
International Journal of Computer Applications (0975 – 8887)

Volume 160 – No 1, February 2017

39

Survey on the Techniques of FP-Growth Tree for

Efficient Frequent Item-set Mining

Rana Krupali
Parul University
Limda, Baroda

India

Dweepna Garg
Parul University
Limda, Baroda

India

ABSTRACT

Analysis has been carried out in terms of FP-Growth Tree

techniques to determine which technique can be used

efficiently in order to achieve higher scalability and

performance. Construction and development of classifier that

works with more accuracy and performs efficiently for large

database is one of the key tasks of data mining techniques.

Secondly training dataset repeatedly produces massive

amount of rules. It’s very tough to store, retrieve, prune, and

sort a huge number of rules proficiently before applying to a

classifier. In such situation FP is the best choice but problem

with this approach is that it generates redundant FP Tree. A

Frequent pattern tree (FP-tree) is type of prefix tree that

allows the detection of recurrent (frequent) item set exclusive

of the candidate item set generation. It is anticipated to

recuperate the flaw of existing mining methods. FP – Trees

pursues the divide and conquers tactic.

General Terms
FP- tree structure, Apriori algorithm, Association Rule

Keywords

Data Mining, KDD, Association Rule, FP-Growth Tree, FP-

Growth Tree Techniques.

1. INTRODUCTION
In Data Mining the task of finding frequent pattern in large

databases is very essential and has been studied on huge scale

in the past few years. Unfortunately, it is computationally

expensive, especially when a huge number of patterns exist.

The FP-Growth Tree Algorithm, proposed by Han, is an

efficient as well as scalable method for mining the full set of

frequent patterns by pattern fragment growth, using an

extended prefix-tree structure for storing compressed and

crucial information about frequent patterns named frequent-

pattern tree (FP-tree). In that study, Han proved that this

method outperforms other popular methods to mine frequent

patterns, for e.g. the Apriori Algorithm and the Tree

Projection. In other works it was proved that FP-Growth

computes with better performance than other methods,

including Eclat and Relim. The popularity and efficiency of

FP-Growth Algorithm contributes with many studies that

propose variations to improve its performance.

The FP-Growth Algorithm can be considered to find an

alternative frequent item sets without making use of the

candidate generations, hence it improves performance .So far

it uses a divide-and-conquer strategy. The core of this method

is the usage of a special data structure named frequent-pattern

tree (FP-tree), helps in retaining the item-set association

information.

In other words, it works as follows: first it compresses the

input database by creating an FP-tree instance for representing

frequent items. After the initial step, divides the compressed

database into a set of conditional Growth which reduces the

search costs looking for short patterns recursively and

afterwards concatenating them all in the long frequent

patterns, providing high selectivity.

In large databases, it’s not possible to hold the FP-tree in the

main memory. A strategy to solve this problem is to first

partition the database into a set of tiny databases (called

projected databases), and then an FP-tree from each of these

tiny databases can be constructed.

Databases in which each itemset associated with one frequent

pattern. So, each such kind of the database is mining is carried

out separately.

FP- TREE STRUCTURE

Among from the many algorithms suggested like Apriori

algorithms. It is based upon the anti-monotone property. Due

to their two main problems i.e. repeated database scan and

high computational cost, there is need of compact data

structure for mining frequent item sets, which moderates the

multi scan problem and improve the candidate item set

generation. Tree projection is an efficient algorithm based

upon the lexicographic tree in which each node represents a

frequent pattern [7] [8] [11].

FP-Growth algorithm [11] [21] is an efficient algorithm for

producing the frequent itemsets without generation of

candidate item sets. It based upon the divide and conquers

strategy. It needs a 2 database scan for finding all frequent

item sets.[41] This approach compresses the database of

frequent itemsets into frequent pattern tree recursively in the

same order of magnitude as the numbers of frequent patterns,

then in next step divide the compressed database into set of

conditional databases.

The negative association rule is the complement of the general

association rules.[14] Mining negative association rules will

be related to many non-frequent item set, in order to

effectively and produce positive and negative association

rules, mining model of Xindong Wu, are a kind of PR,

discovering both positive and negative association rules;

Xiangjun Dong, et al. gives the multilayer minimum support

degree model MLMs at the same time, the minimum

reliability and correlation coefficient of positive and negative

association rules mining.[33] [37]

In order to solve the positive and negative association rules

generated a large number of frequent item sets and the

performance of the algorithm problem, a mechanism is

proposed for mining positive and negative association rules is

improved FP Tree, its characteristics: advantages (1)

Inheritance of FP Tree, do not need to scan database

repeatedly, do not produce candidate item set; (2) the negative

items as similar item transaction inserts a tree is constructed ,

International Journal of Computer Applications (0975 – 8887)

Volume 160 – No 1, February 2017

40

not expanding the original database,with compressed data

structure to store the transaction database of relevant

information, different nodes can be shared prefix path; (3)

doesn't generate conditional pattern base, do not need to a

large number of conditions pattern tree resources waste

memory and time overhead structure.

The frequent-pattern tree is a kind of compressed structure

which stores quantitative information about frequent patterns

in a database. [15] [17] [27]

Han defines the FP-tree as the tree structure which is defined

below:

 One of the roots can be labelled as ―null‖ with a set

of item-prefix sub trees as children, and a frequent-

item-header table;

 Each node in the item-prefix sub tree consists of

three fields:

 Item-name: registers the item to be represented by

the node;

 Count: The number of transactions represented by

the portion of the path reaching the node;

 Node-link: links to the next node in the FP-tree

carrying the same item-name, or null if there exist

none.

 Each entry in the frequent-item-header table

consists of only two fields:

 Item-name: is same as to the node;

 Head of node-link: a pointer to the first node in the

FP-tree carrying the item-name.

2. FP-GROWTH TREE VARIATIONS

2.1 DynFP-Growth Algorithm
[12] [13] [31]

The Dyn FP-Growth has mainly focused to improve the FP-

Tree algorithm construction based on the issues such as:

 The resultant FP-tree may not be unique for the

same ―logical‖ database;

 The process requires minimum two complete scans

of the database.

For solving this initial issue Gyorödi C., et al. proposes the

usage of a support descending order all together with a

lexicographic order, by ensuring way the uniqueness of the

resulting FP-tree for different ―logically equivalent‖

databases.

In order to solve the next issue they proposed devising a

dynamic FP-tree reordering algorithm, and using this

algorithm a ―promotion‖ to a higher order of at least one item

is detected in the database.

One of the very important feature of this approach is that it’s

not at all essential for rebuilding the FP-Tree as the actual

database is updated. That’s only required to execute the

algorithm taking the new transactions and the stored FP-Tree.

Other adaptation proposed, was of the dynamic re-ordering

process, which was a modification in the original structures,

executed by replacing the single linked list with a doubly

linked list for linking the tree nodes to the header and adding a

master-table to the same header.

2.2 FP-Bonsai Algorithm
[14] [27]

The FP-Bonsai improves the FP-Growth performance by

pruning the FP-Tree using the Ex-Ante data-reduction

technique. The pruned FP-Tree which was usually reduced

FP- Growth Tree was called FP-Bonsai.

2.3 AFOPT Algorithm
[13] [31]

Emphasizing the FP-Growth algorithm performance based Liu

proposed the AFOPT algorithm. AFOPT algorithm mainly

aims to improve the FP-Growth performance in four

perspectives:

1) Item Search Order: As the search space is divided, all items

in the database are sorted in specific order. The number of the

conditional databases constructed may vary too much using

various items search orders.

2) Conditional Database Representation: Traversal and

construction cost of a conditional database majorly is

dependent on its representation.

3) Conditional Database Construction Strategy: constructing

every conditional database physically may be quite expensive

which may adversely affect the mining cost of each individual

conditional database.

4) Tree Traversal Strategy: The traversal cost of a tree can be

minimal using top-down traversal strategy.

2.4 NONORDFP Algorithm
[27] [31]

The Nonord fp algorithm was motivated by the running time

and the memory space required for the FP-Growth algorithm.

The theoretical difference is the main data structure (FP-Tree),

which was even more compact and which was not at all

required to re-build it for each conditional step. A compact,

memory efficient representation of an FP-tree by using Trie

data structure, along with a memory layout which allows

faster traversal, faster allocation, and optionally projection

was introduced.

2.5 FP-Growth *Algorithm
[13] [27]

It was proposed by Grahne et al [and is solely based in the

conclusion about the usage of CPU time to compute frequent

item sets using FP-Growth. Observation was that 80% of CPU

time was used to traverse FP-Trees. Hence, an array-based

data structure was used by combining it with the FP-Tree data

structure for reducing the traversal time, and implies several

optimization techniques.

2.6 PPV, Pre-Post, and FIN Algorithm
[12]

[13]

These all three algorithms were proposed by Deng, and these

were based on three novel data structures popularly known as

Node-list, N-list, and Node-set respectively in order to

facilitate the mining process of frequent item-sets. They were

based on a FP-tree with each node encoding with pre-order

traversal and post-order traversal. If Compared Node-lists, N-

lists and Node-sets are more efficient. It may result into the

efficiency of Pre-Post and FIN is higher than that of PPV.

3. MODIFIED FP-GROWTH TREE

ALGORITHM
Many things are to be considered for FP growth approach that

may result as the weakness of frequent item sets.

The current perspectives used to mine the incremental

database are not much efficient. The computation cost get

International Journal of Computer Applications (0975 – 8887)

Volume 160 – No 1, February 2017

41

high with re-initialization of algorithm for the updated set in

the database of data. [11][21][43]

For huge databases a single individual processor may not be

capable enough for memory for storing the entire data as well

as to process the data in the same way.

Basically FP growth tree needs memory space to store the tree

structure.

FP-tree can also be quite expensive to build the tree-structure

for the data.[45]

The recursion has four different implementations that suit

differently sized FP trees:

Very large FP trees that contain millions of nodes are treated

by simultaneous projection: the tree is traversed once and a

projection to each item is calculated simultaneously. This

phase is applied only at the rst level of recursion; very large

trees are expected to arise from sparse databases, like real

market basket data; conditional trees projected to a single item

are already small in this case. [48]

Sparse aggregate is an aggregation and projection algorithm

that does not traverse those part of the tree that will not exist

in the next projection. [21][27][31] To achieve this, a linked

list is built dynamically that contains the indices to non-zero

counters. This is similar to the header lists of FP-trees. This

aggregation algorithm is used typically near the top of the

recursion, where the tree is large and many zeroes are

expected. The exact choice is tunable with parameters.

Single chain: In this case no aggregation and calculation of

new counters is needed, so a specialized very simple recursive

procedure starts that outputs all subsets of the paths in the tree

as a frequent itemset.

The core data structure is a trie. Each node contains

A counter and a pointer to the parent. As the trie is never

searched, only traversed from the bottom to the top, child

maps are not required. The nodes are stored in an array, node

pointers are indices to this array. Nodes that are labelled with

the same item occupy a consecutive part of this array, this

way we do not need to store the item identiers in the nodes.

Furthermore, that do not need the header lists, as processing

all nodes of a specied item requires traversing an interval of

this array. This also allows faster execution as only

contiguous memory reads are executed. We only need one

memory cell per frequent item to store the starting points of

these intervals (the itemstarts array).

Dense aggregate is the default aggregation algorithm. Each

node of the tree is visited exactly once and its conditional

counter is added to the counter of the parent.

This is the default aggregation algorithm and it is very fast

due to the memory layout of the data structure, described

later. [11][25][41]

Single node optimization is used near the last levels of

recursion, when there is at most one node for each item left in

the tree. (This is a slight generalization of the tree being a

The parent pointers (indices) and the counters are stored in

separate arrays (parents and counters rsp.) to t the core

algorithm's exibility: if projection is not benecial, then the

recursion proceeds with the same structural information

(parent pointers) but a new set of counters.

The item intervals of the trie are allocated in the array

ascending, in topological order. This way the bottom-up and

top-down traversal of the trie is possible with a descending

Rsp ascending iteration through the array of the trie, still only

using contiguous memory reads and writes. This order also

allows the truncation of the tree to a particular level/item: if

the structure is not rebuilt but only a set of conditional

counters is calculated for an item, then the recursion can

proceed with a smaller sized new counters array and the

original parents and item starts array.

Table 1. Comparison Table Between Apriori Algorithm

And Fp-Tree Algorithm

PARAMETERS APRIORI
ALGORITHM

FP-GROWTH
ALGORITHM

Technique /
Methods

Applies Apriori
properties, join,

pruning properties.

First it constructs
conditional frequent

pattern tree & conditional
pattern base from

database.

Memory utilization As large no. of
candidate

generation is
required, large

memory space is
occupied.

Comprises of compact
structure & no candidate
generation require less

memory.

Number of scans Multiple scans
required.

Scanning the database
only twice.

Time Execution time is
more as candidate

has to be generated
each time.

Execution time is far less
as compared to the Apriori

algorithm.

4. RESULTS

4.1 Table representing minimum support

and execution time

Minimum

support

Time taken to execute(In

seconds)FP-GROWTH Trees

2 130

3 124

4 88

5 77

4.2 Graph representing minimum support

and execution time

Figure: 1 Represents graph of minimum support

and execution time

International Journal of Computer Applications (0975 – 8887)

Volume 160 – No 1, February 2017

42

4.3 Table represents no. of records and

execution time

4.4 Graph representing minimum support

and execution time.

Figure: 2 Represents graph of minimum support and

execution time

5. CONCLUSION
FP-Growth is the first successful tree base algorithm for

mining the frequent item sets by using its various techniques

mentioned its performance can be increased as per the

requirements. As in the case of large database its structure

fails to fit into main memory hence for this purpose new

techniques have been came into existence for reducing data-

set and generating tree-structure that may consist of the

variations of the classic FP-Tree and result in higher

performance.

6. REFERENCES
[1] Abd-Elmegid L A., El-Sharkawi M E., El-Fangary L M.,

Helmy Y K., Vertical Mining of Frequent Patterns from

Uncertain Data, Computer and Information Science.

2010; 3(2); 171–179.

[2] Aggarwal C C., An Introduction to uncertain data

algorithm and applications, Advances in Database

Systems. 2009; 35; 1–8.

[3] Aggarwal C C., Philip S Yu., A Framework for

Clustering Uncertain Data Streams, Data Engineering,

IEEE 24th International Conference on ICDE’08. 2008;

150-159.

[4] Aggarwal C C., Yan L., Wang Jianyong, Wang Jing.,

Frequent pattern mining with uncertain data, In Proc.

KDD. 2009; 29-37.

[5] Agarwal, R. C., Aggarwal, C. C., & Prasad, V. V. V.

(2000, August). Depth first generation of long patterns.

In Proceedings of the sixth ACM SIGKDD international

conference on Knowledge discovery and data mining

(pp. 108-118). ACM.

[6] Agrawal R., Srikant R.titFast algorithms for mining

association rules In Proc. VLDB 1994, pp.487–499.

[7] Borgelt, C. (2005, August). An Implementation of the

FP-growth Algorithm. In Proceedings of the 1st

international workshop on open source data mining:

frequent pattern mining implementations (pp. 1-5).

ACM.

[8] C.C. Agarwal, ―An Introduction to uncertain data

algorithm and applications‖, Advances in Database

Systems, 2009, 35; pp 1–8.

[9] Chen H., Ku W S., Wang H., Sun M T., Leveraging

Spatio-Temporal Redundancy for RFID Data Cleansing,

In SIGMOD. 2010.

[10] Chui C K., Kao B., Hung E., Mining Frequent Itemsets

from Uncertain Data, Springer-Verlag Berlin Heidelberg

PAKDD’07. 2007; 4426; 47-58.

[11] Deshpande A., Guestrin C., Madden S R., Hellerstein J

M., W. Hong., Model-Driven Data Acquisition in Sensor

Networks, VLDB; 2004.

[12] Goethals, B. (2003). Survey on frequent pattern mining.

Univ. of Helsinki.

[13] Gouda, K., &Zaki, M. J. (2005). Genmax: An efficient

algorithm for mining maximal frequent itemsets. Data

Mining and Knowledge Discovery, 11(3), 223-242.

[14] Grahne, G., & Zhu, J. (2003, November). Efficiently

Using Prefix-trees in Mining Frequent Itemsets. In FIMI

(Vol. 90).

[15] Han I., Kamber M., Data Mining concepts and

Techniques, M. K. Publishers. 2000; 335–389.

[16] Han, J., Pei, J., & Yin, Y. (2000, May). Mining frequent

patterns without candidate generation. In ACM

SIGMOD Record (Vol. 29, No. 2, pp. 1-12). ACM.

[17] H. Huang, X.W, and R. Relue, ―Association Analysis

with One Scan of Databases‖, Proceedings of the IEEE

International Conference on Data Mining, 2002.

[18] Huang J., Antova L., Koch C., Olteanu D. MayBMS: A

probabilistic database management system, in Proc.

ACM SIGMOD’09. 2009; 1071–1074.

[19] International Journal of Intelligent Computing Research

(IJICR), Volume 6, Issue 3, September 2015 Copyright

© 2015, Infonomics Society 619.

[20] Jagrati Malviya, Anju Singh, ―A comparative study of

various database techniques for frequent pattern

generation‖, ACSIT Nov 2014.

[21] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen , U. Dayal ,

and Hsu, M.-C. FreeSpan, ―Frequent pattern-projected

sequential pattern mining‖, ACM SIGKDD, 2010.

International Journal of Computer Applications (0975 – 8887)

Volume 160 – No 1, February 2017

43

[22] J. Han, J. Pei, and Y. Yin, ―Mining Frequent Patterns

without Candidate Generation‖, SIGMOD 2000, pp 1-12.

[23] Jiawei Han, Jian Pei, Runying Mao,‖ Mining Frequent

Patterns without Candidate Generation: A Frequent-

Pattern Tree Approach‖, Data Mining and Knowledge

Discovery, April 2001, Kluwer Academic Publishers,

Manufactured in the Netherlands.

[24] Jiawei Han, M. Kamber, ―Data Mining-Concepts and

Techniques‖, Sam Francisco 2009, Morgan Kanufmann

Publishers.

[25] Khare N., Adlakha N., Pardasani K R., Karnaugh Map

Model for Mining Association Rules in Large Databases,

International Journal of Computer and Network Security.

2009; 1(2); 16–21.

[26] Leung C K S., Carmichael C L., Hao B., Efficient mining

of frequent patterns from uncertain data, In Proc. IEEE

ICDM Workshops’07. 2007; 489-494.

[27] Leung C K S., Hao B., Efficient algorithms for mining

constrained frequent patterns from uncertain data,

Proceedings of the 1st ACM SIGKDD Workshop on

Knowledge Discovery from Uncertain Data. 2009; 9-18.

[28] Li Haoyuan, Yi Wang, Zhang Dong, Zhang Ming, Chang

Edward, ―PFP: Parallel FP Growth for query

Recommendation‖.

[29] Lijuan Zhou, Xiang Wang, ―Research of the FP Growth

algorithm based on Cloud Environment‖, Journal of

Software, March 2014, volume 9, N0. 3.

[30] Lin Y C., Hung C M., Huang Y M., Mining Ensemble

Association Rules by Karnaugh Map, World Congress on

Computer Science and Information Engineering. 2009;

320–324.

[31] Lin, D. I., &Kedem, Z. M. (1998). Pincer-search: A new

algorithm for discovering the maximum frequent set. In

Advances in Database Technology—EDBT'98 (pp. 103-

119). Springer Berlin Heidelberg.

[32] Liu, G., Lu, H., Yu, J. X., Wang, W., & Xiao, X. (2003,

November). AFOPT: An Efficient Implementation of

Pattern Growth Approach. In FIMI.

IJCATM : www.ijcaonline.org

