
International Journal of Computer Applications (0975 – 8887)

Volume 158 – No 3, January 2017

17

Plagiarism Detection of C Program using Assembly

Language

Shashank Chauhan
CSE/ IT Department

Jaypee Institute of Information
Technology, Noida, India

Anuja Arora
CSE/ IT Department

Jaypee Institute of Information
Technology, Noida, India

Yash Singhal
CSE Department

Graphics Era University,
Dehradun, India

ABSTRACT

Source code plagiarism is becoming a common practice

among higher education community. People duplicate and

modify the source code of other people and show the

program as their own program. In this paper, we want to draw

researchers’ attention towards this problem and projected

a novel approach which detects plagiarism in C language code

by converting it into assembly language which is done with

the help of GCC compiler. Assembly language converted by

the compiler is not sensitive to all type of different code

transformation, for example-swapping variable names,

reformation of language, adding extra comment or blanks.

Therefore, assembly language gives rise to reduced amount of

variations, if there is a modification in the original code.

Previous works in plagiarism compares the whole program

but in this paper, we proposed a method which split the C

program into assembly language code and divide each

function of program into blocks and blocks are transformed

into token strings. This method compares each function with

other program function and provides a statistical output,

according to the token string likeness of that function. If the

output is above assigned specific plagiarism similarity

threshold value then it counts under the case of plagiarism.

Keywords

Plagiarism, assmebly language, string similarity, Plagiarism

detection method, token string

1. INTRODUCTION
The word plagiarism is basically derived from a Latin

word: plagiarius, which stands for an abductor, and plagiare,

which stands for to steal [1]. In other words plagiarism is

called wrongful appropriation or stealing the content,

language, ideas, thoughts or expressions such as source code,

publication of someone else and representing them as their

original work.

In same direction, plagiarized program can be described as a

program that has been copied from source program with some

modification. Modifications, like changing comments,

modifying variable position, replacing equivalent code

structure does not require program understanding. In the era

of education, plagiarism is a longstanding problem. For

example, in programming assignments, students have to write

codes which are marked according to the correctness and

logic. Unfortunately, source code plagiarism is now a child‟s

play for everyone due to exposure with outside world with the

help of World Wide Web, personal computer, computer

network and screen editor programming etc. Involvement of

students in plagiarism can be contributed to various reasons-

peer pressure, wish to help comrade, time management

failure, assignment submission, programming phobia,

inadequate access to computer system or software. It has

become a common practice among students to reuse the

source code and generating a visually different code using

routine modification, due to which it becomes tough and

impossible to detect plagiarism manually.

Researchers have introduced and validated various code

plagiarism approaches such as counting method [3], Metric

structural method [4, 5], clustering method [6] and many more

[7, 8]. Structural method approach is known as the most

suitable approach for detecting plagiarism in source code as

this method makes use of tokenization and string matching

algorithms to detect the similarities among various codes.

Various structural methods exists to find out source code, few

of them are as follows- Plague [6], YAP[9] and JPlag [10].

Plague method generates a structure profile for all source

codes and compares them. YAP method creates token for all

sources codes and compares all source codes token files. JPlag

parse all source codes exist in a directory and transform to

token string, further token strings are compared using greedy

string tilling algorithm. Faidhi and Robinson [2] had

explained six level of code transformation as shown in figure

1.

Fig 1: Level of Plagiarism [2]

This procedure is able to detect many cases of plagiarism as

presented in the subsequent example shown in figure 2 and

figure 3. Level 0 is presented in figure 2 and level 1 is

depicted with the help of figure 3. It is observed that code

bock “A1” of figure 2 and code block “B1” of figure 3 have

same code with few changes. The only change is in the

function names, variable names in code block “B1” and few

comments have been added in code of figure 3. In code block

“A” function is named as “insert” whereas in code block “B”

function is named as “put”. Code inside both the blocks is

same with varying variable names. If users added comments

in code statements, then also code does not come under

plagiarism by few already available plagiarism detection

techniques.

International Journal of Computer Applications (0975 – 8887)

Volume 158 – No 3, January 2017

18

Numbers of algorithm are available in order to detect

plagiarism with the help of similarity structural level and even

we can use these methods to produce good results. But these

methods become useless, if a short program has unnecessary

repetition of statements and these processes consumes a lot of

time to compare source code and to detect plagiarism.

Fig 2: Level 0 Example

So, here is a need of efficient approach which can detect

plagiarism in code with less time complexity and that is prime

motivation behind the projected work. We proposed a novel

method which detects plagiarism with the help of assembly

language. In the proposed approach targeted source code

converts into assembly language which is transformed and

generated by the GNU compiler collection (GCC) compiler.

This method divides the assembly language code into blocks

and blocks are transformed into token strings. This method

compares the token string likeness and provides a statistical

output.

Fig 3: Level 1 Example

2. RELATED WORK
A lot of research work has been made on plagiarism detection

techniques and many tools have been invented. Initially the

focus was on counting based approaches. In these approaches,

the operators, operands, identifiers and keywords are

extracted by applying certain algorithms. Halstead‟s metric

was a counting based approach. It calculated the number of

unique operators and operands in the code and calculated their

proportion from total operators. Initially the results were

promising but this method is now obsolete.

Later systems such as those of Donaldson, Lancaster, and

Sposato [8], Grier [11], Berghel and Sallah [7] and Faidhi and

Robinson [2] introduced a much larger number of metrics and

notions of similarity for the resulting feature vector in order to

improve performance.

The other most popular and acceptable approach is structure

based comparison rather than just of summary indicators. In

this approach some common traits of the code were analyzed

and code is converted into tokens. These tokens were used for

comparison. This type of token formation reduces the

dependency on a particular language. Some tools based on

this approach are discussed below:

MOSS is based on this approach. Moss is defined as measure

of software similarity [14]. It is a plagiarism detection method

produced by Alex Aiken and UC Berkley. A technique called

winnowing is used to locate matching sequence. File is

divided into k-grams which are connecting substring of length

k. It supports a wide range of languages such as C, C++,java

International Journal of Computer Applications (0975 – 8887)

Volume 158 – No 3, January 2017

19

etc. Another tool is JPLAG[13] which can be used to check

plagiarism of source code written in C, C++ and Java. Firstly,

source code in the directory is parsed and then transformed

into token strings. After this these tokens are compared by

running karp-rabin greedy string tiling algorithm. The

comparison results were shown in HTML file which can be

visited by using any browser.

Dick Grune [12] developed a tool known as SIM which was

based on structure comparison. Firstly it tokenized the source

program and then created a forward reference table that could

be used for detecting the best matches between new files and

the text after completing comparison in both the files. Plaggie

[15] is a stand-alone source code plagiarism detection tool

developed by Aleksi Ahtiainen and Mikko Rahikainen. This

tool detects plagiarism in Java programming exercises. It

specialized for typical outcomes of programming exercises:

small files based on a template. It firstly parses the programs

into tokens and these tokens are compared by greedy string

tiling algorithm. It is used only for java language.

A algorithm based on assembly language was proposed by

Shuqian Shan, Fengjuan Guo, and Jiaxun Ren[16]. They

converted the source code into assembly language and then

used the string comparison algorithm to detect the similarity.

The algorithm was an improved version of karp-rabin

algorithm. This type of conversion into assembly language

optimizes the code and hence increases the efficiency of

detection system. This algorithm compares the text string with

the target string and produces percentage of similarity

between two sections in the result.

To provide the similarity visualization between C program

source codes, Akhil Gupta and Dr. Sukhvir Singh [17] used

the lexical analysis technique. The plagiarism categories

which can be detected as modification of the order of

statement, comment modification, data type modification,

copying the whole program or replacing control structure

with similar control structure.

The authors Haritha N., M.bhavani and K.Thammi [19]

developed a system that detects plagiarism in C language.

This system checks both the folders and files containing

source code. The system is divided into three phases: firstly

tokens are formed, secondly finger prints are created using

N-grams technique and lastly comparison is made by using

the Jaccard‟s similarity coefficient. This is used to check all

the programs exist in the folder. This system gives a pictorial

representation of the result. It compares a single program with

the set of programs.

A clustering based approach, P-detect is used for detecting

plagiarism in source datasets, developed by Lefteris

Moussiades and Athena Vakali [18].This P-detect firstly take

the set of programs as input and represents the programs as a

set of keywords. A similarity measure evaluation by Jaccard‟s

similarity coefficient is performed for each pair of programs.

We get a pair-wise similarity measure for each pair of

program and store in the form of text file. This file is then

passed through any clustering algorithm along with a

minimum cut-off value of similarity. The pair which shows

higher degree of similarity than minimum cut-off value comes

as result in form of weighted non directed graph. Plagiarized

pairs are analyzed by this graph in which vertices represent

program and edges represent similarities between programs.

3. ASSEMBLY LANGUAGE
Assembly language is a low level language which can be

converted by the GCC compiler. GCC compiler is a collection

of GNU compiler and it is insensitive to all types of different

code transformation. For example-swapping variable names,

reformation of language, adding extra comment or blanks. In

comparison to C programming language, it has less complex

structure and many intermediate language usually get mapped

by one command of high level language.

Therefore it becomes an easier task for the method to sort out

similarity among the token string of the various C

program. That‟s why in this paper, we have projected a

method which does not detect plagiarism on the original code,

but on the assembly language code that is transformed and

generated by the GCC compiler. Table1 shows some samples

of common assembly language instruction are shown, which

are used in assembly language to perform specific task.

Table 1.Few Sample Assembly Language Instructions

Assembly

Language

instructions

Description

ADD Add two values, returning a new value

SUB Subtract two values, returning a new value

CALL In order to call a function

JUMP
Jump from one statement to another
statement

MOVE To move value to registers

Maximum students/ persons those are involved in plagiarism,

modify the layout of the sentence structure to generate the

outcome spot on. Those who have understanding of program

practice semantic mean and make changes in the copied code

such as: alter the expression with the similar structure, add

large quantity of statement in short programming and show

results in very minor resemblance etc.

Zhao, C. and Yan, H. introduced a method in which program

get converted into assembly language by the help of

disassemble and compiler optimization [11]. The similarity

results are produced in the form of a threshold, which are

further clustered to represent the result. Semantic mean can be

detected by this approach. The idea of converting source code

into assembly language and comparing the assembly language

code, not using method of clustering, has been drawn by this

paper with few enhancements in the approach.

The purpose of transforming source code into assemble

language and comparing the assembly language is that after

assembling, assembly language will filter out all type of

blanks and comments primarily. Further, the transformed

assembly language transform into token string which is

basically the enhanced method. Further, we use our algorithm

to find the string likeness to get better similarity between the

obtained source codes.

4. PROJECTED PLAGIARISM

DETECTION SYSTEM
Seriousness of plagiarism has urged to find better ways to

detect and avoid it. On discussing plagiarism detection

technique, a lot of work can be found on this topic by many

researchers and many theories have been proposed to detect

plagiarism. To improve the shortcomings of previous

techniques, a new technique to detect plagiarism is proposed.

This proposed technique resolves the problems which were

raised in earlier techniques.

International Journal of Computer Applications (0975 – 8887)

Volume 158 – No 3, January 2017

20

In plagiarism, instead of copying the whole file, small section

of codes from different code files are copied. This type of

activity is not easily and perfectly detected from available

approaches. The proposed approach compares the source

code file with the n files and check which part is copied from

which file. The results obtained are quite good as presented in

result section. The work flow of the technique is depicted in

figure 4 and partitioned as mentioned below:

4.1 Conversion into assembly language
Using GCC compiler, system converts all the available code

files into assembly language code files and out of all mark one

file as a source file in which act of plagiarism is to be

checked. While conversion into assembly language, system

removes all the comments and extra stuff from the code and

just source code portion is remained in the assembly language

codes. These removals are really helpful as it increases the

accuracy of the technique. Even, as number of statements has

been reduced so space and time complexity as well reduced as

compared to not reduced statement code.

4.2 Conversion into blocks
In this module all the assembly language code files are

divided into smaller blocks. This type of block division helps

to detect plagiarism even if only a smaller part of code is

copied. Source file is taken as “a” and its block divisions are

taken as“a1, a2, a3” and so on. The other files are taken in

similar manner and a name is given to those blocks.

4.3 Tokens formation
After the block division tokens are generated from the code

present in each block of files. A dictionary containing all

those tokens is created. This dictionary helps to calculate the

frequency of all tokens. The tokens reside inside the blocks

and every block has its own tokens.

Fig 4: Work flow of projected Plagiarism Detection system

4.4 Comparison of Tokens
Blocks of source code are created one by one and are

compared with the blocks of other code files. For example-

take block a0 of source code file and select one token from

this block. One block(b1) from other file(b) is selected and

compared with source code block token(a1) with the tokens of

this block. If a match is found for a token of source block(a0)

with the key of block(b1) then the value of that key is

compared key of source block token. Only the minimum value

is considered and this value is added into list. Different lists

are obtained for comparison between different blocks.

Percentage match is calculated by using list values of each

block.

This procedure is repeated for every block of source code with

the all blocks of other files. This percentage is used as

matching percentage between blocks. A threshold matching

percentage for two blocks is also defined. If the percentage is

greater than this threshold percentage, then blocks are

declared to be copied. The output is taken in excel file

and the statistical output is shown in the form of a graph.

5. RESULTS
In our analysis, 100 random programs have been compared

with the source program. After comparing the blocks of these

programs, the percentage of comparison between blocks is

shown below. As we know that every program cannot be

unique so we set a Threshold value (minimum percentage

level) of comparison .The minimum percentage level is 80%

because it shows us good results. The output produce after

comparison is satisfactory.

Table 2 shows the plagiarism comparison results of the nive

file blocks. All 9 blocks have been compared with all other

blocks and the block average results have been displayed in

the table 2.

International Journal of Computer Applications (0975 – 8887)

Volume 158 – No 3, January 2017

21

Table 2. Plagiarism Comparison Result of Few sample

Programs

Figure 5 shows plagiarism result of code exist in figure 2 and

figure 3 which shows plagiarism detection result in form of

bar chart of code presents in figures and assembly language

based detection shows approximately 94 percentage C code

matching exists in text file 10 and text file 19.

Fig 5: Plagiarism Results

6. CONCLUSION AND FUTURE WORK

The prime objective of this research work was to present an

effective approach to detect plagiarism of C code. Therefore,

this paper puts forwards a technique for identifying similarity

of the source code written in C language. To perform this, we

applied a technique in which we match code similarity

corresponding to transformed low level assembly language

code, further blocks have been formed of token string for

converted assembly code of targeted C programs. This paper

refers to algorithms, function and phases that helps to

transform and equate the source code. According to results,

various benefits are there while using low level assembly

language. Those benefits are- techniques are insensible to

common code transformation and need no other source code

processor. Proposed method can be modified by improving

preprocessing phases and similarity algorithm, which should

improve the results on above talk about transformation, and

deliver better performance.

7. REFERENCES
[1] http://www.historians.org/about-aha-andmembership/

governance/policies-and-documents/statement

onplagiarism.

[2] J.A.W Faidhi and S. K. Robinson, ”An empirical

approach fordetecting program similarity and plagiarism

within a university programming environment,” Comput.

Educ.. vol. 11. pp. 11-19, 1987.

[3] Ottenstein, K.J.: An Algorithmic Approach to the

Detection and Prevention of Plagiarism.CSD-TR200

103(2), 32–39 (1976).

[4] Schleimer, S., Wilkerson, D., Aiken,

A.:Winnowing:LocalAlgorithmsforDocumentFingerprint

ing. In: ACM SIGMOD 2003, pp. 204–212. ACM Press,

SanDiego (2003)

[5] Wise, M.J.: YAP3: improved detection of similarities

in computer program and other texts.In: Proceedings of

the Twenty-Seventh SIGCSE Technical Symposium on

ComputerScience Education, vol. 28(1), pp. 130–134.

Association for Computing Machinery, NewYork (1996)

[6] G. Whale, “Plague : plagiarism detection using

program structure,” Dept. of Computer Science

Technical Report 8805, University of NSW,Kensington,

Australia, 2008

[7] H. L. Berghel and D. L. Sallach. Measurements of

program similarity in identical task environments. ACM

SIGPLAN Notices, 19(8):65–76, August 1984.

[8] John L. Donaldson, Ann-Marie Lancaster, and Paul H.

Sposato. A plagiarism detection system. ACM SIGSCE

Bulletin (Proc. of 12th SIGSCE Technical Symp.),

13(1):21–25, February 1981

[9] M. J. Wise, “Detection of Similarities in Student

Programs: YAP'ing may be Preferable to Plague'ing,”

ACM SIGSCE Bulletin (proc. Of 23rd SIGCSE

Technical Symp.), 2002.

[10] P. Lutz, M. Guido, and M. Phlippsen, “JPlag:

Finding plagiarisms among a set of

programs,”Fakultätfür Informatik Technical Report

2000-1, Universität Kalrsruhe, Karlsruhe, Germany,

2000. International Journal of Computer Theory and

Engineering Vol. 4, No. 2, April 2012

[11] Sam Grier. A tool that detects plagiarism in Pascal

programs. ACM SIGSCE Bulletin (Proc. of 12th

SIGSCE Technical Symp.), 13(1):15– 20, February

1981.

[12] DickGrune website regarding to similarity measure

URL:http://www.dickgrune.com/Programs/similarity_tes

ter/

[13] Jplag tool site URL: http://jplag.ipd.kit.edu

[14] Divya Luke, Divya P.S, Sony L Johnson,

Sreeprabha S, Elizabeth.B.Varghese, 2014, “Software

Plagiarism Detection Techniques: A Comparative

Study”, International Journal of Computer Science and

Information Technologies, Vol. 5 (4), ISSN: 0975-9646

[15] Enrique Flores, Alberto Barr´on-Cede˜no, Paolo Rosso,

Lidia Moreno , Jun 2012, “DeSoCoRe: Detecting Source

Code Re-Use across Programming Languages” ,

NAACL-HLT 2012

International Journal of Computer Applications (0975 – 8887)

Volume 158 – No 3, January 2017

22

[16] Shan S.,Guo F.,Ren J.:similarity detection method based

on assmebly language and string matching

[17] Gupta A., Singh S.: lexical analysis for the measurement

of conceptual duplicity between c programs , in

proceedings of vol. 1 issue, AUGUST 2013.

[18] Moussiades L., and Vakali A.,:a clustering approach for

detecting plagiarism in source code datasets,in

proceeding of the computer journal(november 2005)

48(b):6551-661:10.1092/comjnl/bxh119 first published

online/:june 24,2005.

[19] Haritha, N., Bhavani, M., & Thammi Reddy, K. (2011).

C Code Plagiarism Detection System. International

Journal of Science and Advanced Technology, 1(5), 198-

203.

IJCATM : www.ijcaonline.org

