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1. INTRODUCTION 
There has been a considerable interest to study common fixed 

point for a pair of mappings satisfying contractive conditions 

in metric spaces for the last quarter of the 20th century.  

Several interesting and elegant results were obtained in this 

direction by various authors. It was the turning point in the 

“fixed point arena” when the notion of commutativity was 

used by Jungck  [12] to obtain a generalization of Banach’s 

fixed point theorem for a pair of mappings.  This theorem has 

had many applications, but suffers from one drawback-the 

definition requires that T be continuous throughout X.  This 

result was further generalized and extended in various ways 

by many authors.  On the other hand, Sessa [20] coined the 

notion of weak commutativity and proved a common fixed 

point theorem for these mappings.      In 1996, Jungck [12] 

introduce the notion of weakly compatible mappings for set 

valued non-continuous functions. 

Aamri and El Moutawakil [1] generalized the concept of non 

compatibility in metric spaces by defining the notion property 

(E.A.) and proved common fixed point theorems under strict 

contractive conditions.  

It was pointed out in [1] that property ( E. A.)   buys 

containment of ranges without any continuity requirements 

besides minimizes the commutativity conditions of the maps 

to the commutativity at their points of coincidence. Moreover, 

property ( E. A.)  allows replacing the completeness 

requirement of the space with a more natural condition of 

closeness of the range. A major benefit of property (E.A.) is 

that it ensures convergence of desired sequences without 

completeness. 

In 2008, Al-Thagafi and Naseer Shahzad [2] introduced the 

concept of occasionally weakly compatible mappings. 

Definition 1.1.  

Let A and T be self-maps of a set X. If Ax = Tx = w(say), w ∈ 

X, for some x in X, then x is called a coincidence point of A 

and T. The set of coincidence points of A and T in X is 

denoted by ∁ (A, T) and w is called a point of coincidence of 

A and T. 

Definition 1.2 
The pair (A, T) is said to 

(i) be compatible [11] if lim
𝑛→∞

d(ATxn, TAxn) = 0, 

whenever {xn} is a sequence in X such that 

lim
𝑛→∞

Axn =  lim
𝑛→∞

Txn =  t, for some t in X. 

(ii) be noncompatible if there is at least one 

sequence {xn} in X such that lim
𝑛→∞

Axn =  

lim
𝑛→∞

Txn =  t, for some t in X, but lim
𝑛→∞

d(ATxn, 

TAxn) is either non-zero or non-existent. 

(iii) satisfy property (E.A.) [1] if there exists a 

sequence {xn} in X such that lim
𝑛→∞

Axn =  

lim
𝑛→∞

Txn =  t, for some t in X. 

(iv) be weakly compatible [13] if TAx = ATx 

whenever Ax = Tx, x ∈ X. 

(v) be occasionally weakly compatible (owc) [2] if 

TAx = ATx for some x ∈ ∁ (A, T). 

Al-Thagafi and Naseer Shahzad [2] shown that occasionally 

weakly is weakly compatible but converse is not true. 

Example 1.3.[2] Let R be the usual metric space. Define S, T 

: R → R by Sx = 2x and Tx = x2 for all x ∈ R. Then Sx = Tx 

for x = 0, 2 but ST0 = TS0, and ST2 ≠ TS2. The pair (S ,T)  is 

occasionally weakly compatible  but not weakly compatible. 

Remark 1.4. (i) Every pair of non compatible self maps of a 

metric space (X, d) satisfies property( E.A.) , but converse 

need not be true [5]. 

1. (ii)   weak compatibility and property (E.A.) are 

independent of each other [18]. 

2. (iii)  every compatible pair is weakly compatible but 

its converse need not be true [13]. 

3. (iv)  every weakly compatible pair is occasionally 

weakly compatible but its converse need not 

4. be true [3]. 

5. occasionally weak compatibility and property (E.A.) 

are independent of each other [14]. 

Definition 1.5.[16] Let (X, d) be a metric space and A, B, S 

and T be four self maps on X. The pairs (A, S) and (B, T) are 

said to satisfy common property (E.A.) if there exist two 

sequences {xn} and {yn}  in X such that lim
𝑛→∞

Axn =  lim
𝑛→∞

Sxn = 

lim
𝑛→∞

Byn =  lim
𝑛→∞

Tyn = t, for some t in X. 
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2. MAIN RESULTS 
A study of contractive conditions of integral type was initiated 

in 2002 by Branciari [8] who gave the version of the Banach 

contraction principle that could be extended to more general 

contractive conditions. (We denote by ℝ+ the set of all 

nonnegative reals; we say that a function f : ℝ+ → ℝ is 

Lebesgue locally integrable if it has a finite integral on every 

bounded interval in ℝ+.)  

Branciari [8] established the following fixed theorem. 

Theorem 1. 

Let (X, d) be a complete metric space, c ∈ (0, 1), and let T : X 

→ X be a mapping such that for each x, y ∈ X, 

      𝜙 𝑠 𝑑𝑠
𝑑(𝑇𝑥,𝑇𝑦)

0
 ≤  c  𝜙 𝑠 𝑑𝑠

𝑑(𝑥,𝑦)

0
                       (1)        

where  : [0, ∞) → [0, ∞) is a Lebesgue integrable mapping 

which is summable on each compact subset of [0, ∞) and such 

that for all 𝜖 > 0,  𝜙 𝑠 𝑑𝑠
𝜖

0
 > 0. 

Then, T has a unique fixed point a ∈ X such that for each x ∈ 

X, Tn x → a as n → ∞. 

    Clearly, Theorem 1 yields the Banach contraction principle 

( set 𝜙 𝑠  = 1 for s ∈ ℝ+ ).    Subsequently, Theorem 1 was 

generalized by Rhoades [19] by substituting the term                   

m(x, y) for d(x, y) in (1), where 

  M(x, y) = max{ d(x, y), d(x, Tx), d(y, Ty), 
(d(x,Ty ) + d(y,Tx )) 

2
  

}. 

Later on, the authors in ([4], [9], [23]) established fixed point 

theorems involving more general contractive conditions. 

Suzuki [21] showed that Meir-Keeler contractions of integral 

type are still Meir-Keeler contractions and so proved that 

Theorem 1 of Branciari is a particular case of the Meir-Keeler 

fixed point theorem [17]. 

In 2010, Calogero Vetro [22] proved the following theorem 

for weakly compatible mappings: 

Theorem 2.  

Let (X, d) be a metric space and let A, B, S and T be self-

mappings of X with                  S(X) ⊆ B(X) and T(X) ⊆ A(X) 

satisfying 

   𝜙 𝑠 𝑑𝑠
𝑑(𝑆𝑥,𝑇𝑦)

0
 ≤ 𝛼  𝜙 𝑠 𝑑𝑠

𝑚(𝑥,𝑦)

0
 +  𝛽  𝜙 𝑠 𝑑𝑠

𝑀(𝑥,𝑦)

0
, 

where 

m(x, y) = d(By, Ty) 
1+𝑑(𝐴𝑥 ,𝑆𝑥)

1+𝑑(𝐴𝑥 ,𝐵𝑦)
  

and  

M(x, y) = max {d(Ax, By), d(Ax, Sx), d(By, Ty)}, 

for all x, y ∈ X, where 𝛼 > 0, 𝛽 > 0, 𝛼 + 𝛽 < 1 and 𝜙 : [0, ∞) 

→ [0, ∞) is a Lebesgue integrable mapping on each compact 

subset of [0, ∞) and such that for all 𝜖 > 0,  𝜙 𝑠 𝑑𝑠
𝜖

0
 > 0. 

Suppose that one of A(X), B(X), S(X) and T(X) is a complete 

subset of X and the pairs {A, S} and {B, T} are weakly 

compatible.  

Then A, B, S and T  have a unique common fixed point in X. 

In this paper, we prove the existence of common fixed points 

for  pairs of occasionally weakly compatible self maps 

satisfying property (E.A.)/common property (E.A.) . Our 

result is more generalized than Theorem 2 as it relaxes one of 

set inclusions. 

Now we come to our main results. 

Proposition  2.1. Let A, B, S and T be four self maps of a 

metric space (X, d) satisfying the inequality 

 (2.1)                  𝜙 𝑠 𝑑𝑠
𝑑(𝑆𝑥 ,𝑇𝑦)

0
 ≤ 𝛼  𝜙 𝑠 𝑑𝑠

𝑚(𝑥,𝑦)

0
 +  𝛽 

 𝜙 𝑠 𝑑𝑠
𝑀(𝑥,𝑦)

0
, where 

  m(x, y) = d(By, Ty) 
1+𝑑(𝐴𝑥 ,𝑆𝑥)

1+𝑑(𝐴𝑥 ,𝐵𝑦)
  

and  

       M(x, y) = max {d(Ax, By), d(Ax, Sx), d(By, Ty)}, 

for all x, y ∈ X, where 𝛼 > 0, 𝛽 > 0, 𝛼 + 𝛽 < 1 and 𝜙 : [0, ∞) 

→ [0, ∞) is a Lebesgue integrable mapping on each compact 

subset of [0, ∞) and such that for all 𝜖 > 0,  𝜙 𝑠 𝑑𝑠
𝜖

0
 > 0. 

Suppose that either 

(i) S(X) ⊆ B(X), the pair (A, S) satisfies property 

(E. A.) and A(X) is a closed subspace of X; 

(ii) T(X) ⊆ A(X), the pair (B, T) satisfies property 

(E. A.) and B(X) is a closed subspace of X; 

holds. 

Then ∁ (A, S) ≠ ∅ and ∁ (B, T) ≠ ∅. 

Proof:   Suppose (i) holds. Since the pair (A,S) satisfies 

property (E.A.), then there exists a sequence {xn} in X such 

that lim
𝑛→∞

Axn = lim
𝑛→∞

Sxn = z for some z ∈ X.  

Since S(X) ⊂ B(X), there exists a sequence {yn} in X such 

that   Sxn = Byn . Hence lim
𝑛→∞

 Byn = z.  

First we claim that lim
𝑛→∞

 Tyn = z, for this purpose, put x = xn, 

and y = yn in (2.1), we have 

 𝜙 𝑠 𝑑𝑠
𝑑(𝑆𝑥𝑛 ,𝑇𝑦𝑛 )

0
 ≤ 𝛼  𝜙 𝑠 𝑑𝑠

𝑚(𝑥𝑛 ,𝑦𝑛 )

0
 +  𝛽 

 𝜙 𝑠 𝑑𝑠
𝑀(𝑥𝑛 ,𝑦𝑛 )

0
, where 

m(xn, yn) = d(Byn, Tyn) 
1+𝑑(𝐴𝑥𝑛 ,𝑆𝑥𝑛 )

1+𝑑(𝐴𝑥𝑛 ,𝐵𝑦𝑛 )
 and  

M(xn, yn) = max {d(Axn, Byn), d(Axn, Sxn), d(Byn, Tyn)} 

On taking limit superior in above inequality, we have, lim
𝑛→∞

 

Tyn = z. 

Since A(X) is a closed subspace of X, therefore z ∈ A(X) and 

this implies z = Av for some v∈ X. 

If  Sv ≠ z, then on putting x = v and y = yn in (2.1), we have 

           𝜙 𝑠 𝑑𝑠
𝑑(𝑆𝑣,𝑇𝑦𝑛 )

0
 ≤ 𝛼  𝜙 𝑠 𝑑𝑠

𝑚(𝑣,𝑦𝑛 )

0
 + 𝛽  

 𝜙 𝑠 𝑑𝑠
𝑀(𝑣,𝑦𝑛 )

0
, where 

m(v, yn) = d(Byn, Tyn) 
1+𝑑(𝐴𝑣,𝑆𝑣)

1+𝑑(𝐴𝑣,𝐵𝑦𝑛 )
 and 

M(v, yn) = max {d(Av, Byn), d(Av, Sv), d(Byn, Tyn)}, 

On letting n → ∞, we have  

𝑙𝑖𝑚𝑛→∞m(v, yn) = 0 and 𝑙𝑖𝑚𝑛→∞M(v, yn) = 𝑙𝑖𝑚𝑛→∞ max{0, 

d(z, Sv), 0} = d(z, Sv). 

Therefore, we have Sv = z = Av. 

Hence, ∁ (A, S) ≠ ∅. 
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Now , since S(X) ⊆ B(X) and z ∈ S(X), there exists  u∈ X 

such that z = Bu. 

If Tu ≠ z, then on putting x = v and y = u in (2.1), we have 

 𝜙 𝑠 𝑑𝑠
𝑑(𝑆𝑣,𝑇𝑢)

0
 ≤ 𝛼  𝜙 𝑠 𝑑𝑠

𝑚(𝑣,𝑢)

0
 + 𝛽   𝜙 𝑠 𝑑𝑠

𝑀(𝑣,𝑢)

0
, 

where 

m(v, u) = d(Bu, Tu) 
1+𝑑(𝐴𝑣,𝑆𝑣)

1+𝑑(𝐴𝑣,𝐵𝑢)
    and 

M(v, u) = max {d(Av, Bu), d(Av, Sv), d(Bu, Tu)}= max{0, 0, 

d(z, Tu)} = d(z, Tu). 

Therefore , we have Bu = Tu = z. 

Hence, ∁ (B, T) ≠ ∅. 

Similarly, the assertion of the theorem holds under 

assumption (ii). 

Hence, Proposition 2.1 follows. 

Theorem  2.2.  In addition to hypothesis of proposition (2.1) 

on A, B, S and T, if both the pairs (A,S) and (B,T) are owc on 

X, then the maps A, B, S and T have a unique common fixed 

point in X. 

Proof. By proposition (2.1), ∁ (A,S) ≠ ∅, and ∁ (B,T) ≠ ∅. 

Since the pair (B,T) is owc, therefore there exists u1 ∈ ∁ (B,T) 

such that Tu1 = Bu1 = z1 (say) and TBu1 = BTu1, therefore Tz1 

= Bz1 = z2 (say). Since the pair (A,S) is owc, therefore there 

exists v1 ∈ ∁ (A,S) such that Sv1 = Av1 = w (say) and SAv1 = 

ASv1, i.e., Sw = Aw = w1 (say). 

Next we claim that z2 = w1. 

If z2 ≠ w1, then form (2.1), we have 

 𝜙 𝑠 𝑑𝑠
𝑑(𝑆𝑤 ,𝑇𝑧1)

0
 ≤ 𝛼  𝜙 𝑠 𝑑𝑠

𝑚(𝑤,𝑧1)

0
 + 𝛽   𝜙 𝑠 𝑑𝑠

𝑀(𝑤,𝑧1)

0
, 

where 

m(w, z1) = d(Bz1, Tz1) 
1+𝑑(𝐴𝑤 ,𝑆𝑤)

1+𝑑(𝐴𝑤 ,𝐵𝑧1)
 and 

M(w, z1) = max {d(Aw, Bz1), d(Aw, Sw), d(Bz1, Tz1)}. 

Therefore we have z2 = w1. 

Therefore , we have Tz1 = Bz1 = w1. Next we show that z1 = 

w1, 

If z1 ≠ w1, then form (2.1.), we have 

 𝜙 𝑠 𝑑𝑠
𝑑(𝑆𝑤 ,𝑇𝑢1)

0
 ≤ 𝛼  𝜙 𝑠 𝑑𝑠

𝑚(𝑤,𝑢1)

0
 +  𝛽 

 𝜙 𝑠 𝑑𝑠
𝑀(𝑤,𝑢1)

0
, where 

m(w, u1) = d(Bu1, Tu1) 
1+𝑑(𝐴𝑤 ,𝑆𝑤)

1+𝑑(𝐴𝑤 ,𝐵𝑢1)
 and 

M(w, u1) = max {d(Aw, Bu1), d(Aw, Sw), d(Bu1, Tu1)}, imply 

z1 = w1. 

 Thus  Tz1 = Bz1 = z1 and Sw = Aw = z1. 

Next we claim that w = z1. If w ≠ z1, then from (2.1)., we 

have 

 𝜙 𝑠 𝑑𝑠
𝑑(𝑤,𝑧1)

0
 =  𝜙 𝑠 𝑑𝑠

𝑑(𝑆𝑣1 ,𝑇𝑧1)

0
 ≤ 𝛼  𝜙 𝑠 𝑑𝑠

𝑚(𝑣1 ,𝑧1)

0
 + 

𝛽   𝜙 𝑠 𝑑𝑠
𝑀(𝑣1 ,𝑧1)

0
, where 

m(v1, z1) = d(Bz1, Tz1) 
1+𝑑(𝐴𝑣1 ,𝑆𝑣1)

1+𝑑(𝐴𝑣1 ,𝐵𝑧1)
 and 

M(v1, z1) = max {d(Av1, Bz1), d(Av1, Sv1), d(Bz1, Tz1)},imply 

w = z1. Hence we have                           Bz1 = Tz1 = z1. 

Therefore , we obtain Az1 = Tz1 = Bz1 = Sz1 = z1. 

Uniqueness follows easily from the inequality (2.1). 

Remark 2.3. In Theorem ,Calogero Vetro[ 22] used T(X) ⊆ 

A(X) and S(X) ⊆ B(X), where as in Theorem 2.2, we relaxed 

one of these set inclusions.  

Example 2.4. Let X = [ 
1

3
, 1) with the usual metric. We define 

mappings A, B, S and T on X by 

    A(x) =  

1

2
                𝑖𝑓 

1

3
≤ 𝑥 <

2

3

1 −
1

2
𝑥      𝑖𝑓 

2

3
≤ 𝑥 < 1,

        B(x) = 

 

1

2
                𝑖𝑓 

1

3
≤ 𝑥 <

2

3
1

3
+

1

2
𝑥      𝑖𝑓 

2

3
≤ 𝑥 < 1,

  

    S(x) = T(x) =  

3

4
   𝑖𝑓 

1

3
≤ 𝑥 <

2

3
2

3
   𝑖𝑓 

2

3
≤ 𝑥 < 1,

  

We observe that S(X) ⊂ B(X), A(X) is a closed subset of X; 

and neither T(X) ⊆ A(X) nor A(X) ⊆ T(X). The selfmaps A, 

B, S and T satisfy the inequality (2.1.1) with 𝜙 𝑠  = 1 and 𝛼 =  
1

3
, 𝛽 = 

1

2
. The sequence {xn}, xn = 

2

3
 + 

1

𝑛+4
, n = 1, 2, 3…. is in 

X such that lim
𝑛→∞

Axn = lim
𝑛→∞

Sxn = 
2

3
, so that the pair (S, A) 

satisfies property (E.A.).  But the pair (S, A) is not compatible 

for 

lim
𝑛→∞

d(Saxn, ASxn) = 
1

12
 ≠ 0. Clearly, the pairs (A, S) and (B, 

T) are owc. Hence, the selfmaps A, B, S and T satisfy all the 

conditions of Theorem 2.2 and 
2

3
 is the unique common fixed 

point of A, B, S and T. 

In the following, we prove the existence of common fixed 

points of  A, B, S and T by imposing the condition common 

property (E.A.) and relaxing the two containments T(X) ⊆ 

A(X) and S(X) ⊆ B(X). 

Proposition 2.5. Let A, B, S and T be four self maps of a 

metric space (X, d) satisfying the inequality (2.1) of 

Proposition 2.1. Suppose that (A, S) and (B, T) satisfy a 

common property (E.A.); and B(X) and A(X) are closed 

subspaces of X.Then ∁ (A, S) ≠ ∅ and ∁ (A, S) ≠ ∅. 

Proof. Since the pairs (A, S) and (B, T) satisfy a common 

property (E.A.). Then there exist sequences {xn} and {yn} in 

X such that  

(2..2)          lim
𝑛→∞

Axn = lim
𝑛→∞

Sxn =  lim
𝑛→∞

Tyn = lim
𝑛→∞

Byn = z . 

Assume that B(X) and A(X) are closed subspaces of X. Then, 

 (2..3)              z = Bu = Av   for some u, v ∈ X. 

If Sv ≠ z, then from (2.1),  (2.2) and (2.3), we have 

                  𝜙 𝑠 𝑑𝑠
𝑑(𝑆𝑣,𝑇𝑦𝑛 )

0
 ≤ 𝛼  𝜙 𝑠 𝑑𝑠

𝑚(𝑣, 𝑦𝑛 )

0
 +  𝛽 

 𝜙 𝑠 𝑑𝑠
𝑀(𝑣,𝑦𝑛 )

0
, where  

 𝑚(𝑣,  𝑦𝑛) = d(Byn, Tyn) 
1+𝑑(𝐴𝑣,𝑆𝑣)

1+𝑑(𝐴𝑣,𝐵𝑦𝑛 )
 and 

𝑀 𝑣, 𝑦𝑛  = max {d(Av, Byn), d(Av, Sv), d(Byn, Tyn)}, 
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on letting n → ∞, we have  Sv = z and thus  

(2.4)                      Sv = Av = z. 

again if Tu ≠ z, then from (2.1), (2.3) and (2.4), we get 

 𝜙 𝑠 𝑑𝑠
𝑑(𝑆𝑣,𝑇𝑢)

0
 ≤ 𝛼  𝜙 𝑠 𝑑𝑠

𝑚(𝑣,𝑢)

0
 +   𝜙 𝑠 𝑑𝑠

𝑀(𝑣,𝑢)

0
, 

where  

m(v, u) = d(Bu, Tu) 
1+𝑑(𝐴𝑣,𝑆𝑣)

1+𝑑(𝐴𝑣,𝐵𝑢)
 and M(v, u) = max {d(Av, 

Bu), d(Av, Sv), d(Bu, Tu)}, we get 

(2.5)  Tu = z = Bu. 

Hence, from (2.4) and (2.5), it follows that 

∁ (A, S) ≠ ∅ and ∁ (A, S) ≠ ∅. 

Theorem 2.6. In addition to hypothesis of proposition (2.5) 

on A, B, S and T, if both the pairs (A,S) and (B,T) are owc on 

X, then the maps A, B, S and T have a unique common fixed 

point in X. 

Proof.  By Proposition 2.5, ∁ (A, S) ≠ ∅ and ∁ (A, S) ≠ ∅. 

The rest of the proof runs as that of Theorem 2.2. 

Now we give an example in support of Theorem 2.6. 

Example 2.7. Let X = [ 
1

3
, 1) with the usual metric. We define 

mappings A, B, S and T on X by 

    A(x) =  

1

2
                𝑖𝑓 

1

3
≤ 𝑥 <

3

4

1 −
1

3
𝑥      𝑖𝑓 

3

4
≤ 𝑥 < 1,

        B(x) = 

 

1

2
                𝑖𝑓 

1

3
≤ 𝑥 <

3

4
1

2
+

1

3
𝑥      𝑖𝑓 

3

4
≤ 𝑥 < 1,

  

S(x) = T(x) =  

17

20
   𝑖𝑓 

1

3
≤ 𝑥 <

3

4
3

4
   𝑖𝑓 

3

4
≤ 𝑥 < 1,

  

Here we observe that both B(X) and A(X) are closed; and 

neither T(X) ⊆ A(X) and S(X) ⊆ B(X). The inequality (2.1) 

holds with 𝜙 𝑠  = 1 and 𝛼 = 
1

3
 , 𝛽  =  

1

2
. The sequence {xn}, xn 

= 
3

4
 + 

1

𝑛+5
, n = 1, 2, 3…. is in X such that lim

𝑛→∞
Axn = lim

𝑛→∞
Sxn = 

lim
𝑛→∞

Bxn = lim
𝑛→∞

Txn =  
3

4
, so that the pairs (A, S) and (B, T) 

satisfy common property (E.A.). Clearly, the pairs (A, S) and 

(B, T) are owc. Hence, the self-maps A, B, S and T satisfy all 

the conditions of Theorem 2.6 and 
3

4
 is the unique common 

fixed point of A, B, S and T.  
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