Abstract

In this paper properties of number theoretic transforms are investigated and it is found that they can be used to compress the regular image effectively. NTT variants namely Fermat and Mersenne transforms are applied on test images of size 16x16 and the results are analyzed and a compression scheme is developed. The algorithm is implemented in MATLAB and results are analyzed and compared with DCT in terms of total number of zero coefficients and total number of pixels in error when inverse transform is applied. The study shows that the transform is error free and can compress regular data effectively. Further investigations on these transforms are to be carried out and algorithms need to be developed to compress other images as well in order to achieve lossless compression.

References

2. R. Blahut, 1985, Fast algorithms for digital signal processing. Addison-Wesley Publishing
Lossless Compression Scheme for Regular Images using Number Theoretic Transform

Company.

8. S. Gudvangen, Hgskulen i Buskerud, AUI, EMR, Kongsberg, Norway, Practical applications of number theoretic transforms
11. D. Burton, 1980,'Elementary number theory'.
14. T. Toivonen, J. Heikkila., 2006, Video filtering with fermat number theoretic transforms using residue number system. IEEE transactions on circuits and systems for video technology, vol16, No1
16. RADER, CM., 1972, 'Discrete convolution via Mersenne transform', IEEETrans., C-21, pp. 1269-1273

Index Terms

Computer Science Image Processing

Keywords

Compression, NTT, Fermat, Mersenne, DCT, Rings, Fields.