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ABSTRACT
The field of quantum computing is growing rapidly and there is
a surprisingly large literature. Research in this area includes the
design of quantum reversible circuits and developing quantum al-
gorithms for the models of quantum computing. This paper is fo-
cused on representing quantum reversible gates in matrix form. In
turn these matrices can be used to develop quantum circuits with
help of K-Map. Also this paper gives the historical development of
quantum algorithms and basics concepts in quantum compuation.
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1. INTRODUCTION
In 20th century Quantum theory is the greatest achievement of
scientists which provides a uniform frame work for the construc-
tion of various modern physical theories. After more than 50 years
from its inception, quantum theory married with computer science,
another great intellectual triumph of the 20th century and the
new subject of quantum computation was born. Todays computer
both in theoretical (Turning machines) and Practical (PCs) are
based on classical physics. However quantum computation tells
us that the world behaves quite differently. A quantum system
can be superposition of many different states at the same time
and produces interference effect during its evolution. Important
goals of quantum algorithms are significantly work faster than
any classical algorithm solving the same problem. The potential
advantage of quantum computers over classical computers has
generated a significant amount of interest in quantum computation,
and has resulted in a large number of quantum algorithms not
only for discrete problems, such as integer factorization, but also
for computational problems in science and engineering, such as
multivariate integration, path integration, the solution of ordinary
and partial differential equations, eigenvalues problems, and
numerical linear algebra problems.
In the early 1980s, Manin (1980) and Feynman (1982) indepen-
dently observed that computers built from quantum mechanical
components would be ideally suited to simulating quantum
mechanics. Feynman [1, 2] suggested that constructing computers
based on the principles of quantum mechanics might enable

the quantum systems of interest to physicists to be efficiently
simulated, whereas this seemed to be very difficult with classical
computers.
Also he pointed out that accurately and efficiently simulating
quantum mechanical systems would be impossible on a classical
computer, but that a new kind of machine, a computer itself built
of quantum mechanical elements which obey quantum mechanical
laws”, might one day perform efficient simulations of quantum
systems. Classical computers are inherently unable to simulate
such a system using sub-exponential time and space complexity
due to the exponential growth of the amount of data required to
completely represent a quantum system. Quantum computers,
on the other hand, exploit the unique, non-classical properties
of the quantum systems from which they are built, allowing
them to process exponentially large quantities of information in
only polynomial time. Quantum computers achieve speedup over
classical computation by taking advantage of interference between
quantum amplitudes.
The models of quantum computation have their ancestors from
the studies of connections between physics and computation. In
1973, to understand the thermodynamics of classical computation
Bennet [3] noted that a logically reversible operation does not need
to dissipate any energy and found that a logically reversible Turing
machine is a theoretical possibility.

Benioff [4, 5, 6] defines physical systems in which the laws of
quantum mechanics would lead to the simulation of classical Turn-
ing machine, but does not consider the quantum computation. He
constructed a quantum mechanical model of a Turing machine. His
construction is the first quantum mechanical description of com-
puter, but it is not a real quantum computer because the machine
may exist in an intrinsically quantum state between computation
steps, but at the end of each computation step the tape of the ma-
chine always goes back to one of its classical states.
Another important theme in quantum computing has been the de-
velopment of quantum cryptographic techniques, going back to the
work of Bennett and Brassard [7] which in turn built on work, not
published until several years after its conception, by Wiesner [8].
Yao [9] showed that quantum circuit model is equivalent to a quan-
tum Turing machine in the sense that they can simulate each other
in polynomial time. Since then, quantum circuits has become the
most popular model of quantum computation in which most of the
existing quantum algorithms are expressed. Synthesis of quantum
circuits is crucial for quantum computation due to the fact that in
current technologies it is very difficult to implement quantum gates
acting on three or more qubits. As early as in 1995, it was shown
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that any quantum gate can be (approximately) decomposed to a
circuit consisting only of the CNOT gates and a small set of single
qubit gates [10]. Recently, some more efficient synthesis algorithms
for quantum circuits have been found; see for example [11]. Some
authors initiated the studies of simplification and optimization of
quantum circuits. The aim is to develop methods and techniques
to reduce the number of quantum gates in a quantum circuit and
the depth of a quantum circuit. Due to the difficulty of implement-
ing large quantum circuits, this problem is even more important in
quantum computation than in classical computation
In particular, Deutsch [12, 13] introduced the technique of quan-
tum parallelism based on the superposition principle in quantum
mechanics by which a quantum Turing machine can encode many
inputs on the same tape and perform a calculation on all the inputs
simultaneously. Furthermore, he proposed that quantum computers
might be able to perform certain types of computation that classi-
cal computers can only perform very inefficiently. He investigated
the possible computational power of physically realizable comput-
ers, and formulated a quantum version of the Turing machine. He
defines quantum Turing machines (QTM) as the first model for gen-
eral quantum computation, with the crucial property that superpo-
sition of machine states are allowed, and defines a universal QTM.
He observed that quantum computers raise interesting problems for
the design of programming languages, computing scientists were
slow to respond to this challenge. Quantum computation offers the
possibility of considerable speedup over classical computation by
exploring the power of superposition of quantum states. This can
be illustrated very well by the DeutschJozsa algorithm, which was
designed in [14]. One of the most striking advances was made by
Shor [15, 16]. By exploring the power of quantum parallelism, he
discovered a polynomial-time algorithm on quantum computers for
prime factorization of which the best known algorithm on classical
computers is exponential. For a long time, QC research has been the
luxury of just a few academic elite in the world, that is, until 1994
when Shor invented his famous prime factorization algorithm. He
showed in a concrete example that a QC could do much better than
a classical computer. More importantly, the difficulty in factoring a
large number is the basis of the RivestShamirAdleman (RSA) pub-
lic key encryption scheme that is widely used today. Through Shors
algorithm, the QC has suddenly become a real possible threat, and
this algorithm has sparked worldwide interests in the QC. Shors
algorithm is applicable only to a specific problem. There is an in-
teresting interplay between quantum computing and quantum cryp-
tography, in that while Shors algorithm for integer factorization has
the potential to undermine many current cryptosystems, quantum
cryptographic systems can be proved secure against any form of
attack, including attacks which make use of quantum computing.
Quantum search algorithms are devised by Grover [17,18,19] they
are applicable to many problems. Grovers quantum search algo-
rithm solves the problem of unsorted database searching. Finding
a marked state from an unsorted database requires N2 searches
for a classical computer. Grovers algorithm finds a marked item in
only

√
N steps where N is the size of the database. Grovers algo-

rithm has many applications such as deciphering the digital encryp-
tion schyeme (DES) encryption scheme optimization. The standard
Grover algorithm achieves quadratic speedup over classical search-
ing algorithms. This algorithm suffers from one problem: the prob-
ability of finding the marked state may never be exactly 1. To over-
come this difficulty, one has to generalize the standard Grover algo-
rithm by replacing phase inversions by rotations of smaller angles
so that the search step can be made smaller. The rest of the paper
is organized as follows: Section 2 highlights the basic concepts in

quantum computation. Section 3 represents all the basic quantum
gates in matrix form. Finally section 4 gives conclusion in brief.

2. BASIC CONCEPTS IN QUANTUM
COMPUTATION

The bit is the fundamental concept of classical computation and
classical information. Quantum computation and quantum infor-
mation are built upon an analogous concept, the quantum bit or
Qubit. Classical computer is built from an electrical circuit con-
taining wires and logic gates where as quantum computer is built
from a quantum circuit containing wires and elementary quantum
gates. A classical bit is either 0 or 1. Two possible states for Qubits
are |0 > and |1 >. The difference between classical bits and quan-
tum bits is that a Qubit can be in a state other than |0 > or |1 >.
The superposition |ψ >of Qubit is a linear combination of these
states.

ψ = a0|0 > +a1|1 > (1)

Where a0 is the amplitude of measuring |0 > and a1 is the
amplitude of measuring the value |1 >. a0 and a1 are the complex
coefficients satisfy the normalization condition a20 + a21 = 1.
The probability of observing a single possible state from the
superposition is obtained by squaring the absolute value of its
amplitude. The probability of the Qubit being in the state |0 > is
a20 and the probability that the Qubit will be measured as |1 > is
a21. The most common basis used in the quantum computing is
called computational basis.

|0 >=

[
1
0

]
, |1 >=

[
0
1

]

But any other orthonormal basis could be used. For example, the
basis vector

|+ >=
|0 > +|1 >√

2
=

1√
2

[
1
1

]
(2)

|− >=
|0 > −|1 >√

2
=

1√
2

[
1
−1

]
(3)

The equivalent way of expressing of a Qubit |ψ >= a0|0 >
+a1|1 >
The text book [20] is referred for more information on fundamen-
tals of quantum computation and quantum algorithms.

3. QUANTUM GATES IN MATRIX FORM
The matrix representation of Quantum gate

∑
i

|inputi >< outputi|
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3.1 Quantum NOT gate in the matrix form

= |0 >< 1|+ |1 >< 0|

=

[
1
0

] [
0 1
]
+

[
0
1

] [
1 0
]

=

[
0 1
0 0

]
+

[
0 0
1 0

]
=

[
0 1
1 0

]
(4)

3.2 Quantum Z gate in matrix form
It inverts sign of |1 > to give−|1 > and leaves |0 > unaltered. For
|0 > input the ouput is |0 > and |1 > input the output is −|1 >.

= |0 >< 0|+ |1 >< −1|

=

[
1
0

] [
1 0
]
+

[
0
1

] [
0 −1

]
=

[
1 0
0 0

]
+

[
0 0
0 −1

]
=

[
1 0
0 −1

]
(5)

3.3 Hardmard gate in matrix form

For |0 > input to the Hardmard gate the output is |0>+|1>√
2

and for
|1 > input the output is |0>−|1>√

2
.

H = |0 >
[
|0 > +|1 >√

2
+ |1 > |0 > −|1 >√

2

]
=

1√
2
[|0 >< 0|+ |0 >< 1|+ |1 >< 0| − |1 >< 1|]

=
1√
2

[[
1
0

] [
1 0
]
+

[
1
0

] [
0 1
]
+

[
0
1

] [
1 0
]
−
[
0
1

] [
0 1
]]

=
1√
2

[[
1 0
0 0

]
+

[
0 1
0 0

]
+

[
0 0
1 0

]
−
[
0 0
0 1

]]
=

1√
2

[[
1 1
0 0

]
+

[
0 0
1 −1

]]
=

1√
2

[
1 1
1 −1

]
(6)

3.4 Controlled NOT Gate (CNOT)

|A〉 • |A〉

|B〉 |B ⊕A〉

CNOT gate has two input qubits known as control qubit and target
qubit respectively. The circuit representation for CNOT is shown
in the figure. The top line represents the control qubit, while the
bottom line represents the target qubit. The action of the gate may
be described as follows. If the control qubit is set to 0, then the
target qubit is left alone. If the control qubit is set to 1, then the
target qubit is flipped. The truth table of CNOT gate.

Input Output
|00 > |00 >
|01 > |01 >
|10 > |11 >
|11 > |10 >

|00 > = |0 > ⊕|0 >=

100
0

 , |01 >= |0 > ⊕|1 >=

010
0



|10 > = |1 > ⊕|0 >=

001
0

 , |11 >= |1 > ⊕|1 >=

000
1



CNOT =
∑
i

|inputi >< outputi|

= |00 >< 00|+ |01 >< 01|+ |10 >< 11|+ |11 >< 10|

CNOT =

100
0

[1 0 0 0
]
+

010
0

[0 1 0 0
]
+

001
0

[0 0 0 1
]

+

000
1

[0 0 1 0
]

=

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

+

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

+

0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

+

0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0



=

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (7)

3.5 SWAP Gate in Matrix form

|A〉 • • |B〉

|B〉 • |A〉
It swaps the states of the two qubits. The swap gate is prepared
using three CNOT gates. The sequence is as follows. The inputs
are |A,B >. The ouput of first CNOT gate is |A,A ⊕ B >. This
is fed to the second CNOT gate and oupt of the second CNOT gate
is |A ⊕ (A ⊕ B), A ⊕ B >= |B,A ⊕ B >. The ouput of third
CNOT gate is |B,B ⊕ (A⊕B) = |B,A >
Truth Table of Swap gate

Input Output
|00 > |00 >
|01 > |10 >
|10 > |01 >
|11 > |11 >

Matrix Representation of Swap gate

Mswap=
∑
i

|inputi >< outputi|

=|00 >< 00|+ |01 >< 10|+ |10 >< 01|+ |11 >< 11|
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Mswap =

100
0

[1 0 0 0
]
+

010
0

[0 0 1 0
]
+

001
0

[0 1 0 0
]

+

000
1

[0 0 0 1
]

=

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

+

0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

+

0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0

+

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1



=

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 (8)

3.6 Toffoli gate in Matrix form
Any classical circuit can be replaced by equivalent circuit contain-
ing only reversible elements by making use of a reversible gate
known as the Toffoli gate [21]. The Toffoli gate has three input bits
and three output bits as shown in the figure. Two of the bits that
are control bits that are unaffected by the action of the Toffoli gate.
The third bit is a target bit that is flipped if both control bits are set
to 1, otherwise is left alone.

a • a′

b • b′

c c′ = c⊕ ab

The truth table of Toffoli gate

Input Output
a b c a’ b’ c’
|000 > |000 >
|001 > |001 >
|010 > |010 >
|011 > |011 >
|100 > |100 >
|101 > |101 >
|110 > |111 >
|111 > |110 >

Matrix Representation of Toffoli gate

MToffoli =
∑
i

|inputi >< outputi|

= |000 >< 000|+ |001 >< 001|+ |010 >< 010|+ |011 >< 011|
+|100 >< 100|+ |101 >< 101|+ |110 >< 111|+ |111 >< 110|

=



1
0
0
0
0
0
0
0


[
1 0 0 0 0 0 0 0

]
+



0
1
0
0
0
0
0
0


[
0 1 0 0 0 0 0 0

]
+ . . . . . .

+



0
0
0
0
0
0
1
0


[
0 0 0 0 0 0 0 1

]
+



0
0
0
0
0
0
0
1


[
0 1 0 0 0 0 1 0

]

=



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 1
1 0 0 0 0 0 1 0


(9)

3.7 Controlled - U gate:
It is a natural extension of the controlled NOT gate. Such a gate
has a single control Qubit indicated by the line with the black dot
and n target Qubits indicated by the boxed U. If the control Qubit
is set to 0 then nothing happens to the gate U is applied to the
target Qubits.

•

U

3.8 Fredkin gate :

A

Fredkingate

P = A

B Q = AB ⊕AC

C R = AC ⊕AB

Truth Table of Fredkin Gate
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A B C P Q R
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 1 0
1 1 0 1 0 1
1 1 1 1 1 1

Matrix Representation of Fredkin gate

MFredkin =
∑
i

|inputi >< outputi|

= |000 >< 000|+ |001 >< 001|+ |010 >< 010|+ |011 >< 011|
+|100 >< 100|+ |101 >< 110|+ |110 >< 101|+ |111 >< 111|

=



1
0
0
0
0
0
0
0


[
1 0 0 0 0 0 0 0

]
+



0
1
0
0
0
0
0
0


[
0 1 0 0 0 0 0 0

]
+ . . . . . .

+



0
0
0
0
0
0
1
0


[
0 0 0 0 0 1 0 0

]
+



0
0
0
0
0
0
0
1


[
0 1 0 0 0 0 0 1

]

=



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
1 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1


(10)

3.9 Peres Gate in Matrix form:

A • • P = A

B • Q = A⊕B

C R = AB ⊕ C
Truth table of Peres gate:

A B C P Q R
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 1 0
1 0 1 1 1 1
1 1 0 1 0 1
1 1 1 1 0 0

Matrix Representation of Peres gate:

MPeres =
∑
i

|inputi >< outputi|

= |000 >< 000|+|001 >< 001|+|010 >< 010|+|011 >< 011|
+|100 >< 110|+|101 >< 111|+|110 >< 101|+|111 >< 100|

=



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0


(11)

4. CONCLUSION
In this paper we studied the pre-history of quantum computation
and challenges in the quantum field. Also we have given the ba-
sic concepts in the quantum computation. All quantum gates are
studied thoroughly and represented them in the matrix form. These
matrices are useful in generating quantum circuits. We strongly feel
that this paper will be helpful for the beginners who are doing re-
search in the models of quantum computation.
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