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ABSTRACT 

Analysis has been carried out in terms of FP-Growth Tree 

techniques to determine which technique can be used 

efficiently in order to achieve higher scalability and 

performance. Construction and development of classifier that 

works with more accuracy and performs efficiently for large 

database is one of the key tasks of data mining techniques. 

Secondly training dataset repeatedly produces massive 

amount of rules. It’s very tough to store, retrieve, prune, and 

sort a huge number of rules proficiently before applying to a 

classifier. In such situation FP is the best choice but problem 

with this approach is that it generates redundant FP Tree. A 

Frequent pattern tree (FP-tree) is type of prefix tree that 

allows the detection of recurrent (frequent) item set exclusive 

of the candidate item set generation. It is anticipated to 

recuperate the flaw of existing mining methods. FP – Trees 

pursues the divide and conquers tactic. 
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1. INTRODUCTION 
In Data Mining the task of finding frequent pattern in large 

databases is very essential and has been studied on huge scale 

in the past few years. Unfortunately, it is computationally 

expensive, especially when a huge number of patterns exist. 

The FP-Growth Tree Algorithm, proposed by Han, is an 

efficient as well as scalable method for mining the full set of 

frequent patterns by pattern fragment growth, using an 

extended prefix-tree structure for storing compressed and 

crucial information about frequent patterns named frequent-

pattern tree (FP-tree). In that study, Han proved that this 

method outperforms other popular methods to mine frequent 

patterns, for e.g. the Apriori Algorithm and the Tree 

Projection. In other works it was proved that FP-Growth 

computes with better performance than other methods, 

including Eclat and Relim. The popularity and efficiency of 

FP-Growth Algorithm contributes with many studies that 

propose variations to improve its performance. 

The FP-Growth Algorithm can be considered to find an 

alternative frequent item sets without making use of the 

candidate generations, hence it improves performance .So far 

it uses a divide-and-conquer strategy. The core of this method 

is the usage of a special data structure named frequent-pattern 

tree (FP-tree), helps in retaining the item-set association 

information. 

 

In other words, it works as follows: first it compresses the 

input database by creating an FP-tree instance for representing 

frequent items. After the initial step, divides the compressed 

database into a set of conditional Growth which reduces the 

search costs looking for short patterns recursively and 

afterwards concatenating them all in the long frequent 

patterns, providing high selectivity. 

In large databases, it’s not possible to hold the FP-tree in the 

main memory. A strategy to solve this problem is to first 

partition the database into a set of tiny databases (called 

projected databases), and then an FP-tree from each of these 

tiny databases can be constructed. 

Databases in which each itemset associated with one frequent 

pattern. So, each such kind of the database is mining is carried 

out separately. 

FP- TREE STRUCTURE  

Among from the many algorithms suggested like Apriori 

algorithms. It is based upon the anti-monotone property. Due 

to their two main problems i.e. repeated database scan and 

high computational cost, there is need of compact data 

structure for mining frequent item sets, which moderates the 

multi scan problem and improve the candidate item set 

generation. Tree projection is an efficient algorithm based 

upon the lexicographic tree in which each node represents a 

frequent pattern [7] [8] [11]. 

FP-Growth algorithm [11] [21] is an efficient algorithm for 

producing the frequent itemsets without generation of 

candidate item sets. It based upon the divide and conquers 

strategy. It needs a 2 database scan for finding all frequent 

item sets.[41] This approach compresses the database of 

frequent itemsets into frequent pattern tree recursively in the 

same order of magnitude as the numbers of frequent patterns, 

then in next step divide the compressed database into set of 

conditional databases. 

The negative association rule is the complement of the general 

association rules.[14] Mining negative association rules will 

be related to many non-frequent item set, in order to 

effectively and produce positive and negative association 

rules, mining model of Xindong Wu, are a kind of PR, 

discovering both positive and negative association rules; 

Xiangjun Dong, et al. gives the multilayer minimum support 

degree model MLMs at the same time, the minimum 

reliability and correlation coefficient of positive and negative 

association rules mining.[33] [37] 

In order to solve the positive and negative association rules 

generated a large number of frequent item sets and the 

performance of the algorithm problem, a mechanism is 

proposed for mining positive and negative association rules is 

improved FP Tree, its characteristics: advantages (1) 

Inheritance of FP Tree, do not need to scan database 

repeatedly, do not produce candidate item set; (2) the negative 

items as similar item transaction inserts a tree is constructed , 
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not expanding the original database,with compressed data 

structure to store the transaction database of relevant 

information, different nodes can be shared prefix path; (3) 

doesn't generate conditional pattern base, do not need to a 

large number of conditions pattern tree resources waste 

memory and time overhead structure. 

The frequent-pattern tree is a kind of compressed structure 

which stores quantitative information about frequent patterns 

in a database. [15] [17] [27] 

Han defines the FP-tree as the tree structure which is defined 

below: 

 One of the roots can be labelled as ―null‖ with a set 

of item-prefix sub trees as children, and a frequent-

item-header table; 

 Each node in the item-prefix sub tree consists of 

three fields: 

 Item-name: registers the item to be   represented by 

the node; 

 Count: The number of transactions represented by 

the portion of the path reaching the node; 

 Node-link: links to the next node in the FP-tree 

carrying the same item-name, or null if there exist 

none. 

 Each entry in the frequent-item-header table 

consists of only two fields: 

 Item-name: is same as to the node; 

 Head of node-link: a pointer to the first node in the 

FP-tree carrying the item-name. 

2. FP-GROWTH TREE VARIATIONS  

2.1 DynFP-Growth Algorithm 
[12] [13] [31] 

The Dyn FP-Growth has mainly focused to improve the FP-

Tree algorithm construction based on the issues such as: 

 The resultant FP-tree may not be unique for the 

same ―logical‖ database; 

 The process requires minimum two complete scans 

of the database. 

For solving this initial issue Gyorödi C., et al. proposes the 

usage of a support descending order all together with a 

lexicographic order, by ensuring way the uniqueness of the 

resulting FP-tree for different ―logically equivalent‖ 

databases.  

In order to solve the next issue they proposed devising a 

dynamic FP-tree reordering algorithm, and using this 

algorithm a ―promotion‖ to a higher order of at least one item 

is detected in the database. 

One of the very important feature of this approach is that it’s 

not at all essential for rebuilding the FP-Tree as the actual 

database is updated. That’s only required to execute the 

algorithm taking the new transactions and the stored FP-Tree. 

Other adaptation proposed, was of the dynamic re-ordering 

process, which was a modification in the original structures, 

executed by replacing the single linked list with a doubly 

linked list for linking the tree nodes to the header and adding a 

master-table to the same header. 

2.2 FP-Bonsai Algorithm 
[14] [27]

 
The FP-Bonsai improves the FP-Growth performance by 

pruning the FP-Tree using the Ex-Ante data-reduction 

technique. The pruned FP-Tree which was usually reduced 

FP- Growth Tree was called FP-Bonsai. 

2.3 AFOPT Algorithm 
[13] [31]

 
Emphasizing the FP-Growth algorithm performance based Liu 

proposed the AFOPT algorithm. AFOPT algorithm mainly 

aims to improve the FP-Growth performance in four 

perspectives: 

1) Item Search Order: As the search space is divided, all items 

in the database are sorted in specific order. The number of the 

conditional databases constructed may vary too much using 

various items search orders. 

2) Conditional Database Representation: Traversal and 

construction cost of a conditional database majorly is 

dependent on its representation. 

3) Conditional Database Construction Strategy: constructing 

every conditional database physically may be quite expensive 

which may adversely affect the mining cost of each individual 

conditional database. 

4) Tree Traversal Strategy: The traversal cost of a tree can be 

minimal using top-down traversal strategy. 

2.4 NONORDFP Algorithm 
[27] [31] 

The Nonord fp algorithm was motivated by the running time 

and the memory space required for the FP-Growth algorithm. 

The theoretical difference is the main data structure (FP-Tree), 

which was even more compact and which was not at all 

required to re-build it for each conditional step. A compact, 

memory efficient representation of an FP-tree by using Trie 

data structure, along with a memory layout which allows 

faster traversal, faster allocation, and optionally projection 

was introduced.  

2.5 FP-Growth *Algorithm 
[13] [27] 

It was proposed by Grahne et al [and is solely based in the 

conclusion about the usage of CPU time to compute frequent 

item sets using FP-Growth. Observation was that 80% of CPU 

time was used to traverse FP-Trees. Hence, an array-based 

data structure was used by combining it with the FP-Tree data 

structure for reducing the traversal time, and implies several 

optimization techniques. 

2.6 PPV, Pre-Post, and FIN Algorithm 
[12] 

[13]
 

These all three algorithms were proposed by Deng, and these 

were based on three novel data structures popularly known as 

Node-list, N-list, and Node-set respectively in order to 

facilitate the mining process of frequent item-sets. They were 

based on a FP-tree with each node encoding with pre-order 

traversal and post-order traversal. If Compared Node-lists, N-

lists and Node-sets are more efficient. It may result into the 

efficiency of Pre-Post and FIN is higher than that of PPV. 

3. MODIFIED FP-GROWTH TREE 

ALGORITHM 
Many things are to be considered for FP growth approach that 

may result as the weakness of frequent item sets.  

The current perspectives used to mine the incremental 

database are not much efficient. The computation cost get 
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high with re-initialization of algorithm for the updated set in 

the database of data. [11][21][43] 

For huge databases a single individual processor may not be 

capable enough for memory for storing the entire data as well 

as to process the data in the same way.  

Basically FP growth tree needs memory space to store the tree 

structure.  

FP-tree can also be quite expensive to build the tree-structure 

for the data.[45] 

The recursion has four different implementations that suit 

differently sized FP trees: 

Very large FP trees that contain millions of nodes are treated 

by simultaneous projection: the tree is traversed once and a 

projection to each item is calculated simultaneously. This 

phase is applied only at the rst level of recursion; very large 

trees are expected to arise from sparse databases, like real 

market basket data; conditional trees projected to a single item 

are already small in this case. [48] 

Sparse aggregate is an aggregation and projection algorithm 

that does not traverse those part of the tree that will not exist 

in the next projection. [21][27][31] To achieve this, a linked 

list is built dynamically that contains the indices to non-zero 

counters. This is similar to the header lists of FP-trees. This 

aggregation algorithm is used typically near the top of the 

recursion, where the tree is large and many zeroes are 

expected. The exact choice is tunable with parameters. 

Single chain: In this case no aggregation and calculation of 

new counters is needed, so a specialized very simple recursive 

procedure starts that outputs all subsets of the paths in the tree 

as a frequent itemset. 

The core data structure is a trie. Each node contains 

A counter and a pointer to the parent. As the trie is never 

searched, only traversed from the bottom to the top, child 

maps are not required. The nodes are stored in an array, node 

pointers are indices to this array. Nodes that are labelled with 

the same item occupy a consecutive part of this array, this 

way we do not need to store the item identiers in the nodes. 

Furthermore, that do not need the header lists, as processing 

all nodes of a specied item requires traversing an interval of 

this array. This also allows faster execution as only 

contiguous memory reads are executed. We only need one 

memory cell per frequent item to store the starting points of 

these intervals (the itemstarts array). 

Dense aggregate is the default aggregation algorithm. Each 

node of the tree is visited exactly once and its conditional 

counter is added to the counter of the parent. 

This is the default aggregation algorithm and it is very fast 

due to the memory layout of the data structure, described 

later. [11][25][41] 

Single node optimization is used near the last levels of 

recursion, when there is at most one node for each item left in 

the tree. (This is a slight generalization of the tree being a  

The parent pointers (indices) and the counters are stored in 

separate arrays (parents and counters rsp.) to t the core 

algorithm's exibility: if projection is not benecial, then the 

recursion proceeds with the same structural information 

(parent pointers) but a new set of counters. 

The item intervals of the trie are allocated in the array 

ascending, in topological order. This way the bottom-up and 

top-down traversal of the trie is possible with a descending 

Rsp ascending iteration through the array of the trie, still only 

using contiguous memory reads and writes. This order also 

allows the truncation of the tree to a particular level/item: if 

the structure is not rebuilt but only a set of conditional 

counters is calculated for an item, then the recursion can 

proceed with a smaller sized new counters array and the 

original parents and item starts array.  

Table 1. Comparison Table Between Apriori Algorithm 

And Fp-Tree Algorithm 

PARAMETERS  APRIORI 
ALGORITHM  

FP-GROWTH 
ALGORITHM  

Technique / 
Methods 

Applies Apriori 
properties, join, 

pruning properties. 

First it constructs 
conditional frequent 

pattern tree & conditional 
pattern base from 

database. 

Memory utilization As large no. of 
candidate 

generation is 
required, large 

memory space is 
occupied. 

Comprises of compact 
structure & no candidate 
generation require less 

memory. 

Number of scans Multiple scans 
required. 

Scanning the database 
only twice. 

Time Execution time is 
more as candidate 

has to be generated 
each time. 

Execution time is far less 
as compared to the Apriori 

algorithm. 

4. RESULTS 

4.1 Table representing minimum support 

and execution time 

Minimum   

support 

Time taken to execute(In 

seconds)FP-GROWTH Trees  

2 130 

3 124 

4 88 

5 77 

4.2 Graph representing minimum support 

and execution time 

Figure: 1 Represents graph of minimum support 

and execution time 
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4.3 Table represents no. of records and 

execution time

 

4.4 Graph representing minimum support 

and execution time. 

 

Figure: 2 Represents graph of minimum support and 

execution time 

5. CONCLUSION 
FP-Growth is the first successful tree base algorithm for 

mining the frequent item sets by using its various techniques 

mentioned its performance can be increased as per the 

requirements. As in the case of large database its structure 

fails to fit into main memory hence for this purpose new 

techniques have been came into existence for reducing data-

set and generating tree-structure that may consist of the 

variations of the classic FP-Tree and result in higher 

performance. 
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