce a new
class of functions calledLZ-functions which generalizes the notion
of dominated function in Caristi’s theorem. Since Ekeland Varia-
tional Principle is equivalent to Caristi’s Theorem, we derive an
ε-variational principle which is also a generalization of Ekeland’s
variational principle. Furthermore, we give an application of our
results for a system of equilibrium problem.
The rest of the manuscript is organized as follows: In Section II,
some standard assumptions are introduced, with the main theoreti-
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Fig. 1. Representation of the set valued map T of the example 1. The colored area represents the sets T (x) over [0, 1]. The red line represents the first
bisecting plane. The two circles are the fixed points of T over [0, 1]
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Fig. 2. Geometric verification of the condition (1) in the example 1. The blue domain of xy-plane is T ([0, 1]). The lower green surface is δ (x, y) and the
upper red one is Φ (x, y) for (x, y) ∈ [0, 1]2 with y ≥ x.

cal results. In Section III, an application to prove the the existence
of the solution for a system of equilibrium problem.

2. MAIN RESULTS

In a nonempty set X , we define a reflexive and transitive relation
4 called a preorder and we said that (X,4) is preorder set. If in

addition, 4 is antisymmetric, we will called it a partial order.

x ∈ X is maximal element if x 4 y ⇒ x = y for all y ∈ X . We
recall that

S+ (x) = {z ∈ X ; x 4 z} .

The following result will be useful in the sequel.
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Fig. 3. Other view of δ (x, y) and Φ (x, y) of example 1, for (x, y) ∈ [0, 1]2 with y ≥ x.

Fig. 4. Representation of the LZ-function Φ (x, y) of example 1, for (x, y) ∈ [0, 1]2
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Theorem 1. Let (X,4) be a quasi-order set and let Φ : X ×
X −→ ]−∞,∞] be a function satisfying :
(S1) x 7−→ sup

y∈S+(x)

Φ (x, y) is decreasing;

(S2) −∞ < sup
y∈S+(x)

Φ (x, y) for all x ∈ X;

(S3) sup
y∈S+(a)

Φ (a, y) <∞ for some a ∈ X;

(S4) For every non-decreasing sequence (xn)n∈N ⊂ X , with x0 =
a, there exists some x ∈ X such that xn 4 x for all n ∈ N, and
lim inf
n→∞

Φ (xn, xn+1) = 0;

(S5) 0 < Φ (x, y) for all x, y ∈ X with x ≺ y.
Then there exists a maximal element x̂ ∈ X .

Definition 2. A function Φ : X ×X −→ ]−∞,∞] will be called
a LZ-function if the following hold :
(C1) super-additivity : Φ (x, y) + Φ (y, z) ≤ Φ (x, z) for each
x, y, z ∈ X .
(C2) y 7−→ Φ (x, y) is upper semi continuous for each x ∈ X .
(C3) there exists x0 ∈ X such that sup

y∈X
Φ (x0, y) <∞.

(C4) x 7−→ Φ (x, y) is bounded bellow for each y ∈ X .

Lemma 3. Let (X, δ) be a metric space, Φ : X×X −→ ]−∞,∞]
a LZ-function. A binary relation defined by

x � y ⇔ x = y or δ (x, y) ≤ Φ (x, y)

is a partial order on X .

Theorem 4. Let (X, δ) be a complete metric space, T : X −→ 2X

a set valued map. If there exists a LZ-function Φ : X × X −→
]−∞,∞] satisfying for each x ∈ X there exists y ∈ Tx such that

δ (x, y) ≤ Φ (x, y) (1)

Then T has a fixed point in X .

Proof. Let x0 ∈ X be as in (C3) and by assumption, there exists
x1 ∈ Tx0 such that

δ (x0, x1) ≤ Φ (x0, x1)

We construct inductively a sequence (xn)n satisfies for each n ∈ N

δ (xn, xn+1) ≤ Φ (xn, xn+1) (2)

Note that if there exists n0 ∈ N such that xn = xn0
for all n ≥ n0

then xn0
is a fixed point of T. Assume that for all n,m ∈ N we

get xn 6= xm hence (xn)n is an increasing sequence with respect
to �.
Let n ∈ N, by inequality (2) we get

n∑
k=0

δ (xk, xk+1) ≤
n∑
k=0

Φ (xk, xk+1) ≤ Φ (x0, xn+1) <∞
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then lim
n→∞

Φ (xn, xn+1) = 0 and (xn) is a Cauchy sequence in X

so, converge to some x ∈ X and since y 7−→ Φ (x, y) is upper
semi continuous we get for each n,m ∈ N,

δ (xn, xm) ≤ Φ (xn, xm)

so taking the limit with respect to m yields

δ (xn, x) ≤ Φ (xn, x)

This proves that xn � x for all n ∈ N.
Define a function γΦ : X −→ ]−∞,∞] by γΦ (x) =
supz∈X Φ (x, z) for each x ∈ X and let x � y then we have x = y
or δ (x, y) ≤ Φ (x, y) :
if x = y then γΦ (x) = γΦ (y);
if x 6= y we get Φ (x, y) > 0 and by (C1) we get for all z ∈ X

Φ (x, y) + Φ (y, z) ≤ Φ (x, z)

hence

sup
z∈X

Φ (y, z) ≤ sup
z∈X

Φ (x, z)⇔ γΦ (y) ≤ γΦ (x)

that is γΦ is decreasing function.
By Theorem 1 (X,�) has a maximal element, say x∗ . Since con-
dition (1) implies there exists y∗ ∈ Tx∗ such that x∗ � y∗ it must
be the case that x∗ = y∗.

Example 1.
In this example, we choose X = [0, 1] and T is a set valued map
defined as follows

T : X → 2X

x 7−→
[√
x, 1
]

(3)

and Φ is a LZ-function Φ : X ×X −→ ]−∞,∞] given by

Φ (x, y) = 105 ln3

(
y + 1

x+ 1

)
(4)

with for all x, y, z ∈ X , we have

Φ (x, y) + Φ (y, z) = 105 ln3

(
y + 1

x+ 1

)
+ 105 ln3

(
z + 1

y + 1

)
≤
(

105 ln

(
y + 1

x+ 1

)
+ 105 ln

(
z + 1

y + 1

))3

≤
(

105 ln

(
z + 1

x+ 1

))3

= Φ (x, z)

then the super additivity (C1) is well verified. It is clear from figures
(2), (3) and 4 that Φ verify the conditions (C2), (C3) and (C4). Then
Φ is well a LZ-function.
The metric δ is defined by

δ (x, y) = |y − x| (5)

Figure 1 shows the set valued map T represented by the colored
domain of the plane, as the union of segments [

√
x, 1] with x ∈

[0, 1].
Figure 2 shows the surfaces of Φ and δ over [0, 1], in order to verify
the conditions of theorem 4, we choose to plot the LZ-function Φ
and the metric δ for x and y in [0, 1] with x ≤ y , or more precisely,
for x ∈ [0, 1] and y ∈ T (x) = [

√
x, 1]. The segments T (x) are

represented by the colored domain of the xy-plane (see Figures (2)
and (3)). So it is clear that the condition (1) is well verified, that is

δ (x, y) ≤ Φ (x, y)

for all x ∈ [0, 1] and y ∈ T (x) = [
√
x, 1]. The conditions of

theorem (4) are verified, then by this theorem, T has at least a
fixed point in X = [0, 1]. Figure 1 shows that the set valued map
T has a two fixed points represented by the points of intersection
with the red line y = x, that are x = 0 ∈

[√
0, 1
]

= [0, 1] and
x = 1 ∈

[√
1, 1
]

= {1}.

Note that if Φ (x, y) = ϕ (x)− ϕ (y) we get the Caristi’s theorem
given by

Corollary 1. Let (X, δ) be a complete metric space andϕ : X −→
[0,∞) a lower semicontinuous function. If the mapping T : X −→
X satisfies for each x ∈ X the condition :

δ (x, Tx) ≤ ϕ (x)− ϕ (Tx)

then T has a fixed point in X .

On the other hand, and to give a generalized version of Ekeland’s
variational principle, we provide the following theorem

Theorem 5. Let (X, δ) be a complete metric space and Φ : X ×
X −→ ]−∞,∞] a LZ-function. For each ε > 0 and x0 ∈ X such
that Φ (x0, x0) ≤ infx∈X Φ (x, x0) + ε, then there exists x ∈ X
such that
(1) εδ (x0, x) ≤ Φ (x0, x);
(2) εδ (x, y) > Φ (x, y) for each y ∈ X \ {x}.

Proof. For each x ∈ X we define a nonempty set S (x) by

S (x) =
{
y ∈ X; x = y or εδ (x, y) ≤ Φ (x, y)

}
and by continuity of y 7−→ δ (x, y) and lower semi continuity of
y 7−→ −Φ (x, y) the set S (x) is closed subset of X and then com-
plete metric space.
Let x0 ∈ X as in (C3). For each x ∈ S(x0) set

H (x) = {y ∈ X \ {x} ; εδ (x, y) ≤ Φ (x, y)}

and define a set valued mapping

Tx =

{
{x} if, H (x) = ∅
H (x) if, H (x) 6= ∅

then T is a self set valued mapping from S (x0) to 2S(x0). Indeed,
if H (x) = ∅ then Tx ∈ 2S(x0) by definition and if H (x) 6= ∅ let
y ∈ H (x) then y 6= x and δ (x, y) ≤ Φ (x, y) which implies that
x � y and since x ∈ S (x0) i.e. x0 � x then x0 � y which leads
to

x0 = y or εδ (x0, y) ≤ Φ (x0, y)

hence y ∈ S (x0) .
Note that for each x ∈ S (x0) there exists y ∈ Tx such that

εδ (x, y) ≤ Φ (x, y)

by theorem 2, T has a fixed point x ∈ S (x0), it follows that
H (x) = ∅. That is εδ (x, y) > Φ (x, y) for each y ∈ X \ {x} and
since x ∈ S (x0) we get εδ (x0, x) ≤ Φ (x0, x). This complete the
proof.

It is well known that theorem 1 is equivalent to Ekeland’s varia-
tional principle, so, we get the following :
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Corollary 2. Let (X, δ) be a complete metric space andϕ : X −→
]−∞,∞] a proper lower semi continuous function bounded below.
For each ε > 0 and x0 ∈ X such that ϕ (x0) ≤ infx∈X ϕ (x) + ε,
then there exists x ∈ X such that
(1) εδ (x0, x) ≤ ϕ (x0)− ϕ (x);
(2) εδ (x, y) > ϕ (x)− ϕ (y) for each y ∈ X \ {x}.

3. APPLICATION
In this section, we propose to solve an equilibrium problem arising
in variational inequality theory.
Letm be a positive integer and (Xi, δi) be a complete metric space.
By a system of equilibrium problems we understand the problem of
finding x = (x1, x2, . . . , xm) ∈ A such that

(P) : fi (yi, x) ≤ 0 ∀i ∈ I, ∀yi ∈ Ai,

where fi : A×Ai −→ R, A =
m∏
i=1

Ai, with Ai some given sets in

Xi. An element of the set Ai =
∏
j 6=i
Aj will be represented by xi;

therefore, x ∈ A can be written as x = (xi, x
i) ∈ Ai × Ai. We

denote by

δ = max
i∈I

δi

then X =
m∏
i=1

Xi

It is clear that there is no chance that the problem (P) has a solu-
tion, so we will give a suitable set of conditions on the functions
that do not involve convexity and lead to apply theorem 5.
The following result is an extension in complete metric space of
Theorem 4.2. in [30].

Proposition 6. Assume that for every i ∈ I , Ai is compact and
fi : Ai ×A −→ R is a function satisfying the assumptions :
(a) y 7−→ fi(xi, y) is bounded above and upper semi continuous,
∀xi ∈ Ai.
(b) fi(xi, x) = 0, for every x = (xi, x

i) ∈ A.
(c) fi(xi, y) + fi(yi, z) ≤ fi(xi, z), for every x, y, z ∈ A, where
y = (yi, yi).
Then, the set of solutions of (P) is nonempty.

Proof. Let i ∈ I be given. And put for each x, y ∈ A

Φ (x, y) = −fi (xi, y)

by theorem 5, for each n ∈ N∗ there is xn ∈ A such that

−fi (yi, xn) ≥ 1

n
δ (yi, xn) ∀yi ∈ Ai.

Since Ai is compact for each i ∈ I , A =
m∏
i=1

Ai is also a compact

subset of X , then we can choose a sub-sequence
(
xnk

)
k

of (xn)n
such that xnk

−→ x as n −→∞. Then, by (a),

−fi (yi, x) ≥ lim sup
k→∞

(
−fi

(
yi, xnk

)
− 1

nk
‖yi, xn‖

)
∀yi ∈ Ai

then x is a solution of (P).

Next, we drop the assumption that Ai is compact and we assume
that Xi is an Euclidean space and, for each i ∈ I , Ai is closed
subset of Xi.

Let us consider the following coercivity condition (C)

(C) :

{
∃r > 0;∀x ∈ A such that ‖xi‖i > r for some i ∈ I,
∃yi ∈ Ai, ‖yi‖i < ‖xi‖i and fi (yi, x) ≥ 0.

Theorem 7. Assume that for all i ∈ I , fi : Ai × A −→ R is a
function satisfying:
(a) y 7−→ fi(xi, y) is bounded above and upper semi continuous,
∀xi ∈ Ai;
(b) fi(xi, x) = 0, for every x = (xi, x

i) ∈ A;
(c) fi(xi, y) + fi(yi, z) ≤ fi(xi, z), for every x, y, z ∈ A, where
y = (yi, yi).
(d) xi 7−→ fi(xi, y) bounded bellow.
If (C) holds, then (P) admits a solution.

Proof. For each x ∈ A and every i ∈ I consider the set

Si (x) = {yi ∈ Ai; ‖yi‖i ≤ ‖xi‖i and fi (yi, x) ≥ 0}

Note that, by (c), for every x and y = (yi, yi) ∈ A, yi ∈ Si (x) im-
plies Si (y) ⊆ Si (x). Indeed, we get for zi ∈ Si (y) : fi (zi, y) ≥
0 and

fi (zi, y) + fi (yi, x) ≤ fi (zi, x)⇒ 0 ≤ fi (zi, x)

then zi ∈ Si (x).
Let Bi (r) = {yi ∈ Ai; ‖yi‖ ≤ r} then it is a compact subset of
Ai.By (a), Si (x) is bounded closed subset ofAi then, it is compact
subset for all x ∈ A. Furthermore, by proposition 6, there exists an
element xr ∈

∏
i∈I
Bi (r) (we may suppose that Bi (r) 6= ∅ for all

i ∈ I) such that

fi (yi, xr) ≤ 0 ∀yi ∈ Bi (r) , ∀i ∈ I. (6)

Suppose that xr is not a solution of (P). In this case, there exists
j ∈ I and zj ∈ Aj with fi (zi, xr) > 0. Let zj ∈ Aj be arbitrary
and put z = (zj , zj) ∈ A. Define

aj := min
yj∈Sj(z)

‖yj‖j .

Case 1: aj ≤ r. Let yj = yj(z) ∈ Sj(z) such that
∥∥yj∥∥ = aj ≤

r. Then we have

fi
(
yj , z

)
≥ 0

and since fi (zi, xr) > 0 we get by (c)

0 < fj
(
yj , z

)
+ fj (zj , xr) ≤ fj

(
yj , xr

)
which contradict 6.
Case 2: aj > 0. Let again yj = yj(z) ∈ Sj(z) such that

∥∥yj∥∥ =

aj > r. Letyj ∈ Aj be arbitrary and put y =
(
yj , yj

)
∈ A. Then,

by (C) we can choose an element yj ∈ Aj with ‖yj‖j <
∥∥yj∥∥j =

aj such that fj (yj , y) ≥ 0. Clearly, yj ∈ Sj (y) ⊆ Sj (z), a
contradiction since

‖yj‖j <
∥∥yj∥∥j = min

yj∈Sj(z)
‖yj‖j

This completes the proof.
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