
International Journal of Computer Applications (0975 – 8887)

Volume 160 – No 1, February 2017

32

A Novel SSPS Framework for String Similarity Join

P. Selvaramalakshmi
Research Scholar,

Department of Computer
Science

Bishop Heber College,
Trichy, TamilNadu, India.

S. Hari Ganesh, PhD
Assistant Professor,

Department of Computer
Science,

H. H. The Rajah’s College.
Pudukottai, TamilNadu, India

Florence Tushabe, PhD
Associate Professor,
UTAMU, Kampala,

Uganda, East Africa.

ABSTRACT

As the enormous growth of information challenges the

existing string analysis techniques for processing huge

volume of data, there always seem to be a hope for newer

inventions. Moreover, the problems encountered with the

traditional methods such as low pruning power, increased

false positives and poor scalability should be addressed with

the appropriate solutions that cater to the need for

improvement. Hence, this paper aims at proposing an

improved similarity joins using SSPS MapReduce Framework

that consists of a novel PSS Stemming algorithm along with

three newly proposed filtering techniques such as SSize,

SPositional and UI(Union –Intersection) that could effectively

process large scale data by concerning the limitations of the

traditional filtering methods. The experimentation shows that

the framework reduces the false positives and run time cost

with increased scalability than the existing frameworks.

Keywords
similarity joins, Hadoop, MapReduce, filtering and

Verification

1. INTRODUCTION
Similarity Join is considered as one of the vital tasks in data

cleansing and integration that is intended to find the similar

pairs of strings from two sets or collections of documents.

Thus, offers wide range applications including duplicate

detection [1] [2] [3] [4], data cleaning [5] [6], plagiarism

detection [7], record linkage [8] and string searching [9] [10].

The traditional methods of string similarity employ a well-

known filter –verification framework that embraces two

essential steps of filter and verification. The filter extracts the

candidate pairs by pruning the large number of dissimilar

pairs and the verification retrieves the original similarity of

documents by thoroughly evaluating each candidate pair in

which the filter requires an intensive care it plays a vital role

in the framework.

The typical way of classifying the string similarity is either

character or token based metrics [11]. As the intension of this

research work is to propose several filtering approaches to

process. The token-based filtering approaches have been

studied. The metric first converts the strings into token sets

and applies the set-based similarity such as Jaccard and

Cosine Similarity measures to quantify the similarity [12].

The filtering techniques are also classified according to the

types of similarity measures. The state of the art of string

similarity join lies under effective modification of filtering

techniques w.r.t. similarity metrics which is the influencing

factor of this research. Hence, the preceding section presents

the recently proposed filtering techniques and their merits and

demerits.

The remain sections of the paper is organized as follows:

Section 2 deals with the recent literature on filtering

techniques, section 3 discusses the SSPS framework and the

research contributions of the paper, section 4 describes the

experimentation and result discussions and finally, section 5

concludes the findings of the paper.

2. LITERATURE REVIEW ON

FILTERING TECHNIQUES

2.1 Count Filtering (CF)
The basic notion of CF is that if two strings are similar, if and

only if they share at least C common signatures which implies

that the number of shared signatures between two strings

which is smaller than C is the string pair that can be pruned.

The method takes each token as signature and sets an overlap

threshold as  common signatures C=. Two strings „j‟ and

„m‟ are similar w.r.t the overlap similarity can be denoted

using the equation

C=(|j∩m|)/(|j|+|m|-|j∩m|)≥γ (1)

If the length of the signature is increased, there could only be

fewer strings sharing a common signature causing the inverted

lists to be shorter. Thus it may decrease the time taken to

merge the inverted lists. In contrast, a lower threshold on the

number of common signatures shared by similar strings

causes a less selective count filter to eliminate dissimilar

string pairs [13]. The number of false positives after merging

the lists will increase, causing more time to compute their

common signatures in order to verify if they are in the answer

to the query.

2.2 Length Filtering (LF)
The length of string may also be considered as one of the

joining constraints as the similar strings can be represented

with same length. Thus, LF concerns with the pruning of

dissimilar pairs w.r.t length difference which means, if two

strings are similar, then their difference in length cannot be

large than  [14]. Two strings „j‟ and „m‟ are similar w.r.t LF

can be denoted using the equation

γ|j|≤|m|≤(|j|)/γ (2)

LF is attained by partitioning the strings into group of strings

of same length. The pruning of two groups of string is done

when the length of the strings are dissimilar. LF increases the

join cost and false positives which would in causes low

pruning power which affects the scalability.

2.3 Prefix Filtering (PF)
PF sorts the tokens in an ordered sequence of list such as

alphabetical or inverse document frequency and compares the

first  set of prefix signatures within the strings based on the

fact, if two strings „j‟ and „m‟ are similar then the prefix order

of the sequence is also similar [15]. Given the overlap

threshold  for each string „j‟ the PF „jp‟ is calculated using

the equation

International Journal of Computer Applications (0975 – 8887)

Volume 160 – No 1, February 2017

33

jp=|j|-γ+1

 (3)

It is proved that if two string j and m are identical, then

jpmp≠. PF increases space complexity as the signatures

are to be stored in the inverted index. Determination of PF

ordering is one of the implementation issues for minimizing

the number of comparisons. Moreover, the computational cost

of PF is high.

The current trend of information technology has been shifting

from software development to data analytics. Similarity join is

one of the prevalent techniques that widely support data

analytics in the reduction of duplicate data as the manual

reduction is more complex and time consuming. Though there

have been numerous string similarity join algorithms

proposed in the literature, they have all been suffered from

certain important issues as follows:

 Low Pruning Power

 High Computational Cost

 Increased False Positives

 High Space Complexity

 Lack of Scalability

Hence, the research on the improvisation of string similarity

join has always been considered as a thrust area.

3. METHODOLOGY
This paper presents a MapReduce Hadoop Framework for

effectively handling large scale data with the motivation of

performing a scalable string similarity joins through an

iterative Map and Reduce phases. The framework consists of

three stages where each of which consists of its own Mapper

Input, Mapper output followed by the reducer Input and

Reducer Output phases and at the centre consists of the

processing instructions of the reducer phase. A map function

produces a key-value pair of input records and sends out a list

of intermediate key-value pairs. A Reduce function accepts

the list of values equivalent to an identical intermediate key

and processes it to throw out a list of key or values. The

framework has the ability to perform both character and set-

based similarity functions that does not compromising the

traditional filter and verification framework through a parallel

distributed processing.

This work introduces four novel research contributions that

overcome the limitations of the existing similarity join

framework. One such contribution is PSS algorithm (Prefix

Suffix Stripping algorithm that cleans the document strings by

stripping the prefixes and suffixes to extract their stem that

play a major role in increasing the true positives as it is

directly involved with similarity joins. Moreover, the thesis

also proposes three novel filtering techniques namely SSize,

SPositional and Intersection-Union Filters that generates the

signature for each sting to prove that two strings are similar if

and only if they share common signatures. This property is

utilized to generate the candidate key-value pairs. The

verification step evaluates the candidate pair to generate final

results. The framework of the proposed methodology is

shown in Figure 1.

Fig 1. SSPS Framework

International Journal of Computer Applications (0975 – 8887)

Volume 160 – No 1, February 2017

34

The following are the four novel research contributions of this

paper that comprises of a stemming algorithm and three

filtering techniques that differ in the way the strings are

filtered.

3.1 Stage 1: SSize Filtration MapReducer
3.1.1 Prefix-Suffix Stripping (PSS) Algorithm
The PSS algorithm separates the strings of inputted

documents as individual tokens. The algorithm then derives

two substrings consists of first five and last seven characters

from each token. The reason for making the substrings of first

five and last seven characters is that the highest number of

characters with prefixes is five and suffixes are seven. The

substring that consists of the first five characters is called a

pgram and last seven characters is called sgram.

Consequently, the algorithm compares pgram with the strings

stored in the prefix-suffix (ps) table consists of the prefixes

and suffixes. If the pgram exists with ps table it simply

removes the pgram from the token and calls it as stem, and

passes the stem to the next stage of suffix stripping or else the

characters of pgram is reduced by one and the same process is

repeated until it finds the right match or the end of pgram is

reached. The resultant stem is then passed on to the suffix

stripping stage. The same process is repeated with the sgram

to identify the suffixes of the given words. The stem words

that are derived by the PSS algorithm are finally compared

with WordNet of glossaries which is attached to the software

for extracting the root word of each token. The tokens are

documented into multisets.

3.1.2 Mapper
The basic notion of SSize Filtration is that if two strings are

similar, if and only if they share at least C common signatures

with the size threshold  between two strings. The

preprocessed input to the Map Phase comprises of various

records, each consisting the Multiset ID, Multiset (Mi),

followed by the elements of Mi. The elements of Mi are

arranged based on the increasing order of the global

alphabetical order of frequency. Each Mapper calculates the

SSize of the strings of the multiset in the input record. For

each string j, the SSize filtration is the multiplication of sum

of the size of the strings „j‟ and „m‟ with the threshold 

divided by total number of elements in both sets. The SSize

key is calculated by summing up the frequencies of the data

elements of the multiset elements present in Mi as given by

the equation

𝑆𝑆𝑖𝑧𝑒 =
 |𝑀𝑖 |
𝑛
𝑖=1 ∗𝛾

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑡𝑠
 (4)

Where, SSize is the multiplication of addition of size multisets

i1…in with threshold  divided by the total number of sets. For

instance, let the strings be “database systems” and “database

concepts” and the size threshold for the sets be 0.9. SSize

implies at least one word should be common in both sets as

follows.

The total number of elements of the sets is 4.

𝑆𝑆𝑖𝑧𝑒 =
4 × 0.9

2
=

2.4

2
= 1.2

3.1.3 Reducer
The required intersection ratio between the two sets should be

one which means the strings must share at least one element

within each other or otherwise the strings can be pruned.

In the reducer section of stage 1, the records that share the

data elements that fit into the SSize threshold are grouped

separately. Using stemming technique, SSize elements in

multisets are grouped. If two multisets have a common data

element, which are potential candidates of being similar are

grouped. Therefore, all the possible MID pairs that share the

same results are generated. To reduce this number further,

SSize filtering technique is applied for effective pruning

results. The SSize filtration technique is applied using the size

information sent with every record. For every MID pair, {Mi ,

Mj} and threshold t, if the SSize filtering condition, | Mj |≥ t* |

Mi |, is satisfied, it passes the filter; otherwise it is pruned. For

every MID pair, {Mi , Mj} that survives size filtering, the

frequency of dk , size and position information of both Mi and

Mj are appended and sent as the reducer output to the second

stage of the framework.

3.2 Stage 2: SPositional Filtration

MapReducer
SPositional filtering is the technique that filters the pairs of

sets, based on the positional information of the overlapping

token between the sets. An important aspect of the Stage II-

Reduce Phase is SPositional filtering. Stage II –Map phase

consists of two types of Mappers.

3.2.1 Type 1 Mapper
The preprocessed input of Stage I-Map Phase, where each

records consisting of the MID, Mi and its elements, are read

and sent as output with {Mi, m} as the key and the elements

of Mi as the value. Here, the „m‟ is the key denotes that

position of data in the multiset elements called multiset

records. The proposed algorithm customizes the data and its

position. A multiset record has compounded with its position

{Mi, m}, where Mi is the key and m is the position. Records

are intersected based on the primary key. Both types of

records, for which the primary key and Mi is the same, are

partitioned to the same reducer. Custom grouping ensures the

records that have the same MID, Mi as the primary key reach

the same instance pertains to a unique MID Mi.

3.2.2 Type II Mappers
The records obtained from the output of Stage I-Reduce Phase

are read. These records relate to MID pairs are denoted as

MID Pair records. The output key is the MID pair {Mi, Mj},

which comprises of the frequency of dk, and the positional

information of both Mi and Mj, to assist SPositional filtering

in the Reduce Phase. In the Stage I-Reduce Phase, the records

which sharing the common position signature can be joined

together and sent as output. The notion of Spositional

Filtration is derived by the sequence of intersection of

elements in the sets which can be denoted using the Jaccard

Equation

𝐽𝑎𝑐𝑆𝑃 =
|𝑗𝑠𝑝∩𝑚𝑠𝑝 |

 𝑗 + 𝑚 −|𝑗∪𝑚|
≥ 𝛾 (5)

The elements are compared with both similarity and the index

position of the sets. For instance, the strings “I like chocolate”

and “I love chocolate” is evaluated as follows with the

similarity threshold 0.9.

1 2 3

I Like chocolate

1 2 3

I Love chocolate

The SPositional intersection of the strings results the

similarity matches of indices 1 and 3. Hence, the number of

SPositional intersected elements is 2. The value is then

International Journal of Computer Applications (0975 – 8887)

Volume 160 – No 1, February 2017

35

validated against the Jaccard Coefficient similarity measure as

follows:

𝐽𝑎𝑐𝑠𝑝 =
2

|3| + |3| − |4|
=

2

2
= 1 ≥ 0.9

As the SPositional intersection of the strings is greater than

the threshold, the strings can be paired to for the similarity

join.

3.2.3 Reducer
Candidate pairs can be generated by the Type I-Mappers of

Stage II. The records which have the same Mi as primary key

are grouped in the same instance. These include the multiset

record corresponding to Mi and the MID Pair records with the

same Mi as their primary key. In every reduce instance, the

multiset record with key, {Mi ,m}, arrives are interpreted to

retrieve the results. The MID Pair records that pertain to the

same {Mi , Mj} pair are grouped together and SPositional

filtering is applied. Every unique pair {Mi , Mj}, that survives

SPositional filtering is sent as output. If there is at least one

pair that survives SPositional filtering, MID Mi and its

elements are written to a file named as the Multiset File.

3.3 Stage 3: Union Intersection (UI)

MapReducer
Stage III-map phase also consists of two types of Mapper.

3.3.1 Type I Mapper
It reads- the preprocessed input of Stage I-Map Phase, where

every record consists of the MID, Mi and the elements of Mi.

These records are sent as output with {Mi ,m} as the key and

the elements of Mi as the value.

3.3.2 Type II Mapper
It reads the outputs of Stage II-Reduce Phase which are the

MID Pairs. In the previous stage, the elements of every

multiset, Mi, having at least one pair surviving SPositional

filtering, having Mi as the first of the pair is written to the

Multiset File. So, the elements of multiset Mi can be retrieved

from the Multiset File in the Reduce Phase, but we cannot

retrieve elements of multiset Mj from it. To solve this

problem, the record is reversed and sent out from the Mapper

with the {Mj , Mi} as the key and Mj as the value.

3.3. 3 Reducer
The Multiset File is loaded into the memory by every reduce

node. Partitioning, Grouping, and Sorting are done in the

same way as Stage II Reducer. Records that have the same Mi

as the first part of the key arrives at each reduce instance.

Every MID pair {Mi , Mj} gets the elements of Mi from the

multiset record that arrives to the same instance, and looks up

the Multiset File for the multiset elements of Mj.

4. EXPERIMENTATION
The experiments have been conducted on a Hadoop cluster

with 51 virtual nodes and one additional node for handling the

Hadoop master daemons. Each node has a memory allocation

of 8 GB, a single 2.8 GHz CPU, 64bit Operating Systems and

40 GB of disk space. The simulations are completed using 60

GB of raw twitter data in the JSON format. These data are

preprocessed to remove stop words and the root words are

extracted to get the desired form. Each record containing the

user‟s ID and a multiset of the words of the tweets which are

sent by the user. Similarity Joins are performed between the

multisets of various twitter users taken from different

scenarios to determine their similarity. The experimentation

is made with the intension of comparing the performance of

the proposed SSPS with the existing SSS and SSJ-2R in terms

of similarity pair reduction, running time and accuracy by

setting the threshold limit as 0.7. Table 1 depicts the

comparison of similarity pair reduction of the experimental

methods, with four sets of tweets with varied record sets,

where the reduction of pairs with the proposed SSPS is

minimum than the other two methods.

Table 1. Comparison of Candidate Pair Reduction

Number of Records Algorithm Reduced Pair

7281

SSPS 4328

SSS 5241

SSJ-2R 5793

11306

SSPS 8036

SSS 9355

SSJ-2R 9920

14336

SSPS 9631

SSS 12173

SSJ-2R 13189

16244

SSPS 10785

SSS 12963

SSJ-2R 14824

Figure 2 denotes the graphical representation of similarity pair

reduction comparison of SSPS with the SSS and SSJ-2R,

where the x-axis of the graph represents the experimental

methods with the number of records in the twitter dataset and

y-axis represents the reduced pair reduction in number units.

Table 2 shows the running time (in milliseconds) and the

performance improvement analysis (effective reduction in %)

of SSPS with the experimental methods of SSS and SSJ-2R,

tested over the twitter datasets with the threshold value of 0.7.

The visual representation of the run time analysis of SSPS,

SSS and SSJ-2R is presented in Figure 3, proves the time

taken to process the records using SSPS is considerably

minimum than the SSS and SSJ-2R for all four datasets. The

International Journal of Computer Applications (0975 – 8887)

Volume 160 – No 1, February 2017

36

x-axis of the graph represents the record size of the datasets

and the y-axis represents the running time in milliseconds.

Figure 4 denotes the effective reduction percentage of string

similarity pairs in percentage which also emphasizes that the

reduction of similarity pairs with SSPS has achieved the

highest reduction accuracy than SSS and SSJ-2R for all four

experimental datasets.

Thus, the proposed method has proven that it could produce

highest reduction accuracy with minimum run time than the

existing frameworks of SSS and SSJ-2R. The x-axis of Figure

4 denotes the MapReducer methods with number of records

and y-axis denotes the reduction accuracy in percentage.

When the reduction accuracy is high, the pruning power is

also high. Hence, the framework is suitable to all real time

string similarity joins applications.

Fig 2. Candidate Pair Reduction Comparison

Table 2: Performance Analysis of SSPS

Number of Records Algorithm Running Time (ms) Performance Improvement (%)

7281

SSPS 321 91%

SSS 558 86%

SSJ-2R 1763 78%

11306

SSPS 655 92%

SSS 897 85%

SSJ-2R 2905 79%

14336

SSPS 1211 86%

SSS 1620 74%

SSJ-2R 4504 79%

16244

SSPS 1710 85%

SSS 1855 83%

SSJ-2R 6480 76%

432852415793
8036

935599209631
12173

13189
10785

12963
14824

0
2000
4000
6000
8000

10000
12000
14000
16000

S
S

P
S

S
S

S

S
S

J-
2

R

S
S

P
S

S
S

S

S
S

J-
2

R

S
S

P
S

S
S

S

S
S

J-
2

R

S
S

P
S

S
S

S

S
S

J-
2

R

7281 11306 14336 16244

R
ed

u
ce

d
 P

a
ir

 i
n

 N
u

m
b

er
s

MapReduce Methods

Candidate Pair Reduction of SSPS

Reduced Pair

International Journal of Computer Applications (0975 – 8887)

Volume 160 – No 1, February 2017

37

Fig 3. Run Time Analysis of SSPS

Fig 4. Performance Analysis of SSPS

5. CONCLUSION
The string similarity join filtering methods that have been

proposed in this paper are more prevalent than the traditional

frameworks as it reduces the percentage of false positives

through the successful reduction of similar pairs of strings.

The SSPS framework is also found to be effective with its

high pruning power with increased scalability as its

performance is stable even with increased number of records.

Moreover, the time taken to process the similarity reduction is

also proven as minimum when compared to other string

similarity reduction frameworks such as SSS and SSJ-2R.

Hence, the framework is highly suggested to the scenarios

where the similarity of strings is to be performed. In future,

this research work may also to be extended to perform the

clustering of similar opinions or ideas pertained to strings

over the large-scale data to analyze the underlying facts.

Moreover, the proposed work can further be extended to test

on more datasets to generalize the findings.

6. REFERENCES
[1] Fetterly D, Manasse M, Najork M (2003) On the

evolution of clusters of near-duplicate web pages. J Web

Eng 2(4):228–246

[2] Henzinger M (2006) Finding near-duplicate web pages: a

large-scale evaluation of algorithms. In: Proceedings of

the 29th annual international ACM SIGIR conference on

Research and development in information retrieval.

ACM, New York, pp 284–291

[3] Sarawagi S, Bhamidipaty A (2002) Interactive

deduplication using active learning. In: Proceedings of

the eighth ACM SIGKDD international conference on

Knowledge discovery and data mining. ACM, New

York, pp 269–278

[4] Xiao C,WangW, Lin X, Yu JX,Wang G (2011) Efficient

similarity joins for near-duplicate detection. ACM Trans

Database Syst (TODS) 36(3):15

321 558

1763

655
897

2905

1211
1620

4504

1710
1855

6480

0
1000
2000
3000
4000
5000
6000
7000

S
S

P
S

S
S

S

S
S

J-
2

R

S
S

P
S

S
S

S

S
S

J-
2

R

S
S

P
S

S
S

S

S
S

J-
2

R

S
S

P
S

S
S

S

S
S

J-
2

R

7281 11306 14336 16244

R
u

n
 T

im
e

(m
s)

MapReduce Methods with Number of Records

Run Time Analysis of SSPS

Running

Time

(ms)

91%
86%

78%

92%
85%

79%
86%

74%
79%

85% 83%
76%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

S
S

P
S

S
S

S

S
S

J-
2

R

S
S

P
S

S
S

S

S
S

J-
2

R

S
S

P
S

S
S

S

S
S

J-
2

R

S
S

P
S

S
S

S

S
S

J-
2

R

7281 11306 14336 16244

R
ed

u
ct

io
n

 A
cc

u
ra

cy

in
 P

er
ce

n
ta

g
e

MapReduce Methods with Number of Records

Performance Analysis of SSPS

Performance

Improvement

International Journal of Computer Applications (0975 – 8887)

Volume 160 – No 1, February 2017

38

[5] Baraglia R, De Francisci Morales G, LuccheseC(2010)

Document similarity self-joinwith mapreduce. In: 2010

IEEE 10th International Conference on Data Mining

(ICDM), IEEE, pp 731–736

[6] Elsayed T, Lin J, Oard DW (2008) Pairwise document

similarity in large collections with mapreduce. In:

Proceedings of the 46th annual meeting of the

association for computational linguistics on human

language technologies: short papers. association for,

computational linguistics, pp 265–268

[7] Hoad TC, Zobel J (2003) Methods for identifying

versioned and plagiarized documents. J Am Soc Inf Sci

Technol 54(3):203–215

[8] Winkler WE (1999) The state of record linkage and

current research problems. In: Statistical Research

Division, US Census Bureau, Citeseer

[9] Hadjieleftheriou M, Chandel A, Koudas N, Srivastava D

(2008) Fast indexes and algorithms for set similarity

selection queries. In: IEEE 24th International Conference

on Data Engineering, 2008. ICDE 2008. IEEE, New

York pp 267–276

[10] Henzinger M (2006) Finding near-duplicate web pages: a

large-scale evaluation of algorithms. In: Proceedings of

the 29th annual international ACM SIGIR conference on

Research and development in information retrieval.

ACM, New York, pp 284–291

[11] Jiang, Y., Li, G., Feng, J. and Li, W.S., 2014. String

similarity joins: An experimental evaluation. Proceedings

of the VLDB Endowment, 7(8), pp.625-636.

[12] Deng, D., Li, G., Hao, S., Wang, J. and Feng, J., 2014,

March. Massjoin: A mapreduce-based method for

scalable string similarity joins. In 2014 IEEE 30th

International Conference on Data Engineering (pp. 340-

351). IEEE.

[13] Li, C., Wang, B. and Yang, X., 2007, September.

VGRAM: Improving performance of approximate

queries on string collections using variable-length grams.

In Proceedings of the 33rd international conference on

Very large data bases (pp. 303-314). VLDB Endowment.

[14] Gravano, L., Ipeirotis, P.G., Jagadish, H.V., Koudas, N.,

Muthukrishnan, S. and Srivastava, D., 2001, September.

Approximate string joins in a database (almost) for free.

In VLDB (Vol. 1, pp. 491-500).

[15] Wang, J., Li, G. and Feng, J., 2012, May. Can we beat

the prefix filtering?: an adaptive framework for similarity

join and search. In Proceedings of the 2012 ACM

SIGMOD International Conference on Management of

Data (pp. 85-96). ACM.

IJCATM : www.ijcaonline.org

