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ABSTRACT 

As the enormous growth of information challenges the 

existing string analysis techniques for processing huge 

volume of data, there always seem to be a hope for newer 

inventions. Moreover, the problems encountered with the 

traditional methods such as low pruning power, increased 

false positives and poor scalability should be addressed with 

the appropriate solutions that cater to the need for 

improvement. Hence, this paper aims at proposing an 

improved similarity joins using SSPS MapReduce Framework 

that consists of a novel PSS Stemming algorithm along with 

three newly proposed filtering techniques such as SSize, 

SPositional and UI(Union –Intersection) that could effectively 

process large scale data by concerning the limitations of the 

traditional filtering methods. The experimentation shows that 

the framework reduces the false positives and run time cost 

with increased scalability than the existing frameworks.  

Keywords 
similarity joins, Hadoop, MapReduce, filtering and 

Verification 

1. INTRODUCTION 
Similarity Join is considered as one of the vital tasks in data 

cleansing and integration that is intended to find the similar 

pairs of strings from two sets or collections of documents. 

Thus, offers wide range applications including duplicate 

detection [1] [2] [3] [4], data cleaning [5] [6], plagiarism 

detection [7], record linkage [8] and string searching [9] [10]. 

The traditional methods of string similarity employ a well-

known filter –verification framework that embraces two 

essential steps of filter and verification. The filter extracts the 

candidate pairs by pruning the large number of dissimilar 

pairs and the verification retrieves the original similarity of 

documents by thoroughly evaluating each candidate pair in 

which the filter requires an intensive care it plays a vital role 

in the framework.  

The typical way of classifying the string similarity is either 

character or token based metrics [11]. As the intension of this 

research work is to propose several filtering approaches to 

process. The token-based filtering approaches have been 

studied. The metric first converts the strings into token sets 

and applies the set-based similarity such as Jaccard and 

Cosine Similarity measures to quantify the similarity [12]. 

The filtering techniques are also classified according to the 

types of similarity measures. The state of the art of string 

similarity join lies under effective modification of filtering 

techniques w.r.t. similarity metrics which is the influencing 

factor of this research. Hence, the preceding section presents 

the recently proposed filtering techniques and their merits and 

demerits. 

The remain sections of the paper is organized as follows: 

Section 2 deals with the recent literature on filtering 

techniques, section 3 discusses the SSPS framework and the 

research contributions of the paper, section 4 describes the 

experimentation and result discussions and finally, section 5 

concludes the findings of the paper. 

2. LITERATURE REVIEW ON 

FILTERING TECHNIQUES 

2.1 Count Filtering (CF) 
The basic notion of CF is that if two strings are similar, if and 

only if they share at least C common signatures which implies 

that the number of shared signatures between two strings 

which is smaller than C is the string pair that can be pruned. 

The method takes each token as signature and sets an overlap 

threshold as  common signatures C=. Two strings „j‟ and 

„m‟ are similar w.r.t the overlap similarity can be denoted 

using the equation  

C=(|j∩m|)/(|j|+|m|-|j∩m|)≥γ  (1) 

If the length of the signature is increased, there could only be 

fewer strings sharing a common signature causing the inverted 

lists to be shorter. Thus it may decrease the time taken to 

merge the inverted lists. In contrast, a lower threshold on the 

number of common signatures shared by similar strings 

causes a less selective count filter to eliminate dissimilar 

string pairs [13]. The number of false positives after merging 

the lists will increase, causing more time to compute their 

common signatures in order to verify if they are in the answer 

to the query. 

2.2 Length Filtering (LF) 
The length of string may also be considered as one of the 

joining constraints as the similar strings can be represented 

with same length. Thus, LF concerns with the pruning of 

dissimilar pairs w.r.t length difference which means, if two 

strings are similar, then their difference in length cannot be 

large than  [14]. Two strings „j‟ and „m‟ are similar w.r.t LF 

can be denoted using the equation 

γ|j|≤|m|≤(|j|)/γ   (2) 

LF is attained by partitioning the strings into group of strings 

of same length. The pruning of two groups of string is done 

when the length of the strings are dissimilar. LF increases the 

join cost and false positives which would in causes low 

pruning power which affects the scalability.  

2.3 Prefix Filtering (PF) 
PF sorts the tokens in an ordered sequence of list such as 

alphabetical or inverse document frequency and compares the 

first  set of prefix signatures within the strings based on the 

fact, if two strings „j‟ and „m‟ are similar then the prefix order 

of the sequence is also similar [15]. Given the overlap 

threshold  for each string „j‟ the PF „jp‟ is calculated using 

the equation 
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jp=|j|-γ+1     

 (3) 

It is proved that if two string j and m are identical, then 

jpmp≠. PF increases space complexity as the signatures 

are to be stored in the inverted index. Determination of PF 

ordering is one of the implementation issues for minimizing 

the number of comparisons. Moreover, the computational cost 

of PF is high. 

The current trend of information technology has been shifting 

from software development to data analytics. Similarity join is 

one of the prevalent techniques that widely support data 

analytics in the reduction of duplicate data as the manual 

reduction is more complex and time consuming. Though there 

have been numerous string similarity join algorithms 

proposed in the literature, they have all been suffered from 

certain important issues as follows: 

 Low Pruning Power 

 High Computational Cost 

 Increased False Positives 

 High Space Complexity 

 Lack  of Scalability 

Hence, the research on the improvisation of string similarity 

join has always been considered as a thrust area. 

 

 

 

3. METHODOLOGY 
This paper presents a MapReduce Hadoop Framework for 

effectively handling large scale data with the motivation of 

performing a scalable string similarity joins through an 

iterative Map and Reduce phases. The framework consists of 

three stages where each of which consists of its own Mapper 

Input, Mapper output followed by the reducer Input and 

Reducer Output phases and at the centre consists of the 

processing instructions of the reducer phase. A map function 

produces a key-value pair of input records and sends out a list 

of intermediate key-value pairs. A Reduce function accepts 

the list of values equivalent to an identical intermediate key 

and processes it to throw out a list of key or values. The 

framework has the ability to perform both character and set-

based similarity functions that does not compromising the 

traditional filter and verification framework through a parallel 

distributed processing.  

This work introduces four novel research contributions that 

overcome the limitations of the existing similarity join 

framework. One such contribution is PSS algorithm (Prefix 

Suffix Stripping algorithm that cleans the document strings by 

stripping the prefixes and suffixes to extract their stem that 

play a major role in increasing the true positives as it is 

directly involved with similarity joins. Moreover, the thesis 

also proposes three novel filtering techniques namely SSize, 

SPositional and Intersection-Union Filters that generates the 

signature for each sting to prove that two strings are similar if 

and only if they share common signatures. This property is 

utilized to generate the candidate key-value pairs. The 

verification step evaluates the candidate pair to generate final 

results. The framework of the proposed methodology is 

shown in Figure 1. 

 

Fig 1. SSPS Framework 
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The following are the four novel research contributions of this 

paper that comprises of a stemming algorithm and three 

filtering techniques that differ in the way the strings are 

filtered. 

3.1 Stage 1: SSize Filtration MapReducer 
3.1.1 Prefix-Suffix Stripping (PSS) Algorithm 
The PSS algorithm separates the strings of inputted 

documents as individual tokens. The algorithm then derives 

two substrings consists of first five and last seven characters 

from each token. The reason for making the substrings of first 

five and last seven characters is that the highest number of 

characters with prefixes is five and suffixes are seven. The 

substring that consists of the first five characters is called a 

pgram and last seven characters is called sgram. 

Consequently, the algorithm compares pgram with the strings 

stored in the prefix-suffix (ps) table consists of the prefixes 

and suffixes. If the pgram exists with ps table it simply 

removes the pgram from the token and calls it as stem, and 

passes the stem to the next stage of suffix stripping or else the 

characters of pgram is reduced by one and the same process is 

repeated until it finds the right match or the end of pgram is 

reached. The resultant stem is then passed on to the suffix 

stripping stage. The same process is repeated with the sgram 

to identify the suffixes of the given words. The stem words 

that are derived by the PSS algorithm are finally compared 

with WordNet of glossaries which is attached to the software 

for extracting the root word of each token. The tokens are 

documented into multisets. 

3.1.2 Mapper 
The basic notion of SSize Filtration is that if two strings are 

similar, if and only if they share at least C common signatures 

with the size threshold  between two strings. The 

preprocessed input to the Map Phase comprises of various 

records, each consisting the Multiset ID, Multiset (Mi), 

followed by the elements of Mi. The elements of Mi are 

arranged based on the increasing order of the global 

alphabetical order of frequency. Each Mapper calculates the 

SSize of the strings of the multiset in the input record. For 

each string j, the SSize filtration is the multiplication of sum 

of the size of the strings „j‟ and „m‟ with the threshold  

divided by total number of elements in both sets. The SSize 

key is calculated by summing up the frequencies of the data 

elements of the multiset elements present in Mi as given by 

the equation  

𝑆𝑆𝑖𝑧𝑒 =
 |𝑀𝑖 |
𝑛
𝑖=1 ∗𝛾

𝑇𝑜𝑡𝑎𝑙  𝑁𝑢𝑚𝑏𝑒𝑟  𝑜𝑓   𝑠𝑒𝑡𝑠
  (4) 

Where, SSize is the multiplication of addition of size multisets 

i1…in with threshold  divided by the total number of sets. For 

instance, let the strings be “database systems” and “database 

concepts” and the size threshold for the sets be 0.9. SSize 

implies at least one word should be common in both sets as 

follows. 

The total number of elements of the sets is 4. 

𝑆𝑆𝑖𝑧𝑒 =
4 × 0.9

2
=

2.4

2
= 1.2 

3.1.3 Reducer 
The required intersection ratio between the two sets should be 

one which means the strings must share at least one element 

within each other or otherwise the strings can be pruned. 

In the reducer section of stage 1, the records that share the 

data elements that fit into the SSize threshold are grouped 

separately. Using stemming technique, SSize elements in 

multisets are grouped. If two multisets have a common data 

element, which are potential candidates of being similar are 

grouped. Therefore, all the possible MID pairs that share the 

same results are generated. To reduce this number further, 

SSize filtering technique is applied for effective pruning 

results. The SSize filtration technique is applied using the size 

information sent with every record. For every MID pair, {Mi , 

Mj} and threshold t, if the SSize filtering condition, | Mj |≥ t* | 

Mi |, is satisfied, it passes the filter; otherwise it is pruned. For 

every MID pair, {Mi , Mj} that survives size filtering, the 

frequency of dk , size and position information of both Mi and 

Mj are appended and sent as the reducer output to the second 

stage of the framework. 

3.2 Stage 2: SPositional Filtration 

MapReducer 
SPositional filtering is the technique that filters the pairs of 

sets, based on the positional information of the overlapping 

token between the sets. An important aspect of the Stage II-

Reduce Phase is SPositional filtering.  Stage II –Map phase 

consists of two types of Mappers.  

3.2.1 Type 1 Mapper 
The preprocessed input of Stage I-Map Phase, where each 

records consisting of the MID, Mi and its elements, are read 

and sent as output with {Mi, m} as the key and the elements 

of Mi as the value. Here, the „m‟ is the key denotes that 

position of data in the multiset elements called multiset 

records. The proposed algorithm customizes the data and its 

position. A multiset record has compounded with its position 

{Mi, m}, where Mi is the key and m is the position. Records 

are intersected based on the primary key.  Both types of 

records, for which the primary key and Mi is the same, are 

partitioned to the same reducer. Custom grouping ensures the 

records that have the same MID, Mi as the primary key reach 

the same instance pertains to a unique MID Mi.  

3.2.2 Type II Mappers 
The records obtained from the output of Stage I-Reduce Phase 

are read. These records relate to MID pairs are denoted as 

MID Pair records. The output key is the MID pair {Mi, Mj}, 

which comprises of the frequency of dk, and the positional 

information of both Mi and Mj, to assist SPositional filtering 

in the Reduce Phase. In the Stage I-Reduce Phase, the records 

which sharing the common position signature can be joined 

together and sent as output. The notion of Spositional 

Filtration is derived by the sequence of intersection of 

elements in the sets which can be denoted using the Jaccard 

Equation 

𝐽𝑎𝑐𝑆𝑃 =
|𝑗𝑠𝑝∩𝑚𝑠𝑝 |

 𝑗  + 𝑚 −|𝑗∪𝑚|
≥ 𝛾  (5) 

The elements are compared with both similarity and the index 

position of the sets. For instance, the strings “I like chocolate” 

and “I love chocolate” is evaluated as follows with the 

similarity threshold 0.9. 

1  2 3 

I Like chocolate 

1 2 3 

I Love chocolate 

The SPositional intersection of the strings results the 

similarity matches of indices 1 and 3. Hence, the number of 

SPositional intersected elements is 2. The value is then 
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validated against the Jaccard Coefficient similarity measure as 

follows: 

𝐽𝑎𝑐𝑠𝑝 =
2

|3| + |3| − |4|
=

2

2
= 1 ≥ 0.9 

As the SPositional intersection of the strings is greater than 

the threshold, the strings can be paired to for the similarity 

join.  

3.2.3 Reducer 
Candidate pairs can be generated by the Type I-Mappers of 

Stage II. The records which have the same Mi as primary key 

are grouped in the same instance. These include the multiset 

record corresponding to Mi and the MID Pair records with the 

same Mi as their primary key. In every reduce instance, the 

multiset record with key, {Mi ,m}, arrives are interpreted to 

retrieve the results. The MID Pair records that pertain to the 

same {Mi , Mj} pair are grouped together and SPositional 

filtering is applied. Every unique pair {Mi , Mj}, that survives 

SPositional filtering is sent as output. If there is at least one 

pair that survives SPositional filtering, MID Mi and its 

elements are written to a file named as the Multiset File.  

3.3 Stage 3: Union Intersection (UI) 

MapReducer 
Stage III-map phase also consists of two types of Mapper. 

3.3.1 Type I Mapper 
It reads- the preprocessed input of Stage I-Map Phase, where 

every record consists of the MID, Mi and the elements of Mi. 

These records are sent as output with {Mi ,m} as the key and 

the elements of Mi as the value. 

3.3.2 Type II Mapper 
It reads the outputs of Stage II-Reduce Phase which are the 

MID Pairs. In the previous stage, the elements of every 

multiset, Mi, having at least one pair surviving SPositional 

filtering, having Mi as the first of the pair is written to the 

Multiset File. So, the elements of multiset Mi can be retrieved 

from the Multiset File in the Reduce Phase, but we cannot 

retrieve elements of multiset Mj from it. To solve this 

problem, the record is reversed and sent out from the Mapper 

with the {Mj , Mi} as the key and Mj as the value.  

3.3. 3 Reducer 
The Multiset File is loaded into the memory by every reduce 

node.  Partitioning, Grouping, and Sorting are done in the 

same way as Stage II Reducer. Records that have the same Mi 

as the first part of the key arrives at each reduce instance. 

Every MID pair {Mi , Mj} gets the elements of Mi from the 

multiset record that arrives to the same instance, and looks up 

the Multiset File for the multiset elements of Mj.  

4. EXPERIMENTATION 
The experiments have been conducted on a Hadoop cluster 

with 51 virtual nodes and one additional node for handling the 

Hadoop master daemons.  Each node has a memory allocation 

of 8 GB, a single 2.8 GHz CPU, 64bit Operating Systems and 

40 GB of disk space. The simulations are completed using 60 

GB of raw twitter data in the JSON format. These data are 

preprocessed to remove stop words and the root words are 

extracted to get the desired form. Each record containing the 

user‟s ID and a multiset of the words of the tweets which are 

sent by the user. Similarity Joins are performed between the 

multisets of various twitter users taken from different 

scenarios to determine their similarity.  The experimentation 

is made with the intension of comparing the performance of 

the proposed SSPS with the existing SSS and SSJ-2R in terms 

of similarity pair reduction, running time and accuracy by 

setting the threshold limit as 0.7.  Table 1 depicts the 

comparison of similarity pair reduction of the experimental 

methods, with four sets of tweets with varied record sets, 

where the reduction of pairs with the proposed SSPS is 

minimum than the other two methods.    

Table 1. Comparison of Candidate Pair Reduction 

Number of Records Algorithm Reduced Pair 

 

7281 

SSPS 4328 

SSS 5241 

SSJ-2R 5793 

 

11306 

SSPS 8036 

SSS 9355 

SSJ-2R 9920 

 

14336 

SSPS 9631 

SSS 12173 

SSJ-2R 13189 

 

16244 

SSPS 10785 

SSS 12963 

SSJ-2R 14824 

 

Figure 2 denotes the graphical representation of similarity pair 

reduction comparison of SSPS with the SSS and SSJ-2R, 

where the x-axis of the graph represents the experimental 

methods with the number of records in the twitter dataset and 

y-axis represents the reduced pair reduction in number units.  

Table 2 shows the running time (in milliseconds) and the 

performance improvement analysis (effective reduction in %) 

of SSPS with the experimental methods of SSS and SSJ-2R, 

tested over the twitter datasets with the threshold value of 0.7. 

The visual representation of the run time analysis of SSPS, 

SSS and SSJ-2R is presented in Figure 3, proves the time 

taken to process the records using SSPS is considerably 

minimum than the SSS and SSJ-2R for all four datasets. The 
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x-axis of the graph represents the record size of the datasets 

and the y-axis represents the running time in milliseconds. 

Figure 4 denotes the effective reduction percentage of string 

similarity pairs in percentage which also emphasizes that the 

reduction of similarity pairs with SSPS has achieved the 

highest reduction accuracy than SSS and SSJ-2R for all four 

experimental datasets.  

Thus, the proposed method has proven that it could produce 

highest reduction accuracy with minimum run time than the 

existing frameworks of SSS and SSJ-2R. The x-axis of Figure 

4 denotes the MapReducer methods with number of records 

and y-axis denotes the reduction accuracy in percentage. 

When the reduction accuracy is high, the pruning power is 

also high. Hence, the framework is suitable to all real time 

string similarity joins applications.  

 

 

Fig 2. Candidate Pair Reduction Comparison 

Table 2: Performance Analysis of SSPS 

Number of Records Algorithm Running Time (ms) Performance Improvement (%) 

7281 

SSPS 321 91% 

SSS 558 86% 

SSJ-2R 1763 78% 

11306 

SSPS 655 92% 

SSS 897 85% 

SSJ-2R 2905 79% 

14336 

SSPS 1211 86% 

SSS 1620 74% 

SSJ-2R 4504 79% 

16244 

SSPS 1710 85% 

SSS 1855 83% 

SSJ-2R 6480 76% 
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Fig 3. Run Time Analysis of SSPS 

 

Fig 4. Performance Analysis of SSPS 

5. CONCLUSION 
The string similarity join filtering methods that have been 

proposed in this paper are more prevalent than the traditional 

frameworks as it reduces the percentage of false positives 

through the successful reduction of similar pairs of strings. 

The SSPS framework is also found to be effective with its 

high pruning power with increased scalability as its 

performance is stable even with increased number of records. 

Moreover, the time taken to process the similarity reduction is 

also proven as minimum when compared to other string 

similarity reduction frameworks such as SSS and SSJ-2R. 

Hence, the framework is highly suggested to the scenarios 

where the similarity of strings is to be performed. In future, 

this research work may also to be extended to perform the 

clustering of similar opinions or ideas pertained to strings 

over the large-scale data to analyze the underlying facts. 

Moreover, the proposed work can further be extended to test 

on more datasets to generalize the findings.  
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